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Sparse Recovery

In this chapter, we will witness the power of sparsity for the first time.
Let’s get a sense of what it’s good for. Consider the problem of solving an
underdetermined linear system Ax = b. If we are given A and b, there’s no
chance to recover x uniquely, right? Well, not if we know that x is sparse.
In that case, there are natural conditions on A where we actually will be able to
recover x even though the number of rows of A is comparable to the sparsity of
x rather than its dimension. Here we will cover the theory of sparse recovery.
And in case you’re curious, it’s an area that not only has some theoretical gems,
but also has had major practical impact.

5.1 Introduction

In signal processing (particularly imaging), we are often faced with the task
of recovering some unknown signal given linear measurements of it. Let’s fix
our notation. Throughout this chapter, we will be interested in solving a linear
system Ax = b where A is an m x n matrix and x and b are n and m dimensional
vectors, respectively. In our setup, both A and b are known. You can think of A
as representing the input-output functionality of some measurement device we
are using.

Now, if m < n, then we cannot hope to recover x uniquely. At best we could
find some solution y that satisfies Ay = b and we would have the promise that
x = y + z, where z belongs to the kernel of A. This tells us that if we want
to recover an n-dimensional signal, we need at least n linear measurements.
This is quite natural. Sometimes you will hear this referred to as the Shannon-
Nyquist rate, although I find that a rather opaque way to describe what is going
on. The amazing idea that will save us is that if x is sparse — i.e., b is a linear
combination of only a few columns of A — then we really will be able to get
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away with many fewer linear measurements and still be able to reconstruct
x exactly.

What I want to do in this section is explain why you actually should not
be surprised by it. If you ignore algorithms (which we won’t do later on), it’s
actually quite simple. It turns out that assuming that x is sparse isn’t enough
by itself. We will always have to make some structural assumption about A as
well. Let’s consider the following notion:

Definition 5.1.1 The Kruskal rank of a set of vectors {A;}; is the maximum r
such that all subsets of at most r vectors are linearly independent.

If you are given a collection of n vectors in n dimensions, they can all be
linearly independent, in which case their Kruskal rank is n. But if you have
n vectors in m dimensions — like when we take the columns of our sensing
matrix A — and m is smaller than n, the vectors can’t be all linearly independent,
but they can still have Kruskal rank m. In fact, this is the common case:

Claim 5.1.2 IfA1,Ay,...,A, are chosen uniformly at random from S 1 then
almost surely their Kruskal rank is m.

Now let’s prove our first main result about sparse recovery. Let ||x||o be the
number of nonzero entries of x. We will be interested in the following highly
non-convex optimization problem:

(Po)  min|wlo s.t. Aw = b

Let’s show that if we could solve (Py), we could find x from much fewer than
n linear measurements:

Lemma 5.1.3 Let A be an m x n matrix whose columns have Kruskal rank at
least r. Let x be an r/2-sparse vector and let Ax = b. Then the unique optimal
solution to (Py) is x.

Proof: We know that x is a solution to Ax=> that has objective value
lx|lo = 7/2. Now suppose there were any other solution y that satisfies Ay = b.

Consider the difference between these solutions, i.e., z = x — y. We
know that z is in the kernel of A. However, |z]lo > r + 1, because by
assumption every set of at most r columns of A is linearly independent. Finally,
we have

I¥llo = lizllo — lixllo = r/2 4+ 1

which implies that y has larger objective value than x. This completes the
proof. WM
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So if we choose the columns of our sensing matrix to be random m dimen-
sional vectors, then from just m linear measurements we can, in principle,
recover any m/2-sparse vector uniquely. But there is a huge catch. Solving
(Pg) — i.e., finding the sparsest solution to a system of linear equations — is
NP-hard. In fact, this is a simple and important reduction that is worth seeing.
Following Khachiyan [97], let’s start from the subset sum problem, which is a
standard NP-hard problem:

Problem 1 Given distinct values o1, . . .,a, € R, does there exist a set I < [n]
sothat Il =mand ) ;. a; =07

We will embed an instance of this problem into the problem of finding the
sparsest nonzero vector in a given subspace. We will make use of the following
mapping, which is called the weird moment curve:

Ma) = [l e, af, .. a2 af"]
The difference between this and the standard moment curve is in the last term,
where we have " instead of ozf”fl.

