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Regular expression matching

5.1 Basic concepts
We present in this chapter algorithms to search for regular expressions in
texts or biological sequences. Regular expressions are often used in text
retrieval or computational biology applications to represent search patterns
that are more complex than a string, a set of strings, or an extended string.
We begin with a formal definition of a regular expression and the language
(set of strings) it represents.

Definition A regular expression RE is a string on the set of symbols
X U { e, | , • , * , ( , ) } ; which is recursively defined as the empty character
e; a character a £ E; and ( RE1 ) , {REi • RE2), {REX \ RE2), and

) , where RE\ and RE% are regular expressions.

For instance, in this chapter we consider the regular expression (((A-T) I (G
•A))-(((A-G) I ((A-A)-A))*)). When there is no ambiguity, we simplify our
expressions by writing RE1RE2 instead of (RE\ -RE2). This way, we obtain
a more readable expression, in our case (AT IGA) ((AGIAAA) *) . It is usual to
use also the precedence order "*", "•", "|" to remove more parentheses, but
we do not do this here. The symbols "•", "|", "*" are called operators. It is
customary to add an extra postfix operator "+" to mean RE+ = RE• RE*.
We define now the language represented by a regular expression.

Definition The language represented by a regular expression RE is a set
of strings over S ; which is defined recursively on the structure of RE as
follows:

• If RE is e, then L(RE) = {e}, the empty string.
• If RE is a E S , then L(RE) = {a}, a single string of one character.
• / / RE is of the form ( REX ) , then L(RE) = L(REX).
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100 Regular expression matching

• / / RE is of the form (RE1 • RE2), then L(RE) = L{RE{) • L(RE2),
where W\ • W2 is the set of strings w such that w = w\w2, with w\ 6 W\
and w2 G W2. The operator " •" represents the classical concatenation of
strings.

• If RE is of the form {REX \ RE2), then L{RE) = L(REi) U L{RE2), the
union of the two languages. We call the symbol " \" the union operator.

• If RE is {REi*), then L(RE) = L(RE)* = \Ji>Q L{REiY, where L° =
{e} and U = L • Ll~l for any L. That is, the result is the set of strings
formed by a concatenation of zero or more strings represented by RE\.
We call "*" the star operator.

For instance, L((AT|GA)((AG|AAA)*)) = { AT, GA, ATAG, GAAG, ATA-
AA, GAAAA, ATAGAG, ATAGAAA, ATAAAAG, ATAAAAAA, GAAGAG, GAAGAAA,
. . . } . Note that, according to the definition of the star operator, S* denotes
the set of all the strings over the alphabet S.

The size of a regular expression RE is the number of characters of £ inside
it. For instance, the size of (ATlGA) ((AGlAAA)*) is 9. The complexities of
the algorithms that we present below are based on this measure.

The problem of searching for a regular expression RE in a text T is to
find all the factors of T that belong to the language L(RE). We present in
this chapter the main strategies for performing this search.

Thompson's NFA construction

Fig. 5.1. The classical approaches to searching for regular expressions in a text.

Figure 5.1 summarizes the classical approaches. The regular expression is
first parsed into an expression tree, which is transformed into a Nondeter-
ministic Finite Automaton (NFA) in several possible ways. In this chapter
we first present two NFA constructions, which are the most interesting in
practice. The first one is the Thompson construction [Tho68], and the sec-
ond is the Glushkov construction [Glu61].

It is possible to search directly with the NFA, and there are various ways
to do that, but the process is quite slow. The algorithm consists in keeping
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5.1 Basic concepts 101

a list of active states and updating the list each time a new text character
is read. The search is normally worst-case time 0(mn): but it requires little
memory.

Another approach is to convert the NFA into a Deterministic Finite Au-
tomaton (DFA), which permits O(n) search time by performing one direct
transition per text character. On the other hand, the construction of such
an automaton is worst-case time and space O(2m).

Yet a third strategy is to filter the text using multiple pattern matching
or related tools, so as to find anchors around which there might be an
occurrence, and then locally verify a possible occurrence using one of the
previous strategies. Figure 5.2 illustrates this scheme.

Regular expression Set of strings Anchors Real occurrences

ExtractionVerification Mult i pat tern matching Verification

Fig. 5.2. The filtering approach to search for regular expressions in a text.

These strategies can be combined. Moreover, the use of bit-parallelism
can accelerate some parts of the search process.

An important point is that most of the automaton constructions use a
tree representation of the regular expression RE in order to perform the
calculations. The leaves of the tree are labeled with the characters of £ in
RE and also with the symbols e, if any. The internal nodes are labeled with
the operators. The nodes that are labeled "|" or "•" have two children that
represent the subexpressions RE\ and RE2 (Section 5.1). Nodes labeled "*"
have a unique child representing RE\. The tree representation is usually not
unique, since some operators are commutative and/or associative. A tree
representation of our example (AT | GA) ((AG | AAA) *) is shown in Figure 5.3.

We explain in Section 5.8 how to parse a regular expression in order
to obtain a tree representation. We consider below that the parse tree is
readily available and identify our regular expressions with any of their tree
representations.

When working on the tree representations in our algorithms, we assume
that the symbol \^\ (vi,vr) means a concatenation tree with root "•" and
children vi and vr. Similarly, [ | ] (vi,vr) is the tree rooted with "|". The
symbol [*] (t>*) means a "*" node with a unique child t>*.

https://doi.org/10.1017/CBO9781316135228.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.005


102 Regular expression matching

(
r©©

\
1 ©

I
© ©

@

f
CD

CO

© ©

Fig. 5.3. Tree representation of the regular expression (AT IGA) ((AGIAAA) *) .

5.2 Building an NFA

There exist various ways to build an NFA from a regular expression [Glu61,
Tho68, CP92, BS86, BK93, HSW97], among which two are most important
because they are practical and often used.

The Thompson construction [Tho68] is simple and leads to an NFA that is
linear in the number of states (at most 2m) and of transitions (at most 4m).
However, this automaton has e-transitions, that is, "empty" transitions,
that can be passed through without reading a character of the text or,
alternatively, by reading the empty string e.

The Glushkov construction [Glu61, BS86], on the other hand, leads to an
NFA with exactly m + 1 states but a number of transitions that is O(m?)
in the worst case. Nevertheless, this construction produces no e-transitions.
The original construction is O(m3) time, but it has been shown [BK93] that
this can be reduced to O(m2).

5.2.1 Thompson automaton

The construction of Thompson [Tho68] is an automaton representation of
what is recognized by the regular expression. The automaton is a direct
transcription of the tree representation of the regular expression. It uses
e-transitions to simplify this transcription.

The idea is to go up the tree representation TRE of the regular expression
RE and to compute for each tree node v an automaton Th(v) that recog-
nizes the language REV represented by the subtree rooted at v. A specific
automaton construction is associated to each type of node and leaf of the
tree. These are
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5.2 Building an NFA 103

(i) Construction for the empty word. The automaton consists of just two
nodes joined together by an e-transition.

(ii) For a single character a the construction is similar, except that the tran-
sition is labeled with the character rather than with the empty string.

m

IV

Construction for a concatenation node. The two Thompson automata of
the two children v\ and vr are merged together, the final state of the first
automaton becoming the initial state of the second.

The construction for a union node requires e-transitions. The idea is to
transcript the fact that we enter either automaton Th(v{) or Th(vr) of the
two children. We then add two new states, an initial one I with two e-
transitions to the two initial states o£Th(v{) and Th(vr), and a final node
F that can be reached from the two final states of Th(v{) and Th(vr).
A path from I to F has to go through one of the two automata, so the
language recognized is REVl \ REVr.

(v) The construction for a star node uses the same idea. First, the language
REVt, where w* is the only child node oiv, now can be repeated as many
times as desired. Hence we create a backward e-transition from the final
state of the automaton Th(v*) to the initial. But the star also means that
the automaton Th(v*) can be ignored, and hence we create two new nodes,
an initial I and a final F, joined together by an e-transition. With two
other e-transitions we join / to the initial state of Th(v*), and the final
state o£Th(v.¥) to F. The resulting automaton recognizes the language
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104 Regular expression matching

The whole Thompson algorithm consists in performing a bottom-up traver-
sal of the tree representation and keeping the automaton built for the root
as the Thompson automaton of the whole expression. The recursive pseudo-
code of a the algorithm is given in Figure 5.4.

Thompson_recur(i>)
1. If v = [ | ] (vi, vr) OR v = f£] (vi, vr) Then
2. Th(vi) «— Thompsonjecur(«i)
3. Th(vr) <— Thompson_recur(tir)
4. Else If v = QT] (vt) Then Th(v*) «— Thompson_recur(ii«)
5. End of if

/* end of the recursive part, we build the automaton for the current node */
6. If ii = (e) Then Return construction (i)
7. If v = (a) , a £ E Then Return construction (ii)
8. If v = p] (vi, vr) Then Return construction (Hi) on Th(vi) and Th(vr)
9. If v = [\] (vi,vr) Then Return construction (iv) on Th(vi) and Th(vr)
10. If ii = [T] (ti») Then Return construction (v) on Th(vt)

11. VRE <— Parse(_R_B$,l) /* parse the regular expression (Section 5.8) */
12. T1I(VRE) <— Thompson_recur(«iiB) /* build the automaton on the tree */

Fig. 5.4. The Thompson algorithm. The automaton is built recursively on the tree
representation of the expression.

Properties of the Thompson automaton The construction for each
node of the tree representation adds at most two states and four transitions
to the current automaton. Hence, at the end of the construction, the total
number of states and transitions is bounded by 2m and 4m, respectively. We
can calculate tighter bounds, but the important point is that the number of
states and transitions is linear in m. Moreover, each NFA node has at most
two incoming and two outgoing edges, and the whole NFA has one initial
and one final state.
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5.2 Building an NFA 105

Another interesting property is that all the arrows that are not labeled
by e go from states numbered i to states numbered i + 1. This is always
true provided we process the characters of the regular expression from left
to right, as in the parser presented at the end of this chapter.

