4

Generalisation Theory

The introduction of kernels greatly increases the expressive power of the learning
machines while retaining the underlying linearity that will ensure that learning
remains tractable. The increased flexibility, however, increases the risk of overfitting
as the choice of separating hyperplane becomes increasingly ill-posed due to the
number of degrees of freedom.

In Chapter 1 we made several references to the reliability of the statistical infer-
ences inherent in the learning methodology. Successfully controlling the increased
[flexibility of kernel-induced feature spaces requires a sophisticated theory of gen-
eralisation, which is able to precisely describe which factors have to be controlled
in the learning machine in order to guarantee good generalisation. Several learn-
ing theories exist that can be applied to this problem. The theory of Vapnik and
Chervonenkis (VC) is the most appropriate to describe SVMs, and historically it
has motivated them, but it is also possible to give a Bayesian interpretation, among
others.

In this chapter we review the main results of VC theory that place reliable
bounds on the generalisation of linear classifiers and hence indicate how to control
the complexity of linear functions in kernel spaces. Also, we briefly review results
from Bayesian statistics and compression schemes that can also be used to describe
such systems and to suggest which parameters to control in order to improve gen-
eralisation.

4.1 Probably Approximately Correct Learning

The model we will now introduce is known under a number of different names
depending on the discipline concerned. Within statistics it would be known as
the study of rates of uniform convergence, or frequentist inference, but within
computer science it is generally referred to as the probably approximately correct
or pac model, although Vapnik and Chervonenkis applied this style of analysis
to statistical inference many years before it became popular in machine learning.
The reason for the name will become apparent when we describe the components
of the model.

The key assumption on which the model is based is that the data used in
training and testing are generated independently and identically (i.i.d.) according
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to an unknown but fixed distribution 2. We assume this is a distribution
over input/output pairings (x,y) € X x {—1,1}, an approach which subsumes
the case where the output y is determined by a fixed target function t of the
input y = #(x). Adaptations of the model have considered the case where the
distribution changes over time, or where there is not full independence in the
generation of the examples in the training set, as might be expected in for
instance a sequence of examples generated as a time series. The model also
ignores the possibility that the learner might be able to influence which examples
are chosen, an ingredient that is studied in the query model of learning. We will
ignore all these refinements and consider only the i.i.d. case.

Since the test examples are generated according to the distribution 2, the
natural measure of error in the classification case is the probability that a
randomly generated example is misclassified. Again consideration can be made
of unequal costs for misclassification of positive and negative examples, but this
question will be ignored in our initial analysis. We therefore define the error
errg(h) of a classification function & in distribution £ to be

err(h) = D{(%,y) : h(x) # y}.

Such a measure is also referred to as a risk functional, as its measure the expected
error rate. The aim of the analysis will be to assert bounds on this error in terms
of several quantities. Perhaps the most crucial is the number of training examples
used. Frequently pac results have been presented as bounds on the number of
examples required to obtain a particular level of error. This is also known as
the sample complexity of the learning problem. We prefer bounding the error
in terms of the number of examples as this error can then be used directly as
a criterion for choosing between different classes, the so-called model selection
problem.

Consider a fixed inference rule for selecting a hypothesis hs from the class H
of classification rules at the learner’s disposal based on a set

S =((X1,)’1),~~ ,(X/,yt’))

of ¢/ training examples chosen iid. according to 2. In this setting we can
view the generalisation error errg(hs) as a random variable depending on the
random selection of the training set. The statistical mechanical approach to
analysing generalisation aims to bound the expected generalisation error, where
the expectation is taken over the random selection of training sets of a particular
size. There are situations where such an estimate can be unreliable, as a particular
error may fall far from its expectation. An example of such an unreliable
estimator is that given by cross-validation. The pac model of learning requires a
generalisation error bound that is unlikely to fail. It therefore bounds the tail of
the distribution of the generalisation error random variable errg(hs). The size of
the tail is determined by a further parameter J specified by the learner. Hence, a
pac bound has the form ¢ = &(¢, H,d), and asserts that with probability at least
1 — & over randomly generated training sets S, the generalisation error of the
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selected hypothesis hs will be bounded by
err(hs) < &4, H, 9), (4.1)

or in other words is probably approximately correct (pac). This is equivalent to
asserting that the probability that the training set gives rise to a hypothesis with
large error is small:

72 {s : e_agr(hs) > &, H,&)} <é. (4.2)

The pac approach has the flavour of a statistical test in the sense that it asserts
that the probability the data have misled us is small. This corresponds to saying
that a result is significant at the J level, or in other words that the probability
a test has misled us is at most d. In this sense it provides a hypothesis with a
statistical validation similar to those employed in developing the experimental
sciences.

One of the key ingredients of the pac approach is that unlike many statistical
tests the bound on the error should not depend on the distribution 2. This means
that the bounds must hold whatever the distribution generating the examples,
a property sometimes referred to as distribution free. It is not surprising that
some distributions make learning harder than others, and so a theory that holds
for all distributions must inevitably be pessimistic in many cases. We will see
later that the large margin approach breaks this worst case deadlock and is able
to take advantage of benign distributions. First, however, we will introduce the
analysis of the distribution free case.

4.2 Vapnik Chervonenkis (VC) Theory

For a finite set of hypotheses it is not hard to obtain a bound in the form of
inequality (4.1). Assume we use the inference rule that selects any hypothesis
that is consistent with the training examples in S. The probability that all £ of the
independent examples are consistent with a hypothesis h for which errg(h) > &,
is bounded by

2%{S : h consistent and e;r(h) > e} < (1 —e) <exp(—ef),
where the second inequality is a simple mathematical bound. Now, even if we

assume that all |H| of the hypotheses have large error, the probability that one
of them is consistent with S is at most

|H| exp(—¢),

by the union bound on the probability that one of several events occurs. This
bounds the probability that a consistent hypothesis hs has error greater than e,
as given in inequality (4.2),

27{S : hs consistent and eér(hs) > ¢} < |H|exp(—¢ef).
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In order to ensure the right hand side is less that §, we set

H]|
4]

This simple bound already shows how the complexity of the function class H
measured here by its cardinality has a direct effect on the error bound. Clearly
choosing H too large can lead to overfitting. The result also shows that a
property relating the true error to the empirical error holds for all hypotheses in
the set H. For this reason it is said to demonstrate uniform convergence. Learning
theory relies on bounding the difference between empirical and true estimates
of error uniformly over the set of hypotheses and conditions that can arise. As
we have seen this is not difficult when the number of hypotheses is finite. The
major contribution of the theory developed by Vapnik and Chervonenkis was
to extend such an analysis to infinite sets of hypotheses, as for example in the
case when we consider linear learning machines indexed by real-valued weight
vectors.