Lemma 5.1.4 A set I with |I| = m has )_,.; a; = 0 if and only if the vectors
{T(a;)}ies are linearly dependent.

Proof: Consider the determinant of the matrix whose columns are {I"’(a;) }ic;.
Then the proof is based on the following observations:

(a) The determinant is a polynomial in the variables «; with total degree
('g) + 1, which can be seen by writing the determinant in terms of its
Laplace expansion (see, e.g., [88]).

(b) Moreover, the determinant is divisible by [ |
determinant is zero if any o; = «;.

i<j @i — @, since the

Hence we can write the determinant as

(Me-o)(Se)

i<j iel
ijel

We have assumed that the «;’s are distinct, and consequently the determinant
is zero if and only if the sum of ¢; = 0. W

We can now prove a double whammy. Not only is solving (Py) NP-hard,
but so is computing the Kruskal rank:

Theorem 5.1.5 Both computing the Kruskal rank and finding the sparsest
solution to a system of linear equations are NP-hard.
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Proof: First let’s prove that computing the Kruskal rank is NP-hard. Consider
the vectors {I"’(¢;)};. It follows from Lemma 5.1.4 that if there is a set I with
[Il| = m that satisfies ) ;.;; = 0, then the Kruskal rank of {I'"(e;)}; is at
most m — 1, and otherwise is exactly m. Since subset sum is NP-hard, so too is
deciding whether the Kruskal rank is m or at most m — 1.

Now let’s move on to showing that finding the sparsest solution to a linear
system is NP-hard. We will use a one-to-many reduction. For each j, consider
the following optimization problem:

() min|wlo s.. [r’(al), T @) T (@) F’(an)]w =I'(a))

It is easy to see that the Kruskal rank of {I"’(;)}; is at most m — 1 if and only
if there is some j so that (P;) has a solution whose objective value is at most
m — 2. Thus (Pg) is also NP-hard. W

In the rest of this chapter, we will focus on algorithms. We will give simple
greedy methods as well as ones based on convex programming relaxations.
These algorithms will work under more stringent assumptions on the sensing
matrix A than just that its columns have large Kruskal rank. Nevertheless, all of
the assumptions we make will still be met by a randomly chosen A, as well as
many others. The algorithms we give will even come with stronger guarantees
that are meaningful in the presence of noise.

5.2 Incoherence and Uncertainty Principles

In 1965, Logan [107] discovered a striking phenomenon. If you take a band-
limited signal and corrupt it at a sparse set of locations, it is possible to
uniquely recover the original signal. This turns out to be a sparse recovery
problem in disguise. Let’s formalize this:

Example 1 The spikes-and-sines matrix A is an n X 2n matrix
A=1[I,D]

where I is the identity matrix and D is the discrete Fourier transform
matrix, i.e.,
w@=Do=1)

Ji

Da,b =

2mwi/n

and w = e is the n'™ root of unity.

Let x be a sparse 2n-dimensional vector. The nonzeros in the first n
coordinates represent the locations of the corruptions. The nonzeros in the last
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n coordinates represent the frequencies present in the original signal. Thus we
know A and b and are promised that there is a solution x to Ax = b where x is
sparse. It took a number of years until the work of Donoho and Stark [64], who
realized that this phenomenon wasn’t limited to just the spike-and-sines matrix.
It’s actually a quite general phenomenon. The key is the notion of incoherence:

Definition 5.2.1 The columns of A € R"™™ are p-incoherent if for all i # j

HAL A < wllAill - 1A

Throughout this section, we will focus on just the case when the columns of
A are unit vectors. Hence a matrix is p-incoherent if for all i # j, [{(A;, Aj)| < u.
However, all the results we derive here can be extended to general A when the
columns are not necessarily unit vectors. As we did for the Kruskal rank, let’s
show that random vectors are incoherent:

Claim 5.2.2 IfA1,As, ..., A, are chosen uniformly at random from "1 then
with high probability they will be p-incoherent for

w=o(57).

You can also check that the spike-and-sines matrix is p-incoherent with
w = 1/4/n. In that way, the results we derive here will contain Logan’s
phenomenon as a special case. Anyway, let’s now show that if A is incoherent
and if x is sparse enough, then it will be the uniquely sparsest solution to
Ax = b.