Complexity The time complexity of the whole algorithm is also linear,
since we can create each construction in constant time for each node of the
tree representation.

Example of a Thompson automaton construction We build the au-
tomaton of (AT|GA) ((AGIAAA)*) from its tree representation (Figure 5.3).
The construction is shown in Figure 5.5, except for the basic step of con-
catenating characters.

5.2.2 Glushkov automaton

The construction of Glushkov [Glu61] has been by popularized Berry and
Sethi in [BS86].

We mark the positions of the characters of E in RE, counting only
characters. For instance, (AT|GA) ((AG I AAA)*) is marked (A^lGsA^)-

^7^-8^.9)*)- A marked expression from a regular expression RE is
denoted RE and its language, where each character includes its index, is de-
noted L(RE). In our example, L{(AiT2\G3A4)({A5G6\A7A8A9)*)) = {Ax-
T2, G3A4, AiT2A5G6, G3A4A5G6, AxT2A7A8A9l G3A4A7A8A9, AXT2A5-
GeAs GQ, ...}. Let Pos(RE) = { 1 . . . m} be the set of positions in RE and
S the marked character alphabet.

The Glushkov automaton is built first on the marked expression RE and
it recognizes L(RE). We then derive from it the Glushkov automaton that
recognizes L(RE) by erasing the position indices of all the characters (see
below).

The set of positions is taken as a reference, becoming the set of states
of the resulting automaton in addition to an initial state 0. So we build
m + 1 states labeled from 0 to m. Each state j represents the fact that we
have read in the text a string that ends at NFA position j . Now if we read
a new character a, we need to know which positions we can reach from j
by a. Glushkov computes from a position (state) j all the other accessible
positions.

We need four new definitions to explain in depth the algorithm. We denote
below by ay the indexed character of RE that is at position y.
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Fig. 5.5. Thompson automaton construction for the regular expression
(AA|AT)((AG|AAA)*).

Definition First (RE) = {x £ Pos(RE), 3u G S*, axu £ L{RE)}.

The set First(RE) represents the set of initial positions of L(RE), that
is, the set of positions at which the reading can start. In our example,

elAtAsAg)*)) = {1,3}.

Definition Last{RE) = {x € Pos(RE), 3u 6 S*, uax € L(RE)}.

The set Last(RE) represents the set of final positions of L(RE), that is,
the set of positions at which a string read can be recognized. In our example,

G6|A7A8A0*)) = {2,4,6,9}.
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5.2 Building an NFA 107

Definition Follow(RE,x) = {y 6 Pos(RE), 3u,v E X , uaxayv 6
L(RE)}.

The set Follow(RE,x) represents all the positions in Pos(RE) accessible
from x. For instance, in our example, if we consider position 6, the set of
accessible positions is FoUow((AiT2\G3A4)((A5Ge\A7AsA9)*), 6) = {7,5}.

We need an extra function EmptyRE that indicates whether the empty
word e is in L(RE).

Definition We define recursively the function Empty RE , whose value is
{e} if e belongs to L(RE) and 0 otherwise.

EmptyE = {s}
Empty-aeS = 0
EmptyREI\RE2 = EmptyREl U EmptyRE.2
EmptyREI.RE2 = EmptyREin EmptyRE2

EmptyRE* = {e}

The deterministic Glushkov automaton GL that recognizes the language
L(RE) is built in the following way.

GL = (S,Z,I,F,S)

where:

(i) S is the set of states, S = {0,1, . . . , TO}, that is, the set of positions
Pos(RE) and the initial state is / = 0.

(ii) F is the set of final states, F = Last(RE) U (EmptyRE • {0}). In-
formally, a state (position) i is final if it is in Last(RE). The ini-
tial state 0 is also final if the empty word e belongs to L(RE), in
which case EmptyRE = {e} and hence EmptyRE • {0} = {0}. If not,
EmptyRE • {0} = 0.

(iii) S is the transition function of the automaton, denned by

Vx <E Pos(RE), Vy <E Follow(RE,x), 8(x,ay) = y (5.1)

Informally, there is a transition from state x to y by ay if y follows
x. The transitions from the initial state are denned by

Vy 6 First(RE), 6{0, ay) = y (5.2)

The Glushkov automaton of our marked regular expression (A1T2IG3A4)
el^r^^-g)*) is given in Figure 5.6.
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3 )^(©)^^©^4©)^^© ^^©^^(©)
A, J\ A, / tk _̂_ __J

Fig. 5.6. Marked Glushkov automaton built on the marked regular expression (A\
T2\G3A4)((A5Ge\A7AsAg)*). The state 0 is initial. Double-circled states are final.

To obtain the Glushkov automaton of the original RE, we simply erase
the position indices in the marked automaton. At this step, the automa-
ton usually becomes nondeterministic. The new automaton recognizes the
language L(RE). The Glushkov automaton of our example (AT|GA)((AG|
AAA)*) is shown in Figure 5.7.

G

©^
^ - ^ A / ^ ^ \
( 3 ) *"((. V/

A

A

i

-—~~~^ A

Fig. 5.7. Glushkov automaton built on the regular expression (AT|GA)((AG|
AAA)*). The state 0 is initial. Double-circled states are final. The automaton
is derived from the marked automaton by simply erasing the position indices.

The algorithm of Glushkov is based on the tree representation TRE of the
regular expression (see Figure 5.3). Each node v of this tree represents a
subexpression REV of RE. We associate the following variables to v:

• First(v): list of positions that represent the set First(REv).

• Last(v): list of positions that represent the set Last(REv).

• Emptyv: set to {e} if L(REV) contains the empty string e, and to 0 oth-

erwise.

These variables are computed for each node in postfix order, that is, they
are first computed for every child of v and only afterward for v. We denote
the two children of v as vi and vr iiv is "|" or "•", and we denote its unique
child as v* if v represents "*".

The set Follow(x) is a global variable. For each node v we update
Follow(x) according to the positions in the subexpression REV.

The recursive algorithm Glushkov .variables ( t ^ , Ipos) is given in Fig-
ure 5.8. It computes the values of Fir st(v), Last(v), Follow(x), and Emptyv
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5.2 Building an NFA 109

Glushkov .variables (!>##, Ipos)
/* postfix computation, we compute recursively the children first */

1. If v = [ | ] (vi,vr) OR v = \~\ (yi,vr) Then
2. Ipos Jr- Glushkov_variables(^, Ipos)
3. Ipos ^r- Glushkov_variables(vr, Ipos)
4. Else If v = [jT] (v*) Then Ipos —̂ Glushkov _variables(v*, Ipos)
5. End of if

/* end of the recursive part, we compute the values for the current node */
6. If v = 0) Then
7. First(v) <- 0, Last(v) <- 0, Emptyv <- {s}
8. Else If v = (a) , a G £ Then
9. /pos —̂ /pos + 1
10. First(v) «— {/pos}, Last(v) —̂ {/pos}, Emptyv «— 0, Follow(lpos) —̂ 0
11. Else If v = [ | ] (vjjVr) Then
12. First(v) «— First(vi) U First(vr)
13. Last(v) «— Last(vi) U Last(vr)
14. Emptyv —̂ EmptyVl U EmptyVr

15. Else If V = Q] (vj,Vr) Then
16. First(v) <- First(vi) U (EmptyVl • First(vr)),
17. Last(v) —̂ (EmptyVr • Last(vi)) U Last(vr),
18. Emptyv —̂ EmptyVl fl EmptyVr

19. For x G Last(vi) Do Follow(x) <- Follow(x) U First(vr)
20. Else If V = [*] (v*) Then
21. First(v) <- First(v*), Last(v) <- Last(v*), Emptyv <- {s}
22. For x G Last(v*) Do Follow(x) <- Follow(x) U First(v*)
23. End of if
24. Return /pos

Fig. 5.8. Recursive part of the Glushkov algorithm. This function computes the
values of First{v), Last{v), Follow(x), and Emptyv for each node i? of the tree
representation of the regular expression

for each node ^ of the tree representation of the regular expression .RE1. We
visit the nodes in postfix order. The values of the node ?;#£ are computed
from the values obtained for its children. The position of each character is
computed on the fly (line 9).

The whole Glushkov algorithm consists in transforming RE into a tree
VRE, calculating the variables on it with Glushkov .variables (VRE,0) and
then building the Glushkov automaton from the variables of the root VRE
of the tree, following its definition. Pseudo-code for the whole algorithm is
given in Figure 5.9.

Properties of the Glushkov automaton Two properties of this automa-
ton are of interest to us. The first one is that the NFA is £-free. The second
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Glushkov(#£0
/* parse the regular expression (Section 5.8) */

1. vRE <- Parse (#£$,1)
/* build the variables on the tree */

2. m <r- Glushkov.variables(VRE,0)
/* building the automaton */

3. A = 0
4. For i G 0 . . . m Do create state i
5. For x G First(vRE) Do A ^ A U { ( 0 , a , , x ) }
6. For z G 0 . .. m Do
7. For x G Follow{i) D o A ^ A U {(z, aa, x)}
8. End of for
9. For x G Last(vRE) U (EmptyVRE • {0}) Do mark x as terminal

Fig. 5.9. The whole Glushkov algorithm. The automaton is nondeterministic in
the general case and its transition function is denoted A. The initial state is 0.

one is that all the arrows leading to a given state y are labeled by the same
character, namely, ay. This is easily seen in formulas (5.1) and (5.2).

Complexity The worst-case complexity of the whole algorithm is domi-
nated by the function Glushkov .variables. In this function, all the unions
of sets, except for the star, are disjoint and can be implemented in 0(1) time.
The For loop of line 19 is worst-case O(m). The poor worst-case complex-
ity is due to line 22, that is, the computation of the star. Since Follow (x)
and First(v*) could intersect, the union is worst-case time O(m). As this is
inside a For loop that can perform O(m) iterations, the whole loop is worst-
case time O(m2). The total complexity of the algorithm is thus worst-case
O(ra3), because O(m) stars may exist.