We assume an inference rule that delivers any consistent hypothesis and
denote by errs(h) the number of errors made by hypothesis h on the set S of
examples. The key to bounding over an infinite set of functions is to bound the
probability of inequality (4.2) by twice the probability of having zero error on
the training examples but high error on a second random sample S:

e=¢(l,H,0)= %ln

74 {S :3dheH: e§r(h) = O,eér(h) > s}
<29% {s§ :3h € H s err(h) = 0,ere(h) > sf/Z} . (4.3)
S

This relation follows from an application of Chernoff bounds provided ¢ > 2/c.
The quantity on the right hand side is bounded by fixing the 2/ sample and
counting different orders in which the points might have been chosen while still
keeping all the errors in the second sample. Since each order or permutation is
equally likely the fraction of orders that satisfy the property is an upper bound
on its probability. By only considering permutations that swap corresponding
points from the first and second sample, we can bound the fraction of such
permutations by 27*/2, independently of the particular set of 2/ sample points.
The advantage of considering errors over a finite set of 2¢ sample points is that
the hypothesis space has effectively become finite, since there cannot be more
than 2% classification functions on 2¢ points. In order to obtain a union bound
on the overall probability of the right hand side of inequality (4.3), all that is
required is a bound on the size of the hypothesis space when restricted to 2/
points, a quantity known as the growth function

By (?) = x, HaX {(h(x1), h(x2),... . i(x,)) - h € H},

our ,X/)EX{

where |4| denotes the cardinality of the set A. The first observation about this
quantity is that it cannot exceed 2 since the sets over which the maximum is
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sought are all subsets of the set of binary sequences of length Z. A set of points
{xi,... ,%¢} for which the set

{(h(x1), h(X2), ...  h(x,)) 1 h € H} = {—1,1}’

is said to be shattered by H. If there are sets of any size which can be shattered
then the growth function is equal to 27 for all Z. The final ingredient in the
Vapnik Chervonenkis theory is an analysis of the case when there is a finite d
which is the largest size of shattered set. In this case the growth function can be
bounded as follows for £ > d
d
But) < ()

giving polynomial growth with exponent d. The value d is known as the Vapnik
Chervonenkis (VC) dimension of the class H, denoted by VCdim(H). These
quantities measure the richness or flexibility of the function class, something that
is also often referred to as its capacity. Controlling the capacity of a learning
system is one way of improving its generalisation accuracy. Putting the above
bound on the growth function together with the observation about the fraction
of permutations for which the first half of the sample is able to mislead the
learner, we obtain the following bound on the left hand side of inequality (4.2):

d
2 {S :3h € H : exr(h) = 0,err(h) > s} <2 (%) 27¢12,

resulting in a pac bound for any consistent hypothesis h of

2 2et 2
egrzr(h) <&(,H,0) = 7 (dlogT + log 5) ,
where d = VCdim(H). Hence we have shown the following fundamental theorem
of learning.

Theorem 4.1 (Vapnik and Chervonenkis) Let H be a hypothesis space having VC
dimension d. For any probability distribution @ on X x {—1,1}, with probability
1 — 6 over £ random examples S, any hypothesis h € H that is consistent with S
has error no more than

2 2el 2
< ==z il il
eér(h) <&, H, ) 7 (dlog pi + log 5),
provided d < ¢ and £ > 2/e.
Remark 4.2 The theorem shows that for infinite sets of hypotheses the problem
of overfitting is avoidable and the measure of complexity that should be used
is precisely the VC dimension. The size of training set required to ensure

good generalisation scales linearly with this quantity in the case of a consistent
hypothesis.
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VC theory provides a distribution free bound on the generalisation of a
consistent hypothesis, but more than that it can be shown that the bound is in
fact tight up to log factors, as the following theorem makes clear.

Theorem 4.3 Let H be a hypothesis space with finite VC dimension d > 1. Then
for any learning algorithm there exist distributions such that with probability at
least &6 over ¢ random examples, the error of the hypothesis h returned by the

algorithm is at least
max d—1 1ln 1
320°¢ 6

Remark 4.4 The theorem states that for a hypothesis class with high VC di-
mension there exist input probability distributions which will force the learner
to require a large training set to obtain good generalisation. We can therefore
see that finite VC dimension characterises learnability in the pac sense — we can
bound the error as a function of a finite VCdim(H), while for unbounded VC
dimension learning is impossible in the distribution free sense. Note, however,
that the lower bound does not hold for all distributions. It is possible that a
class with high VC dimension is learnable if the distribution is benign. Indeed
this fact is essential for the performance of SVMs which are designed to take
advantage of such benign distributions. This will be discussed further in the next
section.

In order to apply the theory to linear learning machines, we must compute
the VCdim(#) of a linear function class .# in R” in terms of the dimension n,
that is determine what is the largest number d of examples that can be classified
in all 2¢ possible classifications by different linear functions, that is that can be
shattered by #. The following proposition characterises when this can be done.

Proposition 4.5 Let & be the class of linear learning machines over R".

1. Given any set S of n + 1 training examples in general position (not lying
in an n — 1 dimensional affine subspace ), there exists a function in & that
consistently classifies S, whatever the labelling of the training points in S.

2. For any set of ¢ > n+ 1 inputs there is at least one classification that cannot
be realised by any function in &.

Theorem 4.3 and Proposition 4.5 imply that learning in very high dimensional
feature spaces is not possible. An extreme example would be the use of a Gaussian
kernel when we are effectively employing an infinite dimensional feature space.
We must conclude that according to a distribution free pac analysis the Support
Vector Machine approach to learning cannot succeed. The fact that SVMs can
learn must therefore derive from the fact that the distribution generating the
examples is not worst case as required for the lower bound of Theorem 4.3. In
the next section we will sketch a more refined pac analysis that shows that the
margin of a classifier provides a measure of how helpful the distribution is in
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identifying the target concept, resulting in a generalisation error bound of the
form

eér(h) <elt,%,0,y)

that will not involve the dimension of the feature space. Hence, the SVM learning
strategy is able to exploit collusions between distribution and target concept when
they occur, as is frequently the case in real-world learning problems. Bounds of
this type that involve quantities measured as a result of the training process will
be referred to as data dependent.

The theory we have sketched so far only applies when the hypothesis is
consistent with the training data. If there is noise in the data or the class of
hypotheses is unable to capture the full richness of the target function, it may not
be possible or advisable to aim for full consistency. The theory can be adapted
to allow for a number of errors on the training set by counting the permutations
which leave no more errors on the left hand side. The resulting bound on the
generalisation error is given in the following theorem.

Theorem 4.6 Let H be a hypothesis space having VC dimension d. For any proba-
bility distribution 2 on X x {—1, 1}, with probability 1—§ over ¢ random examples
S, any hypothesis h € H that makes k errors on the training set S has error no
more than

2k 4 2el 4
e_ogr(h) <elt,H,0)= - + 7 (dlog—E— + log 5) ,

provided d < £.