Lemma 5.2.3 Let A be an n X m matrix that is j-incoherent and whose
columns are unit norm. If Ax = b and ||x|o < ﬁ then x is the uniquely
sparsest solution to the linear system.

Proof: Suppose for the sake of contradiction that we have another solution

y that satisfies Ay = b and |yllo < ﬁ Then we can look at the difference
between these solutions, i.e., z = x — y, which satisfies ||z]|lo < ﬁ and consider

the expression
ZATAz = 0.

If we let S denote the support of z — i.e., the locations where it is nonzero —
we have that ATA restricted to the rows and columns in S is singular. Let
this matrix be B. Then B has ones along the diagonal, and the entries off
the diagonal are bounded by w in absolute value. But by Gershgorin’s disk
theorem, we know that all the eigenvalues of B are contained in a disk in the
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complex plane centered at one with radius ©|S| < 1. Thus B is nonsingular
and we have a contradiction. W

Actually, we can prove a stronger uniqueness result when A is the union
of two orthonormal bases, as is the case for the spikes-and-sines matrix. Let’s
first prove the following result, which we will mysteriously call an uncertainty
principle:

Lemma5.2.4 Let A = [U, V] be an nx 2n matrix that is ju-incoherent where U

and V are n x n orthogonal matrices. If b = Uax = VB, then ||a|lo+|Bllo > /%
Proof: Since U and V are orthonormal, we have that ||b]2; = [lall2 = |IB]2.

We can rewrite b as either Ux or V8, and hence ||b||% =BT (VT U)a|. Because
A is incoherent, we can conclude that each entry of VT U has absolute value at
most 1£(A), and so |[BT (VI U)a| < w(A)|all1]|B]l1. Using Cauchy-Schwarz, it
follows that ||a|l1 < «/]la]lo]le|l2 and thus

1515 < w@VlllloliBllollell211Bll2-

Rearranging, we have ﬁ < VNllollBllo. Finally, applying the AM-GM
inequality, we get % < |lxllo + l|Bllo and this completes the proof. W

This proof was short and simple. Perhaps the only confusing part is why
we called it an uncertainty principle. Let’s give an application of Lemma 5.2.4
to clarify this point. If we set A to be the spikes-and-sines matrix, we get that
any non-zero signal must have at least «/# nonzeros in the standard basis or in
the Fourier basis. What this means is that no signal can be sparse in both the
time and frequency domains simultaneously! It’s worth taking a step back. If
we had just proven this result, you would have naturally associated it with the
Heisenberg uncertainty principle. But it turns out that what’s really driving it
is just the incoherence of the time and frequency bases for our signal, and it
applies equally well to many other pairs of bases.

Let’s use our uncertainty principle to prove an even stronger uniqueness
result:

Claim 5.2.5 Let A = [U, V] be an n x 2n matrix that is ji-incoherent where
U and V are n x n orthogonal matrices. If Ax = b and ||x|lo < ﬁ then x is the
uniquely sparsest solution to the linear system.

Proof: Consider any alternative solution AX = b. Set y = x — X, in which
case y € ker(A). Write y as y = [ay, ,By]T, and since Ay = 0, we have that

Uay = —VBy. We can now apply the uncertainty principle and conclude that
2 14; ~ 1
I¥llo = lleeyllo+1IByllo = - Itis easy to see that [x[lo = [lyllo —llxllo > ,and

so X has strictly more nonzeros than x does, and this completes the proof. W
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We can connect incoherence back to our original discussion about Kruskal
rank. It turns out that having a matrix whose columns are incoherent is just one
easy-to-check way to certify a lower bound on the Kruskal rank. The proof of
the following claim is essentially the same as the proof of Lemma 5.2.3. We
leave it as an exercise for the reader.

Claim 5.2.6 If A is p-incoherent, then the Kruskal rank of the columns of A is
at least 1/ .

In the next section, we will give a simple greedy algorithm for solving
sparse recovery problems on incoherent matrices. The way the algorithm will
certify that it is making progress and finding the right nonzero locations of x
as it goes along will revolve around the same ideas that underly the uniqueness
results we just proved.