Two variations of this algorithm have been proposed to reduce the worst-
case complexity to O(m2) [BK93, CP92]. Both reduce the complexity of the
For loop of the star but use different properties. The first one [BK93] uses
the fact that

Follow(RE*,x) = [ Follow(RE*,x) \ First (RE*) ] U First(RE*)

while the second [CP92] uses the fact that

Follow(RE*,x) = Follow(RE*,x) U [ First(RE*) \ Follow(RE*, x) ]

For our purposes, the O(ra3) time algorithm is good enough, since usu-
ally the regular expression is small in comparison to the text size. More-
over, by using bit-parallelism to operate the sets of states, one can obtain
0(rn2\m/w\) time, which is in practice O(m2) for small regular expressions.
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5.3 Classical approaches to regular expression searching

We cover in this section the classical ways to search for a regular expression
in a text. We first consider the two extremes: pure NFA and pure DFA sim-
ulation. We then introduce a third, intermediate approach, which permits
trading space for time.

5.3.1 Thompson's NFA simulation

Together with its NFA definition, Thompson proposed in [Tho68] an O(mn)
search algorithm based on the direct simulation of his NFA. The resulting
algorithm, which we call NFAThompson, is not competitive nowadays,
but it is the basis of more competitive algorithms seen later in this chapter.

Thompson stores explicitly the set of currently active states. For each
new text character read and for each currently active state, he looks at the
new states that the current state activates by this character and adds each
of them to a new set of active states. From those new active states he follows
all the e-transitions until all the reachable states are obtained.

Since each state has 0(1) outgoing transitions under Thompson's con-
struction and there can be 0(m) active states, producing the new set of
active states takes 0(m) time under a suitable representation of the set of
states, for example, a bit vector. The propagation by e-transitions also takes
0(m) time if care is taken to not propagate from a state that was already
active. On the other hand, the extra space required is just 0{m).

Note that it is possible to use bit-parallelism to store the bit vectors. A
smarter use of bit-parallelism is considered in Section 5.4.

5.3.2 Using a deterministic automaton

One of the early achievements in string matching was the 0(n) time algo-
rithm to search for a regular expression in a text. As explained, the technique
consists of converting the regular expression into a DFA and then searching
the text using the DFA. The simplest solution is to build first an NFA with
a technique like those shown in the previous sections (e.g., Thompson or
Glushkov) and then convert the NFA into a DFA.

This algorithm, which we call DFAClassical, can be found in any classi-
cal book of compilers, such as [ASU86]. The main idea is as follows. When
we traverse the text using a nondeterministic automaton, a number of tran-
sitions can be followed and a set of states become active. However, a DFA
has exactly one active state at a time. So the corresponding deterministic
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automaton is denned over the set of states of the nondeterministic automa-
ton. The key idea is that the unique current state of the DFA is the set of
current states of the NFA.

To formalize the concepts, we first need a definition.

Definition The e-closure of a state s in an NFA, E(s), is the set of states
of the NFA that can be reached from s by e-transitions.

Note that in e-free automata like Glushkov's, E(s) = {s} for all states s,
but this is not true in Thompson's construction.

We can give now a formal definition of the conversion of the NFA into a
DFA. Let the NFA be (Q,T,,I,F,A) according to Section 1.3.3. Then the
DFA is defined as

(p(Q), S, E{I), F', 8)

where

F' = { / G P ( Q ) , f n F + 0 }

and

S(S,a) = |J E(s')
(s,a,s')eA

that is, for every possible active state s of S we follow all the possible
transitions to states s' by the character a and then follow all the possible
e-transitions from s'.

Since the DFA is built on the set of states of the NFA, its worst-case size
is O(2m) states, which is exponential. This makes the approach suitable for
small regular expressions only. In practice, however, most of those states are
not reachable from the initial state and therefore do not need to be built.

We now give an algorithm that obtains the DFA from the NFA by building
only the reachable states. The algorithm uses sets of NFA states as identifiers
for the DFA states. A simple way to represent these sets is to use a boolean
array. Note that a bit-parallel representation is also possible, and it permits
not only more compact storage but also faster handling of the set union
and other required set operations. We give specific bit-parallel algorithms
in Section 5.4. For now, we use just an abstract representation of the sets
of states.

Figure 5.10 gives pseudo-code to compute the £-closure E(s) for every
state s of the NFA. The result is a set of states for each state s. The
algorithm starts with E(s) = {s} and then repeatedly traverses the whole
automaton looking for e-transitions. For each of these, it adds the e-closure
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of the target state to that of the source state. The process is repeated until
no new information is gathered.

EpsClosure(7V = (Q, E, J, F, A))
1. For s e Q Do E(s) <- {s}
2. changed —̂ TRUE
3. While changed = TRUE DO
4. changed —̂ FALSE
5. For 0,£,s') G A Do
6. If E(sf) £E(s) Then
7. E(s) <- E(s)UE(s')
8. changed —̂ TRUE
9. End of if
10. End of for
11. End of while

Fig. 5.10. Computation of the e-closure E(s).

The cost of this algorithm is O(|A|ra2), since each complete traversal costs
O(|A|ra) and it adds 1 to the distance up to which the chains of ^-transitions
are considered. Since the maximum distance in the NFA is O(ra), it follows
that O(m) traversals suffice. Under the Thompson construction we know
that |A| < 4ra, so the algorithm is O(m3) time. Under Glushkov we simply
do not need to run the algorithm, as we know that E(s) = {s} for every
seQ.

Figure 5.11 shows pseudo-code for the algorithm that builds the DFA. The
algorithm builds the initial state Id and then invokes a recursive procedure
BuildState, which finds all the target states from a given source state and
reinvokes itself on all the target states that do not exist yet. The set of final
states, Fd, is built together with the set of all states, Qd>

It is clear that this algorithm produces only the states that are reachable
from the initial state, that is, the states that could be reached when reading
the text. Its worst-case time complexity is O(|Qd||S||A| maxs |i£(s)|), which
is O(\Qd\m2) on Thompson's NFA since | A| = O(m) as well as on Glushkov's
since \E(s)\ = 1 always.

Example of DFA construction Let us consider our running example
(ATIGA) ((AGIAAA)*). Its Thompson NFA is given in Figure 5.5. Table 5.1
gives the corresponding E(s) function built by EpsClosure.

For the Glushkov NFA of Figure 5.7, we have that E(s) = {s}. Figure 5.12
shows the resulting DFAs from both Thompson's and Glushkov's NFAs.
Note that, despite the different labeling, both DFAs are the same. Moreover,
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BuildState(S')
1.
2.
3.
4.
5.
6.
7.
8.

y.
10.
11.
12.

If 5 n F / 0 Then Fd <- Fd U {5}
For cr G S Do

T <- 0
For s G 5 Do

For (s , (7 ,s ' )GADoT <- T U £7(s')
End of for
(5(5,(7) ^ T
If T 0 Qd Then

BuildState(T)
End of if

End of for

BuildDFA(7V = (Q, E, J, F, A))
13.
14.
15.
16.
17.
18.

EpsClosure(TV)
Id <- E(I) /* initial DFA state */
Fd <- 0 /* final DFA states */
Qd <- {Id} /* all the DFA states */
BuildState(Jd)
Return (Qd,X,Id,Fd,6)

Fig. 5.11. Classical computation of the DFA from the NFA.

E{0)
E(l)
E(2)
E(3)
E(4)
E(5)
E(6)
E(7)
E(8)

{0,1,
{1}
{2}
{3,7,
{4}
{5}
{6,7,
{7,8,
{8,9,

4}

8,9,12,17}

8,9,12,17}
9,12,17}
12}

E(9)
£(10)
£(11)
£(12)
£(13)
£(14)
£(15)
£(16)
£(17)

{9}
{10}
{8,9,11,
{12}
{13}
{14}
{8,9,12,
{8,9,12,
{17}

12,16,17}

15,16,17}
16,17}

Table 5.1. The e-closure E(s) for the final NFA of Figure 5.5.

they are minimal, that is, no DFA with fewer states recognizes the same
language.

This is not guaranteed in general. Different DFAs may exist to recognize
the same language. Moreover, our construction does not guarantee that the
result has the minimum size. To ensure this we have to minimize the DFA
after we build it. Minimization of DFAs is a standard technique that can be
found in a classical book such as [ASU86]. We content ourselves with the
simple construction, which in most cases produces a DFA of reasonable size.
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A

From Thompson's NFA

From Glushkov's NFA

Fig. 5.12. The DFAs resulting from Thompson's and Glushkov's NFAs.

Searching with the DFA The point of building the DFA is to guarantee
a linear search time of O(n). This is achievable because we need to cross
exactly one transition per text character read. However, we need to modify
the automaton in order to use it for text searching. The modification consists
of adding a self-loop to the initial state of the NFA, which can be crossed
by any character, that is, doing

A <- A U

before converting it into a DFA. If the original automaton recognizes the
language L(RE), then after this modification the automaton recognizes
T,*L(RE). Figure 5.13 shows the resulting DFA after adding the self-loop
to the Glushkov NFA of Figure 5.7.

The complete search algorithm is depicted in Figure 5.14. The total com-
plexity is 0(m?2m+n) in the worst case. The extra space needed to represent
the DFA is O(m2m) bits.

5.3.3 A hybrid approach

In [Mye92] an approach is proposed which is intermediate between a nonde-
terministic and a deterministic simulation. The idea is based on Thompson's
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t
Fig. 5.13. DFA obtained after adding an initial self-loop to the Glushkov automaton
of Figure 5.7. It is equivalent to the regular expression (A | C IGIT) * (AT | GA) ((AGI
AAA)*)-

DFAClassical(JV = (Q, S, I, F, A), T = M2 ...tn)
1. Preprocessing
2. For a G E Do A <- A U (I, CT, I)
3. (gd,S,7d,Fd,<5) ^ BuildDFA(AT)
4. Searching
5. s -f- Id

6. For pos G 1 . . . n Do
7. If s 6 Fd Then report an occurrence ending at pos — 1
8. S 4r- S(.S,tpos)
9. End of for

Fig. 5.14. Classical search algorithm using a DFA.

construction (Section 5.2.1) and consists in splitting the NFA into modules
of O(k) nodes each, making them deterministic, and keeping an NFA of the
0(m/k) modules. We call this algorithm DFAModules.