The theorem suggests that a learning algorithm for a hypothesis class H
should seek to minimise the number of training errors, since everything else
in the bound has been fixed by the choice of H. This inductive principle is
known as empirical risk minimisation, since it seeks to minimise the empirically
measured value of the risk functional. The theorem can also be applied to a
nested sequence of hypothesis classes

HcHyc...cHc...cHy

by using 6 /M, hence making the probability of any one of the bounds failing to
hold to be less than . If a hypothesis h; with minimum training error is sought
in each class H;, then the number of errors k; that it makes on the fixed training
set S will satisfy

khzky=...=2ki=...=ky,

while the VC dimensions d; = VCdim(H;) form a non-decreasing sequence. The
bound of Theorem 4.6 can be used to choose the hypothesis h; for which the
bound is minimal, that is the reduction in the number of errors (first term)
outweighs the increase in capacity (second term). This induction strategy is
known as structural risk minimisation.
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4.3 Margin-Based Bounds on Generalisation

Recall that the definition of the margin of a classifier was given in Definition 2.2.
We now generalise the definitions to an arbitrary class of real-valued functions.

Definition 4.7 Consider using a class & of real-valued functions on an input
space X for classification by thresholding at 0. We define the margin of an
example (x;,y;) € X x {—1,1} with respect to a function f € F to be the quantity

i = yif (xi)-

Note that y; > 0 implies correct classification of (x;, y;). The margin distribution
of f with respect to a training set S is the distribution of the margins of the
examples in S. We sometimes refer to the minimum of the margin distribution
as the margin mg(f) of f with respect to the training set S. This quantity will
be positive if f correctly classifies S. Finally, the margin of a training set S with
respect to the class & is the maximum margin over all f € &.

The following three subsections will consider bounds involving different
measures of the margin distribution

Ms(f) = {ri=yf(x) :i=1,...,7},

over a training set S = (X, ¥1),... , (X¢, y¢)) for the real-valued function f. If we
are considering a linear function class we assume that the margins are geometric
(see Definition 2.2), or in other words that the weight vector has unit norm. We
begin by considering the margin mg(f) or min Ms(f).

43.1 Maximal Margin Bounds

When proving Theorem 4.1, we reduced the probability over an infinite set of
hypotheses to the finite set of functions that can be realised on a 2/ sample. A
large margin y can reduce the effective size of the function space still further
because the generalisation performance can be approximated by a function
whose output is within y/2 on the points of the double sample. In many cases
the size of a set of functions that approximate the behaviour of the whole class
to within y/2 on a fixed set of / points is much smaller than the size of the
growth function of the thresholded class. The estimation of the size of such a
representative sample of functions requires some extra machinery and notation.

Definition 4.8 Let % be a class of real-valued functions on a domain X. A
y-cover of F with respect to a sequence of inputs

S = (Xl,Xz’... ,X{)

is a finite set of functions B such that for all f € &, there exists g € B, such that
maxjcics (| f(x;) — g(xi)l) < 9. The size of the smallest such cover is denoted by
N(F,8S,y), while the covering numbers of & are the values

N(F.4,y) = max A(F,§,y).
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We now show how for a hypothesis f with margin ms(f) = y on the training
set S, Theorem 4.1 can be reformulated in terms of the covering numbers of the
underlying real-valued function class. We assume that there is a fixed threshold
and that errg(f) counts the number of errors the thresholded output of f makes
on the sample S. Similarly, for errg(f) on a point generated randomly according
to 9. We have

74 {s 13f € F cerr(f) = O,ms(f) 2 y,exr(f) > s}
< 2@2’{83:3fe.97:e§r(f)=O,mg(f)zy,e;r(f)>%}. (4.4)
N

Consider a (y/2)-cover B of # with respect to the sequence SS. Let g € B, be
within y/2 of f. It follows that g has errs(g) = 0,ms(g) > y/2, while if f made an
error on some point x € § then g must have margin less than y /2 on x. Hence,
if (y / 2) -err;(g) denotes the number of points in S for which g has margin less
that y/2, we can bound the right hand side of inequality (4.4} by

29% {SS’ Af e F egr(f) = 0,mg(f) = y,err(f) > s//Z}
$

IA

29% {SS' :dge€B: e§r(g) =0,ms(g) > y/2, (y/2) -err(g) > a//Z}
3

2|BI27%? < 2 4/(F,2¢,7/2)27%/,

IA

by a similar permutation argument and union bound. We have therefore demon-
strated the following preliminary result.

Theorem 4.9 Consider thresholding a real-valued function space # and fix y € R*.
For any probability distribution 2 on X x {—1,1}, with probability 1 — 6 over ¢
random examples S, any hypothesis f € F that has margin ms(f) = y on S has
error no more than

2
(log%(%’,2/,y/2) + log 5) ,

NN

eér(f) <&, F,0,y)=

provided £ > 2/¢.

Remark 4.10 The theorem shows how the generalisation error can be bounded
in terms of the quantity mg(f) which is observed as a result of training. We
expect that for larger values of y, the size of log A (F,2¢,y/2) will get smaller.
This quantity can be viewed as an effective VC dimension and so we can expect
that observing a large margin will result in good generalisation from a small
sample. Notice that the VC dimension of & does not enter into the bound.
We will see examples later where the VC dimension is in fact infinite, but this
effective VC dimension is still finite and hence learning can take place. This does
not contradict the lower bound of Theorem 4.3, as the observation of a large
margin indicates that the distribution is benign. Even though the bound holds
for all distributions it will only be useful when the distribution is benign.
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Remark 4.11 The theorem only applies for a fixed value of y specified before the
learning began. In order to be able to use the theorem for the observed value
of y after training, we must apply the theorem for a range of values, ensuring
that there will be one close to any realistic outcome of training. The fact that
the & enters into the bound inside a log factor makes it possible to perform such
a uniform application over a finite set without appreciable loss in the quality of
the bound. The precise details of how we make the choice of different values of
y and obtain a uniform result become rather technical, but add little to the main
message. We therefore will not go further into this question (see Section 4.8 for
pointers to papers with more detail), but rather turn our attention to how we
can bound log /" (F,2¢,7/2), the critical quantity if we want to make use of the
result.

The bound on log #/(#,¢,y) represents a generalisation of the bound on the
growth function required for the VC theory. In that case the critical measure was
the VC dimension d and the growth function was shown to grow polynomially
with degree d. The corresponding quantity we shall use to bound the covering
numbers will be a real-valued generalisation of the VC dimension known as the
fat-shattering dimension.

Definition 4.12 Let & be a class of real-valued functions defined on a domain
X. We say a set of points {x;,Xy,... ,X,} € X’ is y-shattered by &, if there exist
real numbers r;, i = 1,... ,Z, such that for every binary classification b € {—1,1}¢,
there exists fy € &, such that

Nty ifbi=1,
f"("’){ <ri—y,if by =—1.

The fat-shattering dimension fatg(y) at scale v is the size of the largest y-shattered
subset of X.