5.3 Pursuit Algorithms

There is an important class of algorithms for sparse recovery problems called
pursuit algorithms. These algorithms are greedy and iterative. They work with
incoherent matrices and look for the column in A that explains as much of
the observed vector b as possible. They subtract off a multiple of that column
and continue on the remainder. The first such algorithm was introduced in an
influential paper of Mallat and Zhang [111] and was called matching pursuit.
In this section, we will analyze a variant of it called orthogonal matching
pursuit. What’s particularly convenient about the latter is that the algorithm
will maintain the invariant that the remainder is orthogonal to all the columns
of A we have selected so far. This is more expensive in each step, but is easier
to analyze and understand the intuition behind.

Throughout this section, let A be an n x m matrix that is p-incoherent. Let
x be k-sparse with k < 1/(2u) and let Ax = b. Finally, we will use T to denote
the support of x — i.e., the locations of the nonzeros in x. Now let’s formally
define orthogonal matching pursuit:

Orthogonal Matching Pursuit

Input: matrix A € R™, vector b € R", desired number of nonzero
entries k € N
Output: solution x with at most k nonzero entries
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Initialize: xX° = 0, PP = A" — b, S =0
For¢ =1,2,...,k

. At
Choose column j that maximizes If e
Addjto S.
Set r* = proj, . (b), where U = span(As).
If * = 0, break.
End

Solve for xg: Agxs = b. Set x5 = 0.

Our anlaysis will focus on establishing the following two invariants:

(a) Each index j the algorithm selects is in 7.
(b) Each index j gets chosen at most once.

These two properties immediately imply that orthogonal matching pursuit
recovers the true solution x, because the residual error ¢ will be nonzero until
S = T, and moreover, the linear system A7x7 = b has a unique solution (which
we know from the previous section).

Property (b) is straightforward, because once j € S at every subsequent
step in the algorithm, we will have that ' 1 U, where U = span(Ag), so
(rE,Aj) = 0if j € S. Our main goal is to establish property (a), which we will
prove inductively. The main lemma is:

Lemma 5.3.1 IfS C T at the start of a stage, then orthogonal matching pursuit
selectsj e T.

We will first prove a helper lemma:

Lemma 5.3.2 If r'~ ! is supported in T at the start of a stage, then orthogonal
matching pursuit selects j € T.

Proof: Let r*~! = 3", _; yiA;. Then we can reorder the columns of A so that
the first &' columns correspond to the k' nonzero entries of y, in decreasing
order of magnitude:

il = 1y2l ==l >0, |yl =0,lyps2l =0,....[yml =0

corresponds to first & columns of A

where k' < k. Hence supp(y) = {1,2,...,k’} C T. Then, to ensure that we
pick j € T, a sufficient condition is that

HAL AN > (ALY foralli> K + 1. (5.1)
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We can lower-bound the left-hand side of (5.1):

k/

(Do vedear) = il = D" ellAe 4]

=1 =2
> [yil = il = D= Iyil(1 =K+ ),

k/
(A =

which, under the assumption that ¥’ < k < 1/(2u), is strictly lower-bounded

by [y1[(1/2 4 ).
We can then upper-bound the right-hand side of (5.1):

14

< ZyZAZ7Ai>

(=1

(1A =

k/
< il Y (A A < [y K i,
=1

which, under the assumption that k¥’ < k < 1/(2u), is strictly upper-bounded
by |y1]/2. Since |y1|(1/2+u1) > |y1]/2, we conclude that condition (5.1) holds,
guaranteeing that the algorithm selects j € T, and this completes the proof. W

Now we can prove Lemma 5.3.1:

Proof: Suppose that S C T at the start of a stage. Then the residual ¢~ is
supported in T, because we can write it as

Al ZziA,-, where z = arg min ||b — Aszs|».

ieS
Applying the above lemma, we conclude that the algorithm selectsj € 7. W

This establishes property (a) inductively and completes the proof of correct-
ness for orthogonal matching pursuit, which we summarize below:

Theorem 5.3.3 Let A be an n X m matrix that is u-incoherent and whose
columns are unit norm. If Ax = b and || x| < ﬁ then the output of orthogonal
matching pursuit is exactly x.