More specifically, the parse tree of the regular expression is partitioned
into modules as follows. First, parse subtrees with k edges are chosen. These
subtrees form modules, which are from then on considered as leaves of the
parse tree. It is shown that those modules contain between k/2 and k leaves.
Once the module subtrees have been replaced by leaves, new subtrees are
chosen as modules and so on until the root of the whole expression is reached.

The status of each module is represented by a bit mask of length k + 1,
which is a map of active and inactive NFA states. A transition table is
precomputed so that, given a bit mask of active states plus a text character
a, the table delivers the bit mask of active states after processing a. This
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is in fact a DFA built on the module with the sets of states represented as
bit vectors.

For the lowest level modules it is clear that this DFA can be built. The
problem with the higher level modules is that some of their leaves are other
submodules. When the bit corresponding to the edge entering the submod-
ule is activated we have to set the initial state of the submodule. And when
the final state of the submodule is activated we have to activate the edge
leaving the submodule in the higher level module.

Since the construction of modules takes whole subexpressions and Thomp-
son's construction guarantees that there exist just one initial and one final
state, the transitions among each module and its parent can be carried out
in constant time.

Therefore, to simulate one step of the computation on a higher level mod-
ule, it is necessary to use the precomputed table to determine which sub-
modules have been reached, and activate their initial state if they have been.
Then, we recursively simulate the step on each submodule, and for those that
reached their final state we activate the corresponding bit in the higher level
module. A final access to the precomputed table yields the final result.

The main problem remaining is the order in which the submodules have
to be processed to account for the dependencies between them. Except for
the "*" operator, which introduces a back edge, the NFA can be processed in
topological order (i.e., source nodes before target nodes), and a single pass
over the NFA is enough. One of the central points of [Mye92] is to show
that two passes in topological order, permitting the source of a back edge to
influence its target, are enough to account for all the dependencies. Hence,
we need only a constant number of passes over the NFA, working 0(1) per
module.

Since time is proportional to the number of modules, 0(m/k) time suf-
fices to process each text character. Each determinized module needs 0(2k)
space to perform all its internal transitions in constant time. Hence we
need 0(rn2k/k) space and 0(mn/k) time. Given 0(s) space, the algorithm
obtains O(mn/logs) search time.

5.4 Bit-parallel algorithms

As explained in the previous section, a possible way to store the states of
the DFA (i.e., the sets of states of the NFA) is to use a bit mask of 0(m)
bits where the i-th bit is 1 whenever the i-th NFA state belongs to the DFA
state. We present in this section two bit-parallel implementations that are
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hybrids between an NFA and a DFA simulation. As we will see later, they
have advantages and disadvantages compared to the classical approaches.

Assume that the NFA (Q = {so . . . S|Q|_I}, S, / = so? F-, A) is represented
as follows: Qn = {0.. . \Q\ - 1}, /„ = O^" 1 ! , Fn = \SjeF QlQl-i-hW (i.e.,
the bitwise OR of the final states positions), and the set of transitions A is
represented by means of two tables Bn and En:where

represents the states reachable from state i by character a without consid-
ering e-transitions, and

represents E(i), the e-closure of state SJ (Section 5.3.2).
It is not complicated to produce this representation when applying Thomp-

son's or Glushkov's constructions. Indeed, it is convenient, as we are simply
using bit-parallelism to represent sets of states as bit masks of length \Q\.
Of course En is not relevant under Glushkov's construction, since its NFA
is e-free.

5.4-1 Bit-parallel Thompson

A competitive algorithm [WM92b], which we call BPThompson, is derived
from Thompson's NFA simulation (Section 5.3.1) by a clever use of bit-
parallelism. A very important property (Section 5.2.1) is that, except for the
e-transitions, all the arrows go from states numbered i to states numbered
i + 1.

If we pack the set of states in the bits of a computer word, so that the
i-th state is mapped to the i-th bit, then all except the e-transitions can be
simulated using a table B similar to that of the Shift-And algorithm (Sec-
tion 2.2.2). The mechanism to simulate e-transitions uses a precomputed
table Ed. Ed is built such that, for each possible bit mask of active states, it
yields the new set of active states that can be reached from the original ones
by e-transitions. This includes the original states and also the initial state
0 and its e-closure, so as to simulate, without any extra work, the self-loop
at the initial state. Formally,

Ed[D] = | j , i=0 OR DSz0L-i-1Wi7L0L En[i] (5.3)

where L = \Q\ < 2m is the number of states in Thompson's NFA.
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The mechanism is not completely an NFA simulation, since it precomputes
a DFA on the ^-transitions. The simulation of all the other transitions can
be seen as the true bit-parallel simulation of an NFA.

Figure 5.15 shows the code to build the tables B and E&. The idea for
B is to ignore the originating states of i?n, that is, we store in B[a] all the
states that can be reached by the character a, from any state:

B[a] = \ieo...mBn[i,(T] (5.4)

The idea for E^ is to iteratively add a new highest bit to the masks and
use the results already computed for smaller masks. The overall process
takes time O(2L + ra|£|).

BuildEps(7V = (Qn, E
1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
11.

For a e S Do
B[a] <- 0L

For 2 G 0 . .
End of for

/* B is
Ed[0] <r- En[0]
For i G 0 . . . L -

For j G 0 ..

End of for
End of for
Return (B,Ed)

1 n

. L

,Fn,Bn, En))

- 1 Do B\

already built
/*
i
.2

•j]

the initial
Do
' - l D o / ^

<" £n[t]

a] ^ 5[a]

, now build J
state and its

* recall that
Ed\j]

\Bn[%M

Ed * /
closure */

En[i] includes i */

Fig. 5.15. Bit-parallel construction of Ed and B from Thompson's NFA. We use a
numeric notation for the arguments of E^.

Figure 5.16 shows the search algorithm. Each transition is simulated
in two steps: First we use a Shift-And-like mechanism for the normal
transitions using i?, and second we use E^ to simulate all the ^-transitions.

Reducing space A table of size 2L may be too large depending on the
machine and the pattern. However, a horizontal partitioning scheme can
be used to fit the available memory. We split E^ into two tables, Ex

d and
E^ each of them defined over half of the bits. This exploits the following
property, which comes directly from equation (5.3):

Ed[DlD2] =
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BPThompson(7V = (Qn, E, In, Fn, Bn, En), T = tit2 ...tn)
1. Preprocessing
2. (B,Ed) <- BuildEps(TV)
3. Searching
4. D <- Ed[In] /* the initial state */
5. For pos G 1 . . . n Do
6. If D & F n / 0L Then report an occurrence ending at pos — 1
7. £> 4r- Ed [ (D « 1) & B[tpos] ]
8. End of for

Fig. 5.16. Thompson's bit-parallel search algorithm.

that is, we can decompose the argument of E^ in two parts. Hence E\ and E2
d

are defined as follows, over masks of length \_L/2\ and \L/2], respectively:

El
d[D] = Ed[0W\D] , E2

d[D] =

and hence it holds

Ed[dm...d0] = £

For instance, in Figure 5.5 we would have En[3] = 100001001110001000 and
En[ll] = 111001101100000000, so £*[000001000] = 100001001110001000
and £§[000000100] = 111001101100000000. Thus, ^[000000100000001000]
= 111001101110001000.

The net result is that, instead of having a table of size O(2L), we have
two much smaller tables, of size O(2L/2). The cost is that we have to pay
two accesses to memory in order to perform each transition.

The scheme can be generalized as follows. Assume that we have O(s) space
available for the tables. We split our table Ed into k tables E\ . . . E%, each
one addressing [L/k\ or \L/k\ bits of the argument mask. The total space
required is O(k2Llk). If this space is s, then we have that k « L/ log 2s .
Therefore, the scheme permits a search time of O(ran/logs) using O(s)
space. This trade-off cannot be achieved with the classical DFA algorithm.
Note that the complexity has to be multiplied by m/w for long patterns.

Depending on the architecture, even when a large table fits in memory,
the cache optimization mechanism can make it advisable to use two smaller
tables, which have more locality of reference.

Example of BPThompson We search for the pattern (AT IGA) ((AGIAAA)
*) in the text AAAGATAAGATAGAAAA, marking the final positions of occur-
rences. The states have been numbered according to Figure 5.5. As it is not
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practical to show the whole table E^ of 218 = 262,144 entries, we show the
table En. Remember that the E^ rows are obtained by OR-ing the En rows
corresponding to the bits set in the argument of E^. We only show the En

entries where E(s) ^ {s}; otherwise En[s] contains E(0) U {s}.
For each character read we show two steps in the update of D, namely,

before and after the ^-closure.

TableEn

0
3
6
7
8
11
15
16

A
C
G
T
*

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1
1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1
1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1
1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1

0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fn= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

1. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

2. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

3. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

4. Reading G

B[G] 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

5. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
D = 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1

D & Fn ^ 0L, so we mark an occurrence.

6. Reading T

B[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D = 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1

D &i Fn ^ 0L, so we mark an occurrence.

7. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
D = 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1

8. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D= 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1

9. Reading G

B[G] 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
D = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

10. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
D = 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1

D & Fn ^ 0L, so we mark an occurrence.

11. Reading T

B[T] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D= 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1

D & Fn ^ 0L, so we mark an occurrence.

12. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D= 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
D = 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1
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13. Reading G

B[G] 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
D = 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
D = 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1

D & Fn ^ 0L, so we mark an occurrence.

14. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1

D & Fn ^ 0L, so we mark an occurrence.

15. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D= 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0
D = 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1

16. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D =
D =

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1

D & Fn ^ 0L, so we mark an occurrence.

17. Reading A

B[k] 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
D = 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
D = 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1

0L, so we mark an occurrence.D &Fn

5.4-2 Bit-parallel Glushkov

Another bit-parallel algorithm [NR99a, NavOlb, NROla] uses Glushkov's
NFA, which has exactly ra + 1 states. We call it BPGlushkov.