The dimension is also referred to as the scale-sensitive VC dimension. The
real numbers r; can be viewed as individual thresholds for each point while
y-shattering implies that we can realise every classification with margin y relative
to the chosen thresholds. Clearly the larger the value of y, the smaller the size of
set that can be shattered since the restrictions placed on the functions that can
be used become stricter. If the thresholds r; are required to be the same for all
the points, the dimension is known as level fat-shattering. The freedom to choose
individual thresholds appears to introduce extra flexibility, but in the case of
linear functions it does not in fact increase the size of sets that can be shattered.
We will return to the class of linear functions after considering the following
bound on the covering numbers in terms of the fat-shattering dimension.

Lemma 4.13 Let & be a class of functions X — [a,b] and 2 a distribution over
X. Choose 0 <y < 1 and let d = fatgz(y/4). Then for £ > d

4¢/(b — a)?
g ( .

lo .

log /' (F,4,7) < 1+dlog

2ef(b — a)
d
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The bound on #(F,¢,y) is therefore slightly greater than polynomial, but if
we ignore the log factors the dependency of log 4 (,7,y) on the fat-shattering
dimension of & exactly mimics the dependence of log By(£) on the VC dimension
of H. We can therefore think of the fat-shattering dimension at scale y/8 as the
effective VC dimension when we observe a margin of y. Indeed if we use Lemma
4.13 in Theorem 4.9 for a fixed value of y, we obtain the following corollary.

Corollary 4.14 Consider thresholding a real-valued function space .# with range
[—R,R] and fix y € R*. For any probability distribution & on X x {—1,1}, with
probability 1 — & over ¢ random examples S, any hypothesis f € & that has
margin mg(f) > y on S has error no more than

16e/R 128/R? 4)

2
3 == d
eér(f) <&, F,0,y) > (dlog 7 log 72 + log 5

provided £ > 2/¢, d < £, where d = fatz(y/8).

Remark 4.15 Notice that if one ignores log factors, the role of the fat-shattering
dimension in this bound is analogous to that of the VC dimension in Theorem
4.1, but the actual value of this quantity depends on the observed margin, hence
the expression effective VC dimension.

Again, if we wish to take account of larger ranges and different values of y
extra technical analysis is necessary, but these details will not alter the overall
shape of the result and will not be covered here. For more details see references
in Section 4.8. We can view stratifying the result over different values of y
as assigning hypotheses to classes of different complexity depending on their
margin. Hence, the classes are data dependent in contrast to classical structural
risk minimisation when they must be specified before seeing the data. For this
reason this type of result is sometimes referred to as data dependent structural
risk minimisation.

We now turn our attention to the question of bounding the fat-shattering
dimension for linear function classes, the final ingredient required if we wish to
use the bounds for SVMs.

Theorem 4.16 Suppose that X is the ball of radius R in an inner product space H,
X ={x € H: x|y <R}, and consider the class of functions

F={x—(w-x):|wlg<lxeX}.

2
fgt(y) < <§) .

The proof of this theorem follows from two intermediate results. The first
states that if S = {x,...,X/} is y-shattered by &, then every subset Sp < S

satisfies
15503 s —s0)||, =2 (45)

Then
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where the sum of a set means the sum of the vectors contained in that set.
This result follows from considering the inner product of the vector inside the
norm with the weight vector realising the classification determined by Sp with
margin y. The second intermediate result computes the expected left hand side
norm squared under a random choice of the subset Sp. If s is the {—1,1} vector
indicating membership in Sy, we choose s uniformly at random and must estimate

4
E[Tn-Ss-sf, = £
i=1 H
3
= EY s lxilg+2E)_sisi (i X))y
i=1 i#]

1
E) Ixillf < R*.

i=1

2
E

Since there must be at least one Sy with value less than or equal to the expectation,
there exists at least one classification for which

”Zso -3 - SO)H]HI <R\Z.

This inequality, together with inequality (4.5), shows that R\/z > ¢y, and the
result follows.

Remark 4.17 Note that the bound on the fat-shattering dimension of linear
learning machines is analogous to the mistake bound for the perceptron algorithm
given in Theorem 2.3.

We are now in a position to quote an error bound for Support Vector
Machines.

Theorem 4.18 Consider thresholding real-valued linear functions & with unit
weight vectors on an inner product space X and fix y € R*. For any probabil-
ity distribution 9 on X x {—1,1} with support in a ball of radius R around the
origin, with probability 1 — § over ¢ random examples S, any hypothesis f € &
that has margin mg(f) >y on S has error no more than

2 (64R2

2
eg(f) <&, &,6,y) = ; 128/R 4) ,

ety
" log R log —yz—— + log 5

provided £ > 2/¢ and 64R?/y? < ¢.

The important qualitative aspect of this result is that the dimension of the
input space does not appear, indeed the result also applies to infinite dimen-
sional spaces. This type of result is sometimes said to be dimension free, as it
suggests that the bound may overcome the curse of dimensionality. Based on the
observations at the end of Section 4.2 we conclude that avoidance of the curse of
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dimensionality will only be possible if the distribution generating the examples
is sufficiently benign and renders the task of identifying the particular target
function correspondingly easier. In such cases the bound gives an assurance that
with high probability we will make few errors on randomly chosen test examples.
It is in this sense that we can view y as providing a measure of how benign
the distribution is and therefore how well we can expect to generalise. It is also
possible to give a more refined estimate of the probability of misclassification in
terms of the distance of the test point from the hyperplane — see Section 4.8 for
pointers to references.

Theorem 4.18 becomes trivial and hence gives no information for the case
where the data are non-separable or noise in the data causes the margin to be
very small. The next two subsections discuss two methods which can handle
these situations by taking a different measure of the margin distribution.

4.3.2 Margin Percentile Bounds

The next measure of the distribution of margin values that can be used to bound
generalisation is a general percentile. This measure has the significant advantage
that it includes the case when a hypothesis is not fully consistent with the training
data. If we order the values in the margin distribution

Ms(f) = {y; = yif(x:)}

so that y; <y, <--- <y, and fix a number k < 7, the k/¢ percentile Ms(f) of
Ms(f) is y,. The following theorem provides a bound on the generalisation error
in terms of k/¢ and Msy(f).

Theorem 4.19 Consider thresholding real-valued linear functions & with unit
weight vectors on an inner product space X and fix y € R*. There is a con-
stant ¢, such that for any probability distribution 2 on X x {—1, 1} with support in
a ball of radius R around the origin, with probability 1 —§5 over £ random examples
S, any hypothesis f € £ has error no more than

k c R? 2 1
eér(f) < 7 +\/z (Wlog /+10g5),

forallk < ¢.

The proof of this theorem follows a similar pattern to that of Theorem 4.9
except that the counting of permutations of the double sample is complicated
by the need to allow some mistakes on the left hand side.