Note that this algorithm works up to exactly the threshold where we estab-
lished uniqueness. However, in the case where A=[U,V] and U and V are
orthogonal, we proved a uniqueness result that is better by a constant factor.
There is no known algorithm that matches the best known uniqueness bound
there, although there are better algorithms than the one above (see, e.g., [67]).

It is also worth mentioning how other pursuit algorithms differ. For
example, in matching pursuit we do not recompute the coefficients x; fori € S
at the end of each stage. We just keep whatever they are set to and hope
that they do not need to be adjusted much when we add a new index j to S.
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This is what makes matching pursuit faster in practice; however, the analysis
is more cumbersome because we need to keep track of how the error (due to
not projecting b on the orthogonal complement of the columns we’ve chosen
so far) accumulates.

5.4 Prony’s Method

There is a widespread misconception that sparse recovery algorithms are
a modern invention. Actually, sparse recovery dates back to 1795, to an
algorithm called Prony’s method. It will give us almost everything we want.
We will have an explicit 2k x n sensing matrix A for which we will be able
to recover any k-sparse signal exactly and with an efficient algorithm. It even
has the benefit that we can compute the matrix-vector product Ax in O(nlog n)
time using the fast Fourier transform.

The caveat to this method is that it is very unstable, since it involves
inverting a Vandermonde matrix, which can be very ill-conditioned. So when
you hear about compressed sensing as breaking the Shannon-Nyquist barrier,
you should remember that Prony’s method already does that. What sets apart
the algorithms we will study later on is that they work in the presence of noise.
That’s the crucial aspect that makes them so practically relevant. Nevertheless,
Prony’s method is very useful from a theoretical standpoint, and the types of
results you can get out of it have a habit of being rediscovered under other
names.

Properties of the Discrete Fourier Transform

Prony’s method will make crucial use of various properties of the discrete
Fourier transform. Recall that as a matrix, this transformation has entries

P 1 Raa—1)b-1)
ab = ﬁ exp s .

As we did before, we will simplify the notation and write w = €27/ for the n'
root of unity. With this notation, the entry in row a, column b is @@= DHo=1)
The matrix F has a number of important properties, including:

(a) F is orthonormal: F'F = FFH where F/ is the Hermitian transpose
of F.
(b) F diagonalizes the convolution operator.
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We haven’t defined convolution, so let’s do that now. Actually, let’s do that
through its corresponding linear transformation:

Definition 5.4.1 (Circulant matrix) For a vector ¢ = [c1,ca, ..., cpl, let
Cn  Cp—l Cp—2 ... C]
e cl Chn  Cpel] ...
Cp—1 ce . ... Cp

Then the matrix-vector product Mx is the vector we get out of convolving
¢ and x, which we will denote by c * x. Intuitively, if you think of ¢ and x as
representing the probability distribution of discrete random variables, then c*x
represents the distribution of the random variable you get by adding the two of
them and wrapping around » using modular arithmetic.

As we asserted above, we can diagonalize M¢ using F. More formally, we
have the following fact, which we will use without proof:

Claim 5.4.2 M¢ = Ffdiag(¢)F, where ¢ = Fec.

This tells us that we can think of convolution as coordinate-wise multipli-
cation in the Fourier representation. More precisely:

Corollary 5.4.3 Let 7z = ¢ x x; thenZ = ¢ ©X, where © indicates coordinate-
wise multiplication.

Proof: We can write z = Mx = Ffdiag(¢)Fx = Ffdiag(¢)x = FI(COX),
and this completes the proof. W

The helper Polynomial

Prony’s method revolves around the following helper polynomial:
Definition 5.4.4 (helper polynomial)

r@ =[] o7 -2

besupp(x)
=14 rz4...+1F

Claim 5.4.5 Ifwe know p(z), we can find supp(x).