The reason to choose Glushkov over Thompson is that we need to build
and store a table whose size is 2^1, and Thompson's automaton has more
states than Glushkov's. The price is that now the transitions of the au-
tomaton cannot be decomposed into forward ones plus ^-transitions. In
Glushkov's construction there are no 6-transitions, but the transitions by
characters do not follow a simple forward pattern.

However, there is another property enforced by Glushkov's construction
that can be successfully exploited (Section 5.2.2): All the arrows arriving
at a given state are labeled by the same character. So we can compute the
transitions by using two tables: B[a] (formula (5.4)) tells which states can
be reached by character a, and

Td[D] = |(z,cr),

tells which states can be reached from D by any character.
Thus 5(D,a) = Td[D] &; B[a]. We use this property to build and store

only Td and B instead of a complete transition table. Figure 5.17 shows
the necessary preprocessing. The ideas are similar to those used to build
Ed and B in Section 5.4.1. This time the cost is O(2m + ra|S|) by using
an intermediate table A[i] = \aeY, B[i,a], which is essentially a bit-parallel
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representation of the Follow set (Section 5.2.2). Figure 5.18 shows the
search algorithm, which is similar to BPThompson.

BuildTran
1.
2.
3.
4.
5.
6.

7.
8.
9.
10.
11.
12.
13.

For
For
For

End

Td[0]
For

End

. (iV=(Qn,E,.
i G 0. . .m Do
a e S Do 5[cr

In,Fn,Bn))
A[i\ <r- 0 m + 1

1 <- 0 m + 1

t G 0 . . . m , cr G S Do
A[z] ^- A[z] |
5[cr] ^ 5[cr]
of for

/* B and
<- 0 m + 1

z G 0 . . .m Do
For j G 0 . . . 2*

Td[2* + j]
End of for
of for

Return (B,Td)

Bn [ i , cr]

1 5n[z,cr]

A are built, now build Td */

- 1 Do
«_ A[z] | T^[j]

Fig. 5.17. Bit-parallel construction of B and T^ from Glushkov's NFA. We use a
numeric notation for the argument of Td.

BPGlushkov(7V = (Qn, E, In,Fn,Bn), T = tit2 ...tn)
1. Preprocessing
2. For a G E Do Bn[0,a] ±- Bn[O,a] \ 0 m l /* initial self-loop */
3. (B,Td) <- BuildTran(TV)
4. Searching
5. D <- 0m l /* the initial state */
6. For pos G 1 ... n Do
7. If D & Fn / Qm+1 Then report an occurrence ending at pos — 1
8. D 4r- Td[D] & B[tpos]
9. End of for

Fig. 5.18. Glushkov's bit-parallel search algorithm.

Compared to BPThompson, BPGlushkov has the advantage of need-
ing O(2m) space instead of up to O(22m). Just as for E^ it is possible to
split Td horizontally to obtain O(ran/logs) time with O(s) space. There-
fore, BPGlushkov should be always preferred over BPThompson.

Example of BPGlushkov We search for the pattern (AT I GA) ((AGIAAA) *)
in the text AAAGATAAGATAGAAAA, marking the final position of occurrences.
We use Glushkov's simulation, where the states have been numbered ac-
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cording to Figure 5.7. Since it is not practical to show the whole table T^
of 210 = 1024 entries, we show only the tables Bn, B, and the rows of T^
that are needed in the search. Remember that the T^ rows are obtained by
OR-ing the Bn rows corresponding to the bits set in the argument of T^ over
every character. In Bn we only show the entries leading to a nonzero result.

6. Reading T

Bn =

B =

Fn

D

0
0
0
0
1
2
3
4
5
6
7
8
9

A
C
G
T

A
C
G
T
T
A
A
A
G
A
A
A
A

00000000 11
000000000 1
000000100 1
000000000 1
0000000100
0010100000
0000010000
0010100000
000 1000000
0010100000
0 100000000
1000000000
0010100000

1110110011
0000000001
000 100 100 1
0000000101

1 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1

1. Reading A
Td[D]= 0 0 0 0 0 0 1 0 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0000000011

2. Reading A
Td[D] = 0 0 0 0 0 0 1 1 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0000000011

3. Reading A
Td[D]= 0 0 0 0 0 0 1 1 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0000000011

4. Reading G
Td[D] = 0 0 0 0 0 0 1 1 1 1

B[G] = 0 0 0 1 0 0 1 0 0 1
D= 0000001001

5. Reading A
Td[D]= 0 0 0 0 0 1 1 0 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0000010011

D & Fn / 0 m + \ so we mark an oc-
currence.

Td[D] = 0 0 10 10 1 1 1 1
B[T] = 0 0 0 0 0 0 0 1 0 1

D= 0 0 0 0 0 0 0 1 0 1

D & Fn / 0
currence.

7. Reading A

m + l , so we mark an oc-

Td[D] = 0 0 10 10 10 1 1
B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0010100011

8. Reading A
Td[D] = 0 1 0 1 0 0 1 1 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0100000011

9. Reading G
Td[D] = 1 0 0 0 0 0 1 1 1 1

B[G] = 0 0 0 1 0 0 1 0 0 1
D= 0000001001

10. Reading A
Td[D] = 0 0 0 0 0 1 1 0 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0000010011

D kFn /
currence.

11. Reading T

0m + l , so we mark an oc-

Td[D] = 0 0 1 0 1 0 1 1 1 1
B[T] = 0 0 0 0 0 0 0 1 0 1

D= 0 0 0 0 0 0 0 1 0 1

D & Fn / 0 m + 1 , so we mark an oc-
currence.

12. Reading A
Td[D] = 0 0 10 10 10 1 1

B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0 0 1 0 1 0 0 0 1 1
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13. Reading G
Td[D] = 0 1 0 1 0 0 1 1 1 1

B[G] = 0 0 0 1 0 0 1 0 0 1
D= 0001001001

16. Reading A

D & Fn ^ 0"
currence.

14. Reading A

L, so we mark an oc-

Td[D] = 0 0 1 0 1 1 1 0 1 1
B[k] = 1 1 1 0 1 1 0 0 1 1
D= 0010110011

D & Fn ^
currence.

15. Reading A

0" l , so we mark an oc-

Td[D\ = 0 1 1 1 1 0 1 1 1 1
B[k] = 1 1 1 0 1 1 0 0 1 1

D = 0 1 1 0 1 0 0 0 1 1

Td[D] = 1 1 0 1 0 0 1 1 1 1
B[k] = 1 1 1 0 1 1 0 0 1 1
D= 1100000011

D & Fn ^
currence.

17. Reading A

0" 1 , so we mark an oc-

Td[D] = 1 0 1 0 1 0 1 1 1 1
B[k] = 1 1 1 0 1 1 0 0 1 1

D= 1 0 1 0 1 0 0 0 1 1

D & Fn

currence.
0 m + 1 , so we mark an oc-

5.5 Filtration approaches

All the approaches seen so far needed to examine every text character. It
is natural to ask whether any of the approaches seen in previous chapters
for simple, multiple, or extended string matching can be applied to regular
expression searching. Our goal in this section is to avoid reading every text
character.

The algorithms that use nitration are generally newer than those of the
previous sections, and they achieve in general much faster searching when
the regular expression permits it. As we will see shortly, not every regular
expression is amenable to nitration, so there are cases where we have to
resort to the previous techniques.

For technical reasons, it will be more interesting to reverse our example
pattern in this section. Its Glushkov automaton is shown in Figure 5.19.

Fig. 5.19. Glushkov automaton built on the regular expression ((GA|AAA)*)
(TAIAG).
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Given a regular expression, we compute the length imin of its shortest
occurrence. Any method based on skipping text characters must examine
at least one out of every imin characters to avoid missing an occurrence.
Hence, in general we will use a window of length Imin.

Figure 5.20 gives the recursive algorithm to compute imin in O(m) time
using the parse tree of the regular expression. A shortest path algorithm
from the initial to a final NFA state is also possible.

Lmin(v)
1. If v = [ | ] (vi,vr) Then Return min(Lmin(vi), Lmin(vr))
2. If v = j ~ | (vi, vr) Then Return Lmin(^) + Lmin(vr)
3. If v = 7 ] 0*) Then Return 0
4. If v = (a) , a G £ Then Return 1
5. If v = (e) Then Return 0

Fig. 5.20. Computation of Imin.

5.5.1 Multistring matching approach

This method [Wat96], which we call MultiStringRE, consists of generating
the prefixes of length imin for all the strings matching the regular expression
Pref(RE). In the regular expression RE = ((GA| AAA)*) (TAIAG) we have
imin(RE) = 2, and the set of length-2 prefixes of strings matching the
pattern is Pref(RE) = { GA, AA, TA, AG}. A more complex example would
be RE = (AT I GA) (AG I AAA) ((AG I AAA) +), where imin(RE) = 6 and the set
of prefixes is Pref(RE) = { ATAGAG, ATAGAA, ATAAAA, GAAGAG, GAAGAA,
GAAAAA }.

Figure 5.21 gives pseudo-code that generates the set of prefixes from a
regular expression. A very convenient way of representing Pref is as a trie,
because it is easier to generate and to use later for searching. For simplicity
we assume that the NFA is £-free. The time is worst-case O(|A|^m m).

For reasons that will become clear soon, we also store at each trie leaf x
the DFA state Active(x) that is reached by reading each trie path. In this
case we represent the DFA state as the set of NFA states. It is also possible
to write a version of Compute_Pref that works on the DFA, and in this
case any other representation for DFA states can be used as well.