The theorem suggests that we can obtain the best generalisation performance
by minimising the number of margin errors, where we define a training point
to be a y-margin error if it has margin less than y. The bound will be able to
handle cases where there are a few outliers either causing the training set to be
non-separable or forcing a very small margin. In these cases the margins of the
difficult points can be ignored and the margin of the remaining points used. The
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cost incurred by moving to this larger margin is two-fold. Firstly the extra term
k/¢ takes into account the fact that we have ignored that fraction of the training
set, while the second cost is the additional square root of the complexity term as
compared with Theorem 4.18. The next subsection describes a bound in terms of
the margin distribution that does not include the square root but rather depends
on a measure of the size of the margin errors.

4.3.3 Soft Margin Bounds

We begin this subsection by giving a precise definition of the margin slack
variables. This generalises Definition 2.6 to general function classes. For the case
where & is a class of linear functions the definition reduces back to Definition
2.6. The motivation is given by considering a target margin y, and asking by
how much individual points fail to meet this target. For points with margin
larger than y, this amount is zero, while for points that are misclassified the slack
variable is greater than y.

Definition 4.20 Consider using a class & of real-valued functions on an input
space X for classification by thresholding at 0. We define the margin slack
variable of an example (x;y;) € X x {—1,1} with respect to a function f € &
and target margin y to be the quantity (see Figure 2.4)

(X0 yi), f,7) = & = max (0, y — yif (xi)) .

Note that &; > y implies incorrect classification of (X;, ;). The margin slack vector
&S, f,y) of a training set

S =((x1,91),.-.,(Xz, ¥7))

with respect to a function f and target margin y contains the margin slack
variables

é = §(Saf,)’) =(€1>"' 16/)9

where the dependence on S, f, and 7 is dropped when it is clear from the context.

We can think of the slack variables as measures of noise in the data which
has caused individual training points to have smaller or even negative margins.
The approach derived from taking account of the slack variables is suitable for
handling noisy data.

We will derive a bound on the generalisation of the hypothesis f in terms
of the target margin y and different norms of the corresponding margin slack
vector. The trick is to move the points that fail to meet the target margin
outwards by embedding the input space into a larger space where a function can
be found which increases their margins. The cost of performing the move can
be measured by the norm of the margin slack vector. For an input space X, we
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use the auxiliary inner product space

L(X) = f € R¥ :supp(f) is countable and > f(x)* <o,
xesupp(f)

where for f, g € L(X), the inner product is given by
Fa= > fxgx.
xesupp(f)
We now embed the input space into the space X x L(X), using the mapping
71X (X,0x)
where

1, ifx=1z
Ox(z) = { 0, otherwise.

Hence, a general function in g € L(X) that maps input x; to a value ¢; € R,
i=1,2,..., can be written

e 0]
g= Zciéx,.
i=1

Since L(X) is an inner product space we can view elements of L(X) as linear
functions on L(X). Hence, for a function (f,g) € & x L(X), we define the action
of (f,g) on (x,¢) € X x L(X) by

(f.8)(x,¢) =f(x) + (g ¢),

so that the action of (f, g) on t(x) is given by
(f, 8)(x(x)) =f(x) + (g - 6x) -

Our strategy is to show that a judicious choice of g € L(X) causes the margin
of the combined function to be 7y, while the covering numbers of the expanded
function class can be bounded in terms of the norm of the margin slack vector.
We first show how to choose g so that the data are separated with margin y. We
define the following auxiliary function gy = g(S, f,7) € L(X):

¢
gr = Eyidx,
i=1
Now for (x;,y;) € S,

yilf, g)(z(xi)) yif (xi) + yi (85 - 6x,)

¢
= yif(x)+yi Z &5 (0x,  Ox,)

j=1

yif (i) + &:y?
yif(xi)+ & =7.
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Hence, the augmented function does indeed have margin y on the training set.
For a point x not in the training set its action is identical to f,

4
FOO+D &y (By, - 8x)
j=1
= f(x),

and so the generalisation performance of the two functions is identical. We
therefore have the following result.

(f> g )(x(x))

Theorem 4.21 Consider thresholding a real-valued function space F and fix a sub-
space L = L(X), and y € R*. For any probability distribution 9 on X x {—1,1},
with probability 1 — & over £ random examples S, any hypothesis f € & for which
g2(S,f,y) € L has error no more than

eggr(f) <elt, F,0,y) = ; (logJV(ﬁ',Zl, y/4) +log #(L,2¢,y/4) + log g) ,

provided ¢ > 2/¢ and there is no discrete probability on misclassified training points.

Proof By the above we have that (f,g(S, f,y)) has margin y on the training
set and equals f for points outside the training set. We can therefore apply
Theorem 4.9 to bound the generalisation error for points not in the training set.
It remains to place an appropriate bound on log & (F x L,2£,7/2). Let A be a
cover of # and B a cover of L each at scale y/4 with respect to the 2/ points
X1,...,Xz. Then A x B is a y/2 cover of # x L with respect to the same points,
since for general (f,g) € F x L, we can find f’ € 4, such that

lfx) = fx)l <v/4,i=1,...,2¢,
and g’ € B, such that

lg(0x) —8'(6x)I < 7/4,i=1,...,2,
whence we have that

|(f 8)(x(x) — (', g")(x(x1))] 1f (x:) — f'(x1)| + 18(Jx) — &'(3x,)l

/2, i=1,...,2¢.

IA A

We conclude that
N(F X L,2,y[2) < N(F, 2,7/ AN (L,24,7/4),

and the result follows. O
In order to apply this result we must choose appropriate sequences of sub-
spaces of L(X),

Liclyc..cLc...c L(X),
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and apply the theorem for each subspace, subsequently choosing the smallest L,
that contains g(S, f,7), for a given y, S, and f. The two sequences that we will
consider are those defined in terms of the 2-norm and 1-norm of the functions. In
the case of the 2-norm, we have an inner produce space and can apply Theorem
4.16 and Lemma 4.13 to bound the covering numbers and obtain the following
result.

Theorem 4.22 Consider thresholding real-valued linear functions & with unit
weight vectors on an inner product space X and fix y € R*. There is a con-
stant c, such that for any probability distribution 2 on X x {—1, 1} with support in
a ball of radius R around the origin, with probability 1—38 over £ random examples
S, any hypothesis f € £ has error no more than

c [RE+11E13, 1
eér(f) < 7 (Tlog t’+log3 ,

where & = £(f,S,y) is the margin slack vector with respect to f and .

Remark 4.23 An analogous bound for the number of mistakes made in the first
iteration of the perceptron algorithm is given in Theorem 2.7.

If the sequence L is defined in terms of the 1-norm then the bound obtained
depends on this value together with an additional log factor.

Theorem 4.24 Consider thresholding real-valued linear functions & with unit
weight vectors on an inner product space X and fix y € R*. There is a con-
stant ¢, such that for any probability distribution 9 on X x {—1,1} with support in
a ball of radius R around the origin, with probability 1—06 over £ random examples
S, any hypothesis f € & has error no more than

¢ (R:+ 1€l log(1/y) | 1
eggr(f)sz ( /2 log {+log3 ,

where & = E(f, S,v) is the margin slack vector with respect to f and y.