Proof: In fact, an index b is in the support of x if and only if p(w?) = 0. So
we can evaluate p at powers of w, and the exponents where p evaluates to a
nonzero are exactly the support of x. W
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The basic idea of Prony’s method is to use the first 2k values of the discrete
Fourier transform to find p, and hence the support of x. We can then solve a
linear system to actually find the values of x. Our first goal is to find the helper
polynomial. Let

v=1[1,A1,A2,...,A%0,...,0], andV = Fv.
It is easy to see that the value of ¥ at index b + 1 is exactly p(w?).
Claim 5.4.6 supp(V) = supp(x)

That is, the zeros of v correspond to the roots of p, and hence nonzeros of x.
Conversely, the nonzeros of v correspond to the zeros of x. We conclude that
x®7V =0, and so:

Corollary 5.4.7 M*y =0

Proof We can apply Claim 5.4.2 to rewrite x @9 = 0 asT* v = 0 = 0, and
this implies the corollary. W

Let us write out this linear system explicitly:

Xn Xn—1 . Xn—k e X1

X1 Xn oo Xn—k+1 e X2
M = | X1 Xk x| Xk+2

X2k X2k—1 Xk X2k+1

Recall, we do not have access to all the entries of this matrix, since we are
only given the first 2k values of the DFT of x. However, consider the k x k4 1
submatrix whose top left value is X;; and whose bottom right value is X¢. This
matrix only involves the values that we do know!

Consider
N R A X1
Xk Xk—1 P o | .
A2
Xok—1 Xok—1 ... Xk A N
k X2k

It turns out that this linear system is full rank, so A is the unique solution
to the linear system (the proof is left to the reader!). The entries in A are the
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coefficients of p, so once we solve for A, we can evaluate the helper polynomial
on w” to find the support of x. All that remains is to find the values of x. Indeed,
let M be the restriction of F' to the columns in S and its first 2k rows. M is a
can solve this linear system to find the nonzero values of x.

The guarantees of Prony’s method are summarized in the following
theorem:

Theorem 5.4.8 Let A be the 2k x n matrix obtained from taking the first 2k
rows of the discrete Fourier transform matrix F. Then for any k-sparse signal
X, Prony’s method recovers x exactly from Ax.

In case you’re curious, this is yet another topic in sparse recovery that we can
relate back to Kruskal rank. It is easy to show that the columns of A have
Kruskal rank equal to 2k. In fact, this is true regardless of which 2k rows of F
we choose. Moreover, it turns out that there are settings where Prony’s method
and related methods can be shown to work in the presence of noise, but only
under some separation conditions on the nonzero locations in x. See Moitra
[113] for further details.

5.5 Compressed Sensing

In this section we will introduce a powerful new assumption about our sensing
matrix A, called the restricted isometry property. You can think of it as a robust
analogue of the Kruskal rank, where not only do we want every set of (say)
2k columns of A to be linearly independent, we also want them to be well-
conditioned. We will show that a simple convex programming relaxation is
amazingly effective. With a good choice for A, we will be able to recover a
k-sparse signal from O(klog(n/k)) linear measurements. The algorithm runs
in polynomial time and, moreover, it is robust to noise in the sense that even
if x is not k-sparse, we will still be able to approximately recover its k largest
coordinates. This is a much stronger type of guarantee. After all, natural signals
aren’t k-sparse. But being able to recover their k largest coordinates is often
good enough.
Now let’s define the restricted isometry property:

Definition 5.5.1 A matrix A satisfies the (k, §)-restricted isometry property if
for all k-sparse vectors x we have

(1= ®)lIxll3 < IAxI3 < (1 + &) 1«13
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As with the other assumptions we have considered, the restricted isometry
property holds on randomly chosen sensing matrices with high probability:

Lemma 5.5.2 Let A be an m x n matrix where each entry is an independent
standard Gaussian random variable. Provided that m > 10k logn/k, then with
high probability A satisfies the (k, 1/3)-restricted isometry property.

Next let’s work toward formalizing what we mean by approximately
recovering the k largest coordinates of x. Our goal will be formulated in terms
of the following function:

Definition 5.5.3 yk(x) = minw S.1. lwllo<k lx — w1

To put this in more plain terms, yx (x) is the sum of the absolute values of all but
the k largest magnitude entries of x. And if x really is k-sparse, then yx(x) = 0.

Our goal is to find a w that approximates x almost as well as any k-sparse
vector does. More formally, we want to find a w that satisfies ||[x — w|; <
Cyk(x), and we want to do so using as few linear measurements as possible.
This learning goal already subsumes our other exact recovery results from
previous sections, because when x is k-sparse, then, as we discussed, y(x)
is zero, so we have no choice but to recover w = x.