Once the set of prefixes is computed, the algorithm uses a multipattern
search for the set Pref(RE) (Chapter 3). In particular, [Wat96] focuses on
Commentz-Walter- l ike algorithms. Since every occurrence of the regular
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Pref
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

'0, A, imin, Trie)
If imin = 0 Then /* trie leaf */

Active(Trie) —̂ Active(Trie) U {s}
Return Trie

End of if
For (s,a,s) G A D o

If 5(Trie, a) = 6 Then
Create new state Next = S(Trie,a)
Active(Next) <- 0

End of if
Pref(V, A, imin-I, Next)

End of for

Compute_Pref(7V = (Q, E, /, F, A), imin)
12. Trie <- 6
13. Pref(7, A, imin, Trie)
14. Return (Trie, Active)

Fig. 5.21. Computation of Pref. It receives an e-free NFA and imin and returns
Pref in trie form and Active at the leaves.

expression must start with the occurrence of a string in Pref(RE), it is
enough to check for the occurrences of RE that start at the initial positions
of Pref (RE) in the text. To check for an occurrence starting at a given
position we can use any of the methods seen earlier in this chapter, except
that we do not add the initial self-loop. This forces the occurrence to start
at the position specified. Since the length of a string matching a regular
expression is in general unbounded, we have to run the automaton until it
reaches a final state, it runs out of active states, or we reach the end of the
text.

To avoid re-reading the first imin characters of the window at verification
time, we initialize the automaton with the states in Active(x) and start
reading the characters after the window. In particular, if we use a bit-
parallel representation of the DFA, then Active can be stored as a bit mask
and used directly to initialize the automaton.

The effectiveness of this method depends basically on two values: Imin
(the search is faster for larger imin) and the size of Pref(RE) (the search is
faster for less prefixes). Note that the size of Pref(RE) can be exponential in
777,, for example, searching for (a I b) (a I b) . . . (a I b). It is possible to artifi-
cially reduce imin to avoid an excessively large trie. We see in Section 5.5.3
a method that avoids this problem.
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MultiStringRE(7V = (Q,£, J,F, A), imin)
1. Preprocessing

/* Construction of Pref */
2. (-Pre/, Active) <- Compute_Pref (TV, imin)

/* Construction of the DFA (Figure 5.17) without initial self-loop */
3. Produce bit-parallel version N' = (Qn, E, In, Fn, Bn) of N
4. (£,?d) <- BuildTran(7V/)
5. Searching

/* Multipattern search of Pref. Check each occurrence with the DFA */
For {pos,i) G output of multipattern search of PrefDo

D <- Active(i), j <- pos + 1
While j < n AND D & Fn = 0 m + 1 AND £> / 0 m + 1 Do

£> <- Td[D] & B[tj]
End of while
If D & Fn / 0m+1 Then

Report an occurrence beginning at pos + 1 — imin
End of if

End of for

6.
7.
8.
9.
10.
11.
12.
13.
14.

Fig. 5.22. MultiStringRE search algorithm. It receives an NFA and the minimum
length of a string accepted by it and reports the initial positions of occurrences.
We assume that the verification is done with the bit-parallel Glushkov simulation
of Section 5.4.2. Consequently, we assume a bit map representation of Active.

Example of MultiStringRE search We search for the pattern ((GA IAAA
) *) (TA | AG) in the text AAAAGATAGAATAGAAA, the reverse of the example text
used earlier in this chapter, and mark the initial positions of occurrences.

We use as our verification engine the bit-parallel Glushkov simulation of
Section 5.4.2, where the states have been numbered according to Figure 5.19.
As before, we only show the nonzero Bn entries.

The example may look clumsy because our search pattern and text permit
little filtering. However, the example shows all the cases that may occur.

B =

Bn =

0
0
0
1
2
2
2
3
4
5
5
5
6
8

A
G
T
A
A
G
T
A
A
A
G
T
A
G

0100001000
0000000010
0001000000
0000000 100
0100001000
0000000010
0001000000
00000 10000
0000 100000
0100001000
0000000010
0001000000
00 10000000
1000000000

Pref =

Fn =

imin =

A
C
G
T

0 110 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0

prefix
GA
AA
TA
AG

Active
0000000 100
00000 10000
0010000000
1000000000

1 0 1 0 0 0 0 0 0 0
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1. |_AAj AAGATAGAATAGAAA

D= 0 0 0 0 0 1 0 0 0 0
Reading A 0 0 0 0 1 0 0 0 0 0
Reading A 0 1 0 0 0 0 1 0 0 0
Reading G 1 0 0 0 0 0 0 0 0 0

D &Fn / 0 m + 1 , so we repor t an oc-
currence beginning at 1.

2. A [~AA~] AGATAGAATAGAAA

D= 0000010000
Reading A
Reading G
Reading A
Reading T
Reading A

0000 100000
0000000010
0000000 100
0001000000
00 10000000

D &Fn / 0 m + 1 , so we report an oc-
currence beginning at 2.

3. AA [AA] GATAGAATAGAAA

D= 0 0 0 0 0 1 0 0 0 0
Reading G 0 0 0 0 0 0 0 0 0 0

D = 0 m + 1 , so we discard position 3.

4. AAA [AG] ATAGAATAGAAA

D= 1000000000
D &Fn / 0 m + 1 , so we report an oc-
currence beginning at 4.

5. AAAA [GA] TAGAATAGAAA

D= 0 0 0 0 0 0 0 1 0 0
Reading T 0 0 0 1 0 0 0 0 0 0
Reading A 0 0 1 0 0 0 0 0 0 0

D &Fn / 0 m + 1 , so we report an oc-
currence beginning at 5.

6. AAAAGA [TA] GAATAGAAA
(we skipped position 6).

D= 0 0 1 0 0 0 0 0 0 0

D &Fn / 0 m , so we report an oc-
currence beginning at 7.

7. AAAAGAT [AGI AATAGAAA

8. AAAAGATA |_GAj ATAGAAA

D= 0 0 0 0 0 0 0 1 0 0
Reading A 0 1 0 0 0 0 1 0 0 0
Reading T 0 0 0 0 0 0 0 0 0 0

D = 0 m + 1 , so we discard position 9.

9. AAAAGATAG [kk\ TAGAAA

D= 0 0 0 0 0 1 0 0 0 0
Reading T 0 0 0 0 0 0 0 0 0 0

D = 0 m + 1 , so we discard position 10.

10. AAAAGATAGAA \jk\ GAAA

D= 0 0 1 0 0 0 0 0 0 0
D &Fn / 0 m + 1 , so we report an oc-
currence beginning at 12.

11. AAAAGATAGAAT [AG] AAA

D= 1 0 0 0 0 0 0 0 0 0

D &Fn / 0 m + 1 , so we report an oc-
currence beginning at 13.

12. AAAAGATAGAATA AA

D= 0 0 0 0 0 0 0 1 0 0
Reading A 0 1 0 0 0 0 1 0 0 0
Reading A 0 0 0 0 0 1 0 0 0 0

The text finishes without an occur-
rence, so we discard text position 14.

13. AAAAGATAGAATAG [AA] A

D= 0 0 0 0 0 1 0 0 0 0
Reading A 0 0 0 0 1 0 0 0 0 0

The text finishes without an occur-
rence, so we discard text position 15.

14. AAAAGATAGAATAGA [AA]

D= 0000010000

The text finishes without an occur-
rence, so we discard text position 16.

D= 1000000000

D &Fn / 0 m + 1 , so we repor t an oc-
currence beginning at 8.
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5.5.2 Gnu's heuristic based on necessary factors

A heuristic used in Gnu Grep consists of selecting a necessary set of factors.
We call it MultiFactRE. In the simplest case, we may find that a given
string must appear in every occurrence of the regular expression. For exam-
ple, if we look for (AG|GA)ATA((TT)*), then the string ATA is a necessary
factor.

The idea in general is to find a set of necessary factors and perform a
multipattern search for all of them. There are many ways to choose a suitable
set, and Grep's documentation is insufficient to determine its technique.
Note that Pref is just a particular case of this approach. The advantage
of Pref is that we know where the match should start, while the general
method may need a verification in both directions starting from the factor
found.

The selection of the best set of necessary factors has two parts. The first
part is an algorithm that detects the correct candidate sets. The second part
is a function that evaluates the cost to search using a candidate set and the
number of potential matches it produces. A good measure for evaluating
a set is its overall probability of occurrence, but finer considerations may
include knowledge of the search algorithm used.

Figure 5.23 gives an algorithm that finds sets of necessary factors and
selects the best one, assuming that a function best to compare sets has
been defined. The code works recursively on the parse tree of the regular
expression and returns (all, prej', suff, fact), where all is the set of all the
strings matching the expression, pref is the best set of prefixes, suff is the
best set of suffixes, and fact is the best set of factors. Our answer is the fourth
element of the tuple returned. If this is 6, then no finite set of necessary
factors exists.

The easiest cases are single characters and e. For a "*" operator, the
strings inside can be repeated an unbounded number of times, so we cannot
guarantee a finite set for all. So we return {s} for pref suff and fact, and 9 for
all. For a "|" operator, we need to make the union of the two children for each
of the four values. Note that we have to keep any 6 present at the children.
Finally, the most interesting operator is "•". To obtain all(RE\RE2) we
concatenate any string of all (RE \) to any string of all(RE2). To obtain the
best pref(RE\RE2) we choose the best among pref(RE\) and pref(RE2),
with the understanding that this last set has to be preceded by all(RE\).
The case of suff is symmetrical. Finally, for fact(RE\RE2) we can choose
between fact(REi), fact(RE2), and suff(RE\) concatenated to pref(RE2).
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Best Factor (v)
1. If v = [ | ] (vi,vr) OR v = \~\ (vi,vr) Then
2. (alli,prefi,suffi,facti) <— BestFactor(^)
3. (allr,prefr,suffr,factr) <- BestFactor(vr)
4. End of if
5. If v = [ | ] (vt,vr) Then
6. Return (alii \Jallr, prefl U prefr, suffl U suffr, factt U factr)
7. Else If v = Q] (vi, vr) Then
8. Return (alii • allr, best(prefualk • prefr),

best(suffr, sufft • allr), best(factljactr,suffl • prefr)
9. Else If v = \T\ (v*) Then Return ((9, 6>, 6>, 6>)
10. Else If v = (a) , a G S Then Return ({a}, {a}, {a}, {a})
11. Else If v = (e) Then Return ({e}, {s}, {s}, {s})
12. End of if

Fig. 5.23. Computation of the best set of necessary factors. We assume that 0 acts
as £*, so that 0 U A = i U 0 = 0 • A = A • 0 = 0 for any A. Also, frest always
considers 6 the worst option.