The conclusion to be drawn from Theorems 4.22 and 4.24 is that the general-
isation error bound takes into account the amount by which points fail to meet
a target margin y. The bound is in terms of a norm of the slack variable vector
suggesting that this quantity should be minimised in order to optimise perfor-
mance. The bound does not rely on the training points being linearly separable
and hence can also handle the case when the data are corrupted by noise or the
function class cannot capture the full complexity of the decision rule. Optimising
the norm of the margin slack vector does not necessarily mean minimising the
number of misclassifications. Hence, the inductive principle suggested by the
theorems does not correspond to empirical risk minimisation. This fact will
be important, as we shall see that minimising the number of misclassifications
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appears to be computationally more demanding than optimising the norms of
the margin slack vector.

Optimising the norms of the margin slack vector has a diffuse effect on the
margin. For this reason it is referred to as a soft margin in contrast to the
maximal margin, which depends critically on a small subset of points and is
therefore often called a hard margin. We will refer to the bound in terms of
the 2-norm of the margin slack vector as the 2-norm soft margin bound, and
similarly for the 1-norm soft margin.

4.4 Other Bounds on Generalisation and Luckiness

The previous section considered bounds on generalisation performance in terms
of measures of the margin distribution. We argued that the bounds we must
use in high dimensional spaces must be able to take advantage of favourable
input distributions that are in some sense aligned with the target function. The
bounds must avoid dependence on the dimension of the input space in favour
of dependence on quantities measured as a result of the training algorithm,
quantities that effectively assess how favourable the input distribution is. We
described three results showing dependences on three different measures of the
margin distribution. We will briefly argue in this section that bounds of this
type do not necessarily have to depend on margin value. In particular the size
of a sample compression scheme can be used to bound the generalisation by a
relatively straightforward argument due to Littlestone and Warmuth. A sample
compression scheme is defined by a fixed rule

p S p(S)

for constructing a classifier from a given set of labelled data. Given a large
training set, it is compressed by finding the smallest subset (the compression set)
§ = S for which the reconstructed classifier p(§) correctly classifies the whole
set S. Fix a number d < /. Suppose that for a particular training set we obtain

a compressed set of size d. This can only occur in Z ways. For each such

choice the probability that the resulting hypothesis has error more than ¢, and
yet correctly classifies the remaining ¢ — d randomly generated training points,
is bounded by

(1 —e)* < exp(—e(¢ —d)).

Hence, the probability that a compression set of size d has error greater than &4
can be bounded by

( Z ) exp(—&i(f — d)). (4.6)

For

1 el 4
Bd—z——‘—— (dlnF"'lng),
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this will be less than §/7. It follows that the probability of ¢; failing to bound
the generalisation error for a compression set of size d is less than 6/¢ and so
the probability that the ¢ corresponding to the observed size of the compression
set is greater than the generalisation error is at most 6. Hence, we have shown
the following theorem.

Theorem 4.25 Consider a compression scheme p. For any probability distribution
2 on X x {—1,1}, with probability 1— 9 over ¢ random examples S, the hypothesis
defined by a compression set of size d has error no more than

1
egrzr(f) <5 (dlog% + log g) )

We will see in Chapter 6 that the support vectors of a Support Vector
Machine form a compression scheme that can reconstruct the maximal margin
hyperplane. Theorem 4.25 therefore shows that the number of support vectors, a
quantity that does not directly involve the margin, can also be used to measure
how favourably the distribution generating the data is aligned with the target
function, so giving another data dependent bound. This observation has led
to the introduction of a general framework which uses a so-called luckiness
Jfunction to assess how well the distribution is aligned with the target function.
The size of the margin is just one such measure. Choosing a luckiness function
corresponds to asserting a prior belief about the type of relations that may occur
between distributions and target functions. If that belief holds true we profit
by a correspondingly improved generalisation, though of course there may be a
small cost involved when the assumption fails.

4.5 Generalisation for Regression

The problem of regression is that of finding a function which approximates
mapping from an input domain to the real numbers based on a training sample.
The fact that the output values are no longer binary means that the mismatch
between the hypothesis output and its training value will no longer be discrete.
We refer to the difference between the two values as the residual of the output, an
indication of the accuracy of the fit at this point. We must decide how to measure
the importance of this accuracy, as small residuals may be inevitable while we
wish to avoid large ones. The loss function determines this measure. Each
choice of loss function will result in a different overall strategy for performing
regression. For example least squares regression uses the sum of the squares of
the residuals.

Although several different approaches are possible (see Section 4.8), we will
provide an analysis for the generalisation performance of a regression function
by using the bounds obtained for the classification case, as these will motivate
the algorithms described in Chapter 6. Hence, we will consider a threshold
test accuracy 0, beyond which we consider a mistake to have been made. We
therefore aim to provide a bound on the probability that a randomly drawn test
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point will have accuracy less than 6. If we assess the training set performance
using the same 60, we are effectively using the real-valued regressors as classifiers
and the worst case lower bounds apply. What we must do in order to make use
of the dimension free bounds is to allow a margin in the regression accuracy that
corresponds to the margin of a classifier. We will use the same symbol y to denote
this margin, which measures the amount by which the training and test accuracy
can differ. It should be emphasised that we are therefore using a different loss
function during training and testing, where y measures the discrepancy between
the two losses, implying that a training point counts as a mistake if its accuracy
is less than 6 — y. One way of visualising this method of assessing performance
is to consider a band of size 4 (6 —y) around the hypothesis function. Any
training points lying outside this band are considered to be training mistakes.
Test points count as mistakes only if they lie outside the wider band of 4-6. Using
this correspondence Theorem 4.18 has the following interpretation for regression
estimation.

Theorem 4.26 Consider performing regression estimation with linear functions &
with unit weight vectors on an inner product space X and fix y < 0 € R*. For any
probability distribution 2 on X x R with support in a ball of radius R around the
origin, with probability 1 — § over ¢ random examples S, any hypothesis f € &,
whose output is within 0 — y of the training value for all of the training set S, has
residual greater than 0 on a randomly drawn test point with probability at most

2 (64R2 128/R? 4

_ ely
e_ogf(f)Sﬁ(/,f,fS,?)—z 72 logﬁlog———y2—+log3),

provided £ > 2/¢ and 64R?[y? < ¢.

The theorem shows how we can bound the probability that the output of a
unit norm linear function on a random test point will be out by more than 6
provided its residuals on the training set are all smaller than # — y. Note that
as in the classification case the dimension of the feature space does not enter
into the formula, ensuring that the bound will be applicable even for the high
dimensional feature spaces arising from the use of kernel functions.

We next consider the role that the margin slack variables play in the regression
case.

Definition 4.27 Consider using a class & of real-valued functions on an input
space X for regression. We define the margin slack variable of an example
(x;, 7)) € X x R with respect to a function f € &, target accuracy 8 and loss
margin y to be the quantity (see Figure 4.1 for a linear example and Figure 4.2
for a non-linear function)

E((x 1), £,0,y) = & = max (0, |y; — f(x)| — (6 —7)).