In this section, our approach will be based on a convex programming
relaxation. Instead of trying to solve the NP-hard optimization problem (Py),
we will consider the now famous ¢;-relaxation:

(P1) min ||w| s.t. Aw = b

Let’s first state some of the well-known results about using (P1) for sparse
recovery:

Theorem 5.5.4 [43] If Sox + 83k < 1, then if || x|lo < k, we have w = x.

Theorem 5.5.5 [42] If §3x + 384; < 2, then

C (%)
—Vk(X).
vk y

The guarantees above are a bit different (and often stronger) than the others,
because the bound is in terms of the £, norm of the error x — w.

lx —wl2 <

Theorem 5.5.6 [51] If $ox < 1/3, then
2 2k
— < = .
b= wlh = T35 7n

We won’t prove exactly these results. But we will prove something similar
following the approach of Kashin and Temlyakov [96], which (to my taste)
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greatly streamlines these analyses. But before we get to analyzing (Pp), we
need to introduce a notion from functional analysis called an almost Euclidean
subsection.

Almost Euclidean Subsections

Informally, an almost Euclidean subsection is a subspace where the £ and £»
norms are almost equivalent after rescaling. We will just assert the fact that
a random subspace is an almost Euclidean subsection with high probability.
Instead, we will spend most of our time establishing various geometric
properties about Euclidean subsections that we will use when we return to
compressed sensing. The crucial definition is the following:

Definition 5.5.7 A subspace I' C R" is a C-almost Euclidean subsection if for
allverTl,

1
—=Ivllt = lvll2 =

NG \/-IIVII1

Actually, the first inequality is trivial. For any vector, it’s always true that
\/Lﬁ [lvll1 < ||v]l2- The action is all happening in the second inequality. The first
time you see them, it’s not obvious that such subspaces exist. Indeed, Garnaev
and Gluskin [75] proved that there are plenty of almost Euclidean subsections:

Theorem 5.5.8 If T is a subspace chosen uniformly at random with dim(I") =

n — m, then for
n n
C=O< —log—)
m m

we have that I" will be a C-almost Euclidean subsection with high probability.

Let’s end with a nice picture to keep in mind. Consider the unit ball for the
£1 norm. It’s sometimes called the cross polytope, and to visualize it you can
think of it as the convex hull of the vectors {+e;}; where ¢; are the standard
basis vectors. Then a subspace I'" is almost Euclidean if, when we intersect it
and the cross polytope, we get a convex body that is almost spherical.

Geometric Properties of I

Here we will establish some important geometric properties of C-almost
Euclidean subsections. Throughout this section, let S = n/C?. First we show
that I" cannot contain any sparse, nonzero vectors:

Claim 5.5.9 Letv € T, then either v = 0 or |supp(v)| > S.
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Proof: From Cauchy-Schwartz and the C-almost Euclidean property, we have

C
i =Y il < Visupp()| - Ivll2 < v/Isupp(v)| —=

vl
jesupp) v
The proof now follows from rearranging terms. H

It’s worth noting that there is a nice analogy with linear error correcting
codes, which are also subspaces of large dimension (but over GF>), where we
want every nonzero vector to have at least a constant fraction of its coordinates
be nonzero. In any case, let’s move on to some even stronger properties of
almost Euclidean subsections, which have to do with how well the £ norm is
spread out. First let’s give a useful piece of notation:

Definition 5.5.10 For A C [n], let vp denote the restriction of v to coordinates
in A. Similarly, let v™ denote the restriction of v to A.

With this notation in hand, let’s prove the following:

Claim 5.5.11 Supposev € I' and A C [n] and |A| < S/16. Then

Vv
wall < L
4

Proof: The proof is almost identical to that of Claim 5.5.9. Again using
Cauchy-Schwartz and the C-almost Euclidean property, we have

C
vallt = VIAlIvall2 = VIAlIVI2 = vIAIEIIVIIu

which, plugging in terms, completes the proof. W
And now we have all the tools we need to give our first results about (P1):

Lemma 5512 Letw = x +vand v € T, where |x|]lo < S/16. Then
Iwlle > llxl1.