This method gives better results than MultiStringRE because it has the
potential of choosing the best set. In the example ((GAIAAA)*) (TA| AG),
instead of choosing a set of four strings as MultiStringRE does, it can
choose {TA,AG}, which is smaller.

5.5.3 An approach based on BNDM

Our final technique able to skip characters [NR99a, NavOlb] is an extension
of B N D M (Sections 2.4.2, 4.3.2, and 4.2.2) to regular expressions. We call
it RegularBNDM. It has the benefit of using the same space as a forward
search.

The idea is based on the bit-parallel DFA simulation of Glushkov's con-
struction (Section 5.4.2). We modify the DFA by reversing the arrows and
making all states initial, so that the resulting automaton recognizes every
reverse prefix of RE and is alive as long as we have read a reverse factor of
RE. Note that this automaton does not have an initial self-loop. Figure 5.24
shows the result on ((GA | AAA) *) (TA | AG).

We slide a window of length Imin along the text. The window is read
backwards with the automaton. Each time we recognize a prefix we store in
a variable last the window position where this happened. When the window
is shifted, it is aligned so as to start at position last. The backward traversal
inside the window may finish because the DFA runs out of active states, in
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Fig. 5.24. Automaton to recognize all the reverse prefixes of the regular expression
((GA|AAA)*)(TA|AG).

which case we shift the window and restart the process, or because we reach
the beginning of the window.

In the latter case, as for extended patterns (Chapter 4), we cannot guar-
antee an occurrence of the regular expression, just a factor of it. So, if the
final state of the automaton has been reached at the beginning of the win-
dow, we start a forward verification using the normal DFA without an initial
self-loop.

The above scheme can be improved. If we are at window position j <
Imin, it is not relevant whether an automaton state at a distance greater
than j from the initial state 0 is still active, because that state can never
activate state 0 within the window. So we keep masks Reachj for j £
0. . . £min, which contain the states that can influence the final result from
window position j . By removing active states that are not in Reachj, we
are able to shift the window sooner.

Figure 5.24 makes it clear that the Glushkov property of all the arrows
arriving at a given state being labeled by the same character does not hold
when we reverse the arrows. Therefore, the BPGlushkov simulation cannot
be applied directly. However, we can obtain a similar result by noticing that
a dual property holds after we reverse the arrows: All the arrows leaving a
given state are labeled by the same character.

Therefore we can use again tables T& and B as before, but this time
we have to mask with B before using Tj. That is, we keep the active states
whose arrows leave by the current character and then take all the transitions
leaving them. Formally, S(D,a) = T [̂ D & B[a] ], where B corresponds to
the forward transitions.

Figure 5.25 shows the preprocessing algorithm, which yields a forward
automaton (B, T/^), a backward automaton T6^, and the table Reach. Table

is obtained by making the input NFA deterministic without adding a
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Compute_Reach (Td, / , imin)
1. Reacho <- I /* the initial state */
2. For j G 1. .. ^ram Do
3.
4.

Reach j —̂ Reach j _ i
Return Reach

Reverse_Arrows (JV = (Qn, E, /„
5.
6.
7.
8.
9.
10.
11.
12.
13.

For i G 0 . . . ra, cr G E Do
B6n[i,cr] «- 0 m + 1

For j G 0 ... m Do
If 5/n[j,(7] & 0 m -

End of if
End of for

End of for
Return Bbn

Td[Reachj-i\

,Fn,Bfn))

i1Qi ^ Om + 1 T h e n

Bbn[i,a] | 0m" j10 j

BNDM_Preproc (TV = (Qn ,£, J n ,F n , £n)
/* (B,Tfd) (no initial self-loop) is used for verification */

14. (B,Tfd) <- BuildTran(TV)
/* Reach tells reachable states */

15. Reach «— Compute_Reach(T/d,/n,^™n)
/* Tbd is a DFA for recognizing reverse prefixes */

16. Bbn <- Reverse_Arrows(A^)
17. (Bb,Tbd) <- BuildTran(7V6 = (Qn, E, lm + 1 ,0m l , 56n))
18. Return (B,Tfd,Tbd, Reach)

Fig. 5.25. Preprocessing for the BNDM-based algorithm.

self-loop at the initial state. Reach is obtained by starting at the initial state
of (5, Tfd) and performing up to Imin transitions by any character. Finally,
Tbd is obtained by reversing all the arrows of the NFA and then making it
deterministic. The overall process takes time O(2m + ra2|S|). Figure 5.26
shows the search algorithm.

An extra space improvement is possible: Since we are interested only in
the states that can be reached in at most Imin steps from state 0, it is
not necessary to use the whole automaton with the reverse arrows; only the
states belonging to Reachimin are relevant. By discarding the others we can
save space.

Since at window position j we remove the states that cannot reach state 0,
we keep a given state active only if it can become a prefix of length imin of
an occurrence. Hence, the algorithm is just another mechanism to search for
Pref (Section 5.5.1). However, it uses the same automaton with the arrows
reversed to represent the state of the search instead of the full trie as in the
MultiStringRE algorithm.
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RegularBNDM(7V = (Q, E, J, F, A), imin)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Preprocessing
(B,Tfd,Tbd, Reach) <- BNDM_Preproc(iV^mm)

Searching
pos —̂ 0
While pos < n — Imin Do

j <— imin, last —̂ imin
D <- Reachimin
While D / 0 m + 1 AND j > 0 Do

£> <- T6d[Z> & 5[^o s + j]] & Reachj-x

If £> & 0m l / 0 m + 1 Then /* prefix recognized */
If j > 0 Then last <- j
Else /* check a possible occurrence starting at pos + 1 */

£> <- 0m l , j ^- pos + 1
While j < n AND £>&Fn = 0 m + 1 AND D / 0 m + 1 Do

D ^ T/d[D] & B[tj]
End of while
If D & Fn / 0m+1 Then

Report an occurrence beginning at pos + 1
End of if

End of if
End of if

End of while
pos —̂ pos + last

End of while

Fig. 5.26. Extension of BNDM for regular expressions.

In [NavOlb] it is shown that this scheme can be improved by finding good
"necessary factors" of the regular expression, just as in MultiFactRE. In
this case the result is a subgraph of the NFA, so that any path from the
initial to a final state needs to traverse the subgraph.

Example of RegularBNDM search We search for the pattern ((GAIAAA
)*) (TA | AG) in the text AAAAGATAGAATAGAAA, marking the initial positions
of occurrences. The states have been numbered according to Figure 5.19.
We show the nonzero entries of Bbn with the rows of table Tbj that are
needed in the search. We omit the details of the forward verification.

Again, the code is slower than a simple forward scan, but this is because
our particular pattern is difficult to search for in this manner.
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Bbn =

1
2
3
4
5
6
7
8
9

G
A
A
A
A
T
A
A
G

0000100101
0100000010
0000100101
000000 1000
0000010000
0000100101
000 1000000
0000100101
0 100000000

B =

0 110 111100
0000000000
1000000010
000 1000000

Reacho = 0 0 0 0 0 0 0 0 0 1
Reachi = 0 1 0 1 0 0 1 0 1 1
Reach2 = 1 1 1 1 0 1 1 1 1 1

Imin = 2

1. AA AAGATAGAATAGAAA

D = 1 1 1 1 0 1 1 1 1 1
Reading A

D & B[k] =
Tbd =

& Reach! =

0 1 1 0 0 1 1 1 0 0
0 1 0 1 1 0 1 1 1 1
0 1 0 1 0 0 1 0 1 1

m + 1 )last= 1 (D & In / 0m+1)
Reading A

D & B[k] =
Tbd =

& Reacho =

0100001000
0000100101
0000000001

D & In / 0 m + \ so we start a verifi-
cation at position 1. After 5 steps we
find the pattern and report it. Then
we shift the window by last = 1.

2. A AGATAGAATAGAAA

.m+l SOAs for Step 1, D & In / 0
we start a verification at position 2.
After 7 steps we find the pattern and
report it. Then we shift the window by
last = 1.

3. AA GATAGAATAGAAA

As for Step 1, D & In / 0 m + 1 , so
we start a verification at position 3.
After 3 steps the automaton runs out
of active states, so we discard position
3 and shift by last = 1.

4. AAA \JG] ATAGAATAGAAA

D= 1 1 1 1 0 1 1 1 1 1
Reading G

D & B[G] = 1 0 0 0 0 0 0 0 1 0
Tbd = 0 1 0 0 1 0 0 1 0 1

& Reach! = 0 1 0 0 0 0 0 0 0 1
last= 1 (D & In / 0 m + 1 )

D =
Reading A

D & B[k] =
Tbd =

& Reacho =

0

0
0
0

10

1 0
00
00

0

0
0
0

000

000
1 00
000

0

0
1
0

0

0
0
0

1

0
1
1

D & In / 0 m + 1 , so we start a verifi-
cation at position 4. After 2 steps we
find the pattern and report it. Then
we shift the window by last = 1.

5. AAAA [GA~| TAGAATAGAAA

D= 1 1 1 1 0 1 1 1 1 1
Reading A

D & B[k] =
Tbd =

& Reach! =

0 110011100
0 10 110 1111
0 10 1001011

last = 1 (D & In / 0m + )
Reading G

D & B[G] =
Tbd =

Sz Reacho =

0000000010
0000100101
000000000 1

D & In / 0 m + 1 , so we start a verifi-
cation at position 5. After 4 steps we
find the pattern and report it. Then
we shift the window by last = 1.

6. AAAAG [ATI AGAATAGAAA

D = 1 1 1 1 0 1 1 1 1 1
Reading T

D & B[T] = 0 0 0 1 0 0 0 0 0 0
Tbd= 0000100101

& Reach! = 0 0 0 0 0 0 0 0 0 1
last = 1 (D & In / 0m+1)

Reading A
D & B[k] =

Tbd =
& Reacho =

0000000000
0000000000
0000000000

D & In
last = 1.