Note that &; > y implies an error on (x;,y;) of more than 0. The margin slack
vector £(S, f,0,y) of a training set

S = (X1, 91),--+ »(X¢, ¥e))
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b
Figure 4.1: The slack variables for a one dimensional linear regression problem

with respect to a function f and target accuracy @ and loss margin y contains
the margin slack variables

§=88.1.7) =180,

where the dependence on S, f, 8, and y is dropped when it is clear from the
context.

Again the correspondence with the classification case is direct and leads to
the following bounds on the generalisation performance of linear regressors in
terms of the 2-norm of the slack variables. Note that in the case of regression
it no longer makes sense to fix the norm of the weight vector, as in contrast to
the classification case rescaling does result in a different functionality. The size
of the norm of the weight vector affects the scale at which the covering must be
sought for the equivalent unit weight vector of a linear function.

Theorem 4.28 Consider performing regression with linear functions & on an inner
product space X and fix y < 6 € R*. There is a constant ¢, such that for any
probability distribution 9 on X x R with support in a ball of radius R around the
origin, with probability 1 — 6 over ¢ random examples S, the probability that a
hypothesis w € ¥ has output more than 6 away from its true value is bounded by

¢ (IWIERZ+ €13, 1
eér(f) < 7 (—yz—log /+log5 ,

where & = E(w, S, 0,y) is the margin slack vector with respect to w, 0, and y.
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Figure 4.2: The slack variables for a non-linear regression function

The theorem is a significant advance over Theorem 4.26 since it can be
applied to all linear functions and can take account of training points whose
residuals lie outside the 8 — y tube. The 2-norm of these excess residuals enters
into the formula together with the 2-norm of the linear function. If we consider
the case when y = 0, the 2-norm of the margin slack vector is the sum of the
squares of the residuals on the training sequence, something often referred to as
the sum squared error (SSE ). We therefore have the following corollary.

Corollary 4.29 Consider performing regression with linear functions . on an
inner product space X and fix § € R*. There is a constant c, such that for any
probability distribution 2 on X x R with support in a ball of radius R around
the origin, with probability 1 — 4 over £ random examples S, the probability that
a hypothesis w € & has output more than 6 away from its true value is bounded
by

Iwl3 R? + SSE

eér(f) < ; ( B

log? ¢ + log %) ,

where SSE is the sum squared error of the function w on the training set S.

The corollary is directly applicable to least squares regression using linear
functions, perhaps the most standard form of regression, but here used in a
setting where the training sequence has been generated according to an unknown
probability distribution. The resulting bound on the probability that a test
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point has residual greater than € is a novel way of assessing performance of
such functions. In Chapter 6 we will see that the ridge regression algorithm
discussed in Subsection 2.2.2 directly optimises this bound and hence potentially
outperforms the standard least squares algorithm.

Finally, we can translate the 1-norm bound of Theorem 4.24 to obtain the
following result.

Theorem 4.30 Consider performing regression with linear functions & on an inner
product space X and fix y < 6 € R*. There is a constant ¢, such that for any
probability distribution 2 on X X R with support in a ball of radius R around the
origin, with probability 1 — 0 over ¢ random examples S, the probability that a
hypothesis w € & has output more than 0 away from its true value is bounded by

IR $log(1 1
e < & (nwnz 141 o /) logzﬂlogg),

where £ = &(w, S, 0,y) is the margin slack vector with respect to w, 8, and .

The bound in terms of the 1-norm of the slacks and 2-norm of the weight
vector may seem an unnatural mix of two different norms. However, the use of
2-norm for the linear function is dictated by our prior over the function class,
while the norm of the slack variables should be chosen to model the type of
noise that has corrupted the training examples. For example, if we optimise
the 1-norm bound the resulting regressor takes less account of points that have
large residuals and so can handle outliers better than by optimising the 2-norm
bound.

4.6 Bayesian Analysis of Learning

In this section we will briefly review the Bayesian approach to learning. Its
motivation does not come from bounds on the generalisation and so the section
may seem out of place in this chapter. Though Bayesian analysis can be used
to estimate generalisation, in this section we only cover that part of the theory
needed to motivate the learning strategy. The pac style of analysis we have
considered in the earlier sections of this chapter has focused on finding an error
bound that will hold with high probability. That approach can be seen as
conservative in that it attempts to find a bound on the error probability that
will hold with high confidence. The Bayesian approach in contrast attempts
to choose output values that are most likely based on the observed training
values. This can result in a function not actually in the initial set of hypotheses.
Alternatively if we restrict ourselves to choosing a function from the set, it
can motivate an optimal choice. It therefore is attempting to make the best
possible choice based on the available data. In order to make such a desirable
calculation tractable a number of assumptions need to be made including the
existence of a prior distribution over the set of hypotheses and a (Gaussian) noise
model. These assumptions can render the choice of function less reliable when
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compared with the pac analysis, which depends only on the assumed existence of
an underlying probability distribution that generates the training and test data
independently. Nonetheless we shall see that despite its very different starting
point the resulting computation and function are very closely related to the
support vector approach.

As described in Chapter 3 the prior distribution can be described by a Gaus-
sian process and choosing its covariance function defines the prior in a similar
way to that in which choosing the kernel for a Support Vector Machine defines
the feature space. The aim of Bayesian analysis is to update that distribution
based on the observation of the particular data. The more a particular data point
disagrees with a function the more the posterior probability of that function is
reduced. Bayes’ formula,

paB) — PEAPA)

P(B)
is used to calculate this altered probability under the assumption that the er-
rors between the true function and the observed outputs are generated by a
Gaussian distribution with mean 0 and variance ¢2. Once the updated or a
posteriori distribution based on all the observations has been calculated, the
learner can either pick the function with highest likelihood or take an average
of the outputs over the different functions weighted according to the posterior
distribution. The function with highest likelihood is often referred to as the
maximum a posteriori or MAP hypothesis. The second more powerful ap-
proach corresponds to choosing the most likely output given a test input but
with no restrictions placed on what function is used. In fact the function will
always be in the convex closure of the original set of hypotheses, since it is
an average of those functions weighted according the a posteriori distribution.
In the case of Gaussian processes the two approaches coincide since a linear
class is equal to its own convex closure and the a posteriori distribution is
Gaussian.