Proof: Set A = supp(x). Then
il = e+l + 16+ A= Il +val+ v .
Now we can invoke triangle inequality:
il = lealli=lvalli+v 1= Il —lva i+ T =xallh=2lvali+vi

However, |[v|l1 — 2|lvallt = [Ivll1/2 > 0 using Claim 5.5.11. This completes
the proof. W

Plugging in the bounds from Theorem 5.5.8, we have shown that we can
recover a k-sparse vector x of dimension n with
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k<S/16 = Qn/C?) = Q(log’:/m)

from m linear measurements.
Next we will consider stable recovery. Our main theorem is:

Theorem 5.5.13 Let I' = ker(A) be a C-almost Euclidean subsection. Let
S = % If Ax = Aw = b and ||w|1 < ||x|l1, we have
Ix—wlh <405 ().
Proof: Let A C [n] be the set of S/16 coordinates maximizing |[|xa ||1.
We want to upper-bound ||x — w||;. By repeated application of the triangle
inequality, [[wll; = [lw*[l1 + walli < |lx]l1, and the definition of o;(-), it
follows that
Ix = wil = llx = wialli + [ = w) I

< e =wyalle+ 1=+ w1

< I =w)alle + XM+ Ixlh = lwa

<20 = wiall + 2l 1y

=2 =wialli +20s ().

Since (x —w) € I', we can apply Claim 5.5.11 to conclude that ||(x —w)a |1 <

‘]—‘I|x — w]||1. Hence

1
lx=wlh < zllx=wlli +20s (x).
2 16

This completes the proof. W

Epilogue

Finally, we will end with one of the main open questions in compressed
sensing, which is to give a deterministic construction of matrices that satisfy
the restricted isometry property:

Question 7 (Open) Is there a deterministic algorithm to construct a matrix
with the restricted isometry property? Alternatively, is there a deterministic
algorithm to construct an almost Euclidean subsection I"?

Avi Wigderson likes to refer to these types of problems as “finding hay in a
haystack.” We know that a randomly chosen A satisfies the restricted isometry
property with high probability. Its kernel is also an almost Euclidean subspace
with high probability. But can we remove the randomness? The best known
deterministic construction is due to Guruswami, Lee, and Razborov [82]:
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Theorem 5.5.14 [82] There is a polynomial time deterministic algorithm
for constructing an almost Euclidean subspace T with parameter C ~
(log n)log log log n

This has got to be too strange a bound to be the best we can do, right?

5.6 Exercises

Problem 5-1: In this question, we will explore uniqueness conditions for
sparse recovery and conditions under which ¢;-minimization provably works.

(a) Let AX = b, and suppose A has n columns. Further suppose 2k < m. Prove
that for every X with |[X]lo < k, X is the uniquely sparsest solution to the
linear system if and only if the k-rank of the columns of A is at least 2k.

(b) Let U = kernel(A), and U C R". Suppose that for each nonzero x € U,
and for any set S C [n] with |S| <k,

1
XSl < < 1IX1
[lxsll > [lx]
where xg denotes the restriction of x to the coordinates in S. Prove that
(P1) min ||x]{ s.t. Ax =b

recovers x = x, provided that AX = b and |[X]|o < k.

(c) Challenge: Can you construct a subspace U C R" of dimension 2 (n)
that has the property that every nonzero x € U has at least €2 (n) nonzero
coordinates? Hint: Use an expander.

Problem 5-2: Let X be a k-sparse vector in n-dimensions. Let w be the nth root
of unity. Suppose we are given vy = Zj'»’zl’i/a)lj foré =0,1,...,2k — 1. Let
A, B € R¥k be defined so that A;; = viyj—2 and B;j = viy_1.

(a) Express both A and B in the form A = VD4 V' and B = VDgV', where V
is a Vandermonde matrix and Dy, Dp are diagonal.

(b) Prove that the solutions to the generalized eigenvalue problem Ax = ABx
can be used to recover the locations of the nonzeros in X.

(c) Given the locations of the nonzeros inx and vo, v1, ..., Vi—1, give an
algorithm to recover the values of the nonzero coefficients in’x.

This is called the matrix pencil method. If you squint, it looks like Prony’s
method (Section 5.4) and has similar guarantees. Both are (somewhat) robust
to noise if and only if the Vandermonde matrix is well-conditioned, and exactly
when that happens is a longer story. See Moitra [113].
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