We restrict consideration to regression since the assumption of a Gaussian
distribution of errors is only meaningful in this case. In order to be consistent
with our previous notation we will use y;, i = 1,...,7, to denote the output values
from the training set that are assumed to be corrupted by noise. The underlying
true target output values will be denoted by ¢, i = 1,...,7. Unfortunately, this
notation is the reverse of that adopted in some of the literature. The relation
between the vectors y and t is assumed to be Gaussian,

PlI0 o exp |3y — /7y —0)]

where Q = ¢?I. As mentioned above, the aim of the Bayesian analysis is to
calculate the probability distribution for the true output ¢ given a novel input
X, and a training set S, which we split into the matrix X of input vectors and
vector y of corresponding outputs. Hence, we wish to estimate P(t|x,S) and in
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particular find where it achieves its maximum. First we use Bayes’ formula to
express
P(ylt,x, X)P(t, t|x, X)

P(ylx,X)

P, tix,S) = P(ttly,x,X)=

P(y|t)P(t,tIx, X)
P(ylx,X)

where we have treated the denominator as a constant since it does not depend
on our choice of hypothesis and hence does not vary once the training set and
test point are known. The second factor in the final expression is the prior
distribution for the true outputs given a set of inputs with no knowledge about
the output values contained in the training set. This will be determined by the
choice of Gaussian process through a covariance function. The first factor is
the weighting given to a particular hypothesis identified by its output values
on the training set inputs. The weighting is based entirely on the discrepancy
between the hypothesis outputs and the values given in the training set. The task
remaining for the Bayesian learner is to ‘marginalise’ over t, by which is meant
summing the probability of a particular value for ¢ over all possible values that
the parameters t might take. The advantage of using Gaussian distributions is
that the resulting distribution is also Gaussian and that its mean and variance
can be calculated analytically, hence giving the maximum value for ¢ together
with what can be regarded as an error bar on the accuracy of the prediction.
Chapter 6 will describe this calculation and compare the resulting decision rule
with that obtained using Support Vector Machines.

oc P(y|t)P(t,t|x,X),

4.7 Exercises

1. Prove Proposition 4.5.

2. Describe how Theorem 4.9 could be made to apply for all values of y,
indicating what weakening of the bound would result.

3. In Section 4.4 consider choosing &; so that formula (4.6) is less than 64 for
some values J, satisfying

¢
> si=1
i=1
Show that a generalisation of Theorem 4.25 results. Given that we know

that the probability of obtaining d support vectors is py, what choice of §,
will give the best expected bound in the generalised theorem?

4.8 Further Reading and Advanced Topics

The analysis of generalisation based on the VC dimension was developed by
Vapnik and Chervonenkis starting from the mid 1960s [162]. It has been

https://doi.org/10.1017/CBO9780511801389.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.006

4.8 Further Reading and Advanced Topics 77

successfully applied in different fields, motivating for example the development
in statistics of a uniform law of large numbers [117]. Most of its basic theoretical
results were already present in Vapnik’s book [157]. The development of the pac
model of machine learning, on the other hand, can be traced to the seminal paper
by Valiant in 1984 [155], which laid the foundations of what became known
as computational learning theory: a large set of models describing, among
others, on-line learning, query learning, unsupervised and supervised learning,
and recently also applied to reinforcement learning. The introduction of the VC
results within this theory, together with the lower bounds, is contained in the
landmark paper by Blumer et al. [18], and has greatly influenced the entire field
of machine learning. VC theory has since been used to analyse the performance
of learning systems as diverse as decision trees, neural networks, and others;
many learning heuristics and principles used in practical applications of machine
learning have been explained in terms of VC theory.

Many introductory books to computational learning theory exist, for example
[6], [71], although they are often mainly focused on the pac model, somewhat
neglecting the rich fields of on-line, query, and unsupervised learning. A good
introduction to the statistical analysis of pattern recognition is given by Devroye
et al. [33]. VC theory has recently also come to be known as statistical learning
theory, and is extensively described in the recent book of Vapnik [159], and in
other books that preceded it [157] [158], as well as earlier papers by Vapnik and
Chervonenkis [162][164][165]. An easy introduction to the theory is provided
by [169], and a complete account, including also very recent results, can be
found in [5]. An international conference is held every year on computational
learning theory, known as the COLT conference, where new results are presented.
Websites such as www.neurocolt.org offer large repositories of recent papers.

The question of how the margin might affect generalisation was raised by
many researchers including Duda and Hart [35], Vapnik and Chervonenkis [166],
and Mangasarian. Vapnik and Chervonenkis [163] obtained bounds for the case
when the margin is measured on the combined training and test sets using a
quantity analogous to the fat-shattering dimension. The fat-shattering dimension
itself (sometimes also called the scale-sensitive dimension, or V, dimension)
has appeared implicitly in a number of earlier references but was introduced
into computational learning theory by [72] and shown by Alon et al. [2] to
characterise the so-called Glivenko Cantelli classes. The fat-shattering dimension
of linear classifiers was obtained by different authors ([54] and {138]), while the
proof presented in this chapter appears in [9].

The first papers to prove the large margin results were [138], [10] with the
second reference containing the percentile result of Subsection 4.3.2. The soft
margin bounds involving the margin slack vector for both classification and
regression are due to [141], [142], [139], [140] and use techniques similar to those
discussed in Chapter 2 for obtaining mistake bounds in the non-separable case
(see Section 2.5 for further references). Those results are summarised in [9] and
[149]. A quantity related to the margin slack vector is the so-called ‘hinge loss’,
used to obtain mistake bounds in the on-line learning framework [48]. Margin
analysis has since been applied to describe systems like Adaboost [127], Bayesian
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classifiers [32], decision trees [12], neural networks [10] , and is now a standard
tool in machine learning. The margin analysis has also been extended to take
account of the margin of the test example [137].

Anthony and Bartlett used the fat-shattering dimension to obtain results for
regression similar Theorem 4.26. Different analyses of generalisation are possible
for regression, such as in [159]. The book [5] provides an excellent introduction
to the analysis of regression.

The reason why margin analysis requires different tools from VC theory
is that the quantity used to characterise the richness of a hypothesis class,
the margin, depends on the data. Only after training the learning machine
can one know what is the complexity of the resulting hypothesis. This style
of analysis, which provides a way of exploiting benign collusions between the
target function and input distribution, is often called data dependent analysis, or
data dependent structural risk minimisation. The first data dependent result was
Theorem 4.25 on the generalisation power of compression schemes and which is
due to Littlestone and Warmuth [79][42], while the paper [138] introduced the
general luckiness framework mentioned in Section 4.4. Other data dependent
results include micro-choice algorithms, and pac-Bayesian bounds [93][94]. More
recent bounds include [133] and [37], who like [138] bring out the connection
between classification and regression.

Bayesian analysis is a traditional field within statistics, and has been applied
to pattern recognition for a long time [35]. In recent years, a new surge of
interest in Bayesian analysis has come from the neural networks community,
mainly thanks to the work of MacKay [82]. An introduction to such analysis is
provided by the books of Bishop [16] and Neal [102]. More recently, attention
has been directed at Gaussian processes, a standard tool in statistics, described in
[120] and [180]. We will return to the subject of Gaussian processes in Chapter 6.
A Bayesian analysis of generalisation of Gaussian processes has been performed
by Sollich [150] and Opper and Vivarelli [106]. Other analyses of generalisation
are possible, based on statistical mechanics (see for example [105]), or on the
theory of on-line algorithms [75].

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.
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