= 0 m + \ so we shift by
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7. AAAAGA HTA"! GAATAGAAA 1 3 . AAAAGATAGAAT [ A G ! AAA

D = 1111011111
Reading A

D & B[k] =
Tbd =

& Reachi =
last =

Reading T
D & B[T] =

Tbd =
Sz Reacho =

0
0
0

1
1
1

1 (D

0
0
0

0
0
0

1
0
0

00 11
1
1

&

0
0
0

1
0
0

1 0 1
0 0 1
In /

1 0
11
0 1

0
1
1

0m+1)

0 0 0 0 0 0
1 00
0 0 0

1 0
00

1
1

D k In ^ 0m + 1 , so we start a verifi-
cation at position 7. After 2 steps we
find the pattern and report it. Then
we shift the window by last = 1.

8. AAAAGAT [AG] AATAGAAA

As for Step 4, £> & In / 0 m + 1 , so
we start a verification at position 8.
After 2 steps we find the pattern and
report it. Then we shift the window by
last = 1.

9. AAAAGATA [GAI ATAGAAA

As for Step 5, D k In / 0 m + \ so we
start a verification at position 9. After
4 steps the automaton runs out of ac-
tive states and we shift the window by
last = 1.

As for Step 4, D & In / 0 m + 1 , so
we start a verification at position 13.
After 2 steps we find the pattern and
report it. Then we shift the window by
last = 1.

14. AAAAGATAGAATA AA

As for Step 5, D & In / 0 m + \ so
we start a verification at position 14.
After 4 steps the text finishes without
recognizing the pattern, so we shift the
window by last = 1.

15. AAAAGATAGAATAG

As for Step 1, D & In / 0 m + \ so
we start a verification at position 15.
After 3 steps the text finishes without
recognizing the pattern, so we shift the
window by last = 1.

16. AAAAGATAGAATAGA |_AAj

As for Step 1, D & In / 0 m + 1 , so
we start a verification at position 16.
After 2 steps the text finishes without
recognizing the pattern, so we shift the
window by last = 1.

1 0 . AAAAGATAG TAGAAA

,m+lAs for Step 1, D & In ^ U"^% so
we start a verification at position 10.
After 3 steps the automaton runs out
of active states, so we shift by last = 1.

1 1 . AAAAGATAGA AGAAA

As for Step 6, D k In = 0m + 1
;

shift by last = 1.
so w e

12. AAAAGATAGAA GAAA

As for Step 7, D & In / 0m + 1 , so
we start a verification at position 12.
After 2 steps we find the pattern and
report it. Then we shift the window by
last = 1.
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5.6 Experimental map

Determining the best search algorithm for a regular expression is more diffi-
cult than for simple patterns, because the structure of the regular expression
plays a complex role in the efficiency.

An obvious disadvantage of the bit-parallel versions compared to DFA-
Classical is that the bit-parallel algorithms build all the 2^1 possible combi-
nations, while DFAClassical builds only the reachable states. Thus DFA-
Classical may produce a much smaller automaton.

On the other hand, there are important advantages to the bit-parallel
versions. One is that they are simpler to code. Another is that they are
more flexible. For example, we will see in Chapter 6 that this scheme can
be extended to permit differences between the pattern and its occurrences,
which is hard to do with DFAClassical. Finally, bit-parallel versions are
amenable to horizontal partitioning, which permits reducing the space as
much as necessary.

Among bit-parallel versions, BPGlushkov is preferable to BPThomp-
son because it needs less space and has more locality of reference as it
addresses a smaller table.

Finally, NFAModules obtains the same space-dependent complexity as
BPGlushkov, O(ran/logs), but it is more complicated to implement and
slower in practice. However, when the regular expression needs more than,
say, four or more computer words, it becomes attractive in comparison to
bit-parallel algorithms. Moreover, NFAModules can also be extended to
handle classes of characters and approximate searching (Chapter 6).

Filtration approaches, depending on the regular expression structure, can
be better or worse than the previous approaches. It is difficult to define a
parameter that always works well at predicting the behavior of filtration,
but a good approximation is

\Pref\
Prob-verif = -

which is an approximation of the probability of matching a string in Pref
defined in Section 5.5.1. Each time an element in Pref matches, we have to
perform a verification whose cost is difficult to bound, but on average it can
be approximated by

Cost-venf = £ ^ f

where Prefa is the set of all prefixes of length £ of possible occurrences of
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the regular expression. Those sets can be obtained with the same algorithm
that computes Pref (Section 5.5.1).

A general rule of thumb is that filtration should be used only when

Cost-filter = Prob-verif x Cost-verif < 1

The value Pref used works well with MultiStringRE and RegularBNDM
based approaches, but for MultiFactRE it must be changed to the set of
strings chosen there.

With respect to the different filtration approaches, MultiStringRE and
RegularBNDM are similar in terms of text characters considered, espe-
cially if Multiple BNDM or SBDM is used for MultiStringRE (Sec-
tion 3.4). RegularBNDM uses a compact representation of the set Pref by
cleverly using the automaton itself instead of a fully developed trie of all al-
ternatives. But, when the regular expression is too large RegularBNDM
takes too much time and it is a good idea to resort to MultiStringRE.
Another advantage of MultiStringRE is that it does not need to re-read
the window.

Finally, MultiFactRE-like filtration can be seen as an improvement over
the previous approaches. In particular, Gnu Grep (Section 7.1.1) works
better than the plain MultiStringRE approach, and Nrgrep (Section 7.1.3)
contains an implementation of RegularBNDM that also finds the best
necessary factor of the regular expression.

Even for small patterns it sometimes happens that Gnu Grep is faster than
Nrgrep, but RegularBNDM can be extended to approximate searching,
while search algorithms based on classical multipattern matching normally
cannot.

Table 5.2 summarizes our recommendations.

Low Cost-filter High Cost-filter
(below 1.0) (above 1.0)

Small size RegularBNDM / DFAClassical /
(m < Aw) MultiFactRE BPGlushkov

Large size MultiFactRE NFAModules
(ra > Aw)

Table 5.2. The algorithms we recommend to search for a regular expression
according to some parameters of the pattern.
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5.7 Other algorithms and references
NFA construction A theoretic lower bound to the number of transitions
needed to build an £-free NFA is O(mlogm) [HSW97]. Reaching the lower
bound is still an open issue. An O(m2) time algorithm producing an NFA
with O(m log2 m) transitions was proposed in [HSW97]. It was improved to
O(m log2 m) time in [HM98]. Unfortunately, this algorithm is too compli-
cated for our purposes.

Set of regular expressions A natural extension of the regular expression
search problem is that of searching for a set of regular expressions RE\,
RE2, ... , REr. In principle, this can be converted into the basic single-
pattern problem by searching for RE\ \ RE% | • • • | REr. However, many
of the algorithms presented do not work well with very large expressions.

One algorithm that is able to deal with large expressions is NFAMod-
ules, but its cost grows linearly with the size of the pattern, in our case,
with r. Much better algorithms are MultiStringRE and MultiFactRE,
provided the expressions can be searched for efficiently by nitration algo-
rithms.

5.8 Building a parse tree
We show in this section how to parse a regular expression to obtain its parse
tree, which in general is not unique. In the tree, each leaf is labeled by a
character of £ U {e} and each internal node by an operator in the set {|,-,*}.

The general approach is to consider a regular expression as a string gen-
erated by a grammar, and then use the classical Unix tools Lex and Yacc
or Gnu Flex and Bison to generate from the grammar the automaton that
recognizes the regular expression and transforms it into a tree. The theory
behind these tools can be found in books on compilers, such as [ASU86].

This general approach is valuable for large grammars, for instance, for
parsers of programming languages, and for very simple grammars that need
just lexical analyzers like Lex or Flex. The grammar for regular expressions is
too complex to be addressed by a lexical analyzer and too simple to deserve
a full bottom-up parser. The best approach is to build a simple parser by
hand, and this is what we do in Figure 5.27. It assumes that the regular
expression is well written and that it terminates with a special character '$'.
It also assumes that the concatenation operator "•" is implicit. Of course,
this simple parser has to be modified to handle various types of errors when
used in a real application, but this pseudo-code should be a useful starting
point, and enough for simple applications.

https://doi.org/10.1017/CBO9781316135228.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.005


140 Regular expression matching

Parse(p = p\p-2 .. .pm, last)

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

While plast ^ $ Do
If Piast 6 S OR piast = £ T h e n

vr <— Create a node with piast
If v ^ 9 Then v -^ \^}(v,vr)
E l s e v <— vT

last «- last + 1
Else If piast = ' ' Then

(vr, last) •<— Parse(p, last + 1)
v<-[\] (v,vr)

Else If piast = '*' Then
v <— [T] («)
Zost <— /as t + 1

Else If piast = '(' Then
(vr, last) <— Parse(p, last + 1)
Zasi •<— last + 1
If « ^ 6* Then t; «— p i (f, fr)
E l s e w <— iir

Else If p i a s i = ') ' Then
Return («;, ?asi)

End of if
End of while
Return (v, last)

/* normal character */

/* union operator */

/* star operator */

/* open parenthesis */

/* close parenthesis */

Fig. 5.27. A basic recursive parser for a well-written regular expression. 9 is the
empty tree.

Instead of explaining in depth how this parser works, we show its behavior
on our regular expression (AT | GA) ((AGIAAA) *) .

Parsing example We parse the regular expression (AT|GA) ((AGI AAA)*)
using Parse((AT|GA) ((AG | AAA)*)$,1). We number the recursive calls using
Parse 1 , Parse2 , and so on. The corresponding variables are marked the
same way.

1. P a r s e 1 ((AT I GA) ((AGlAAA)*) , 1)
last1 = l,v1= 9,

we read | T | AT I GA) ((AG I AAA) *) $.
Line 15. We call:

2. Parse2((AT|GA) ((AGlAAA)*) , 2)

last2 = 2,v'2= 6,

we read ( | T | TI GA) ((AG I AAA) *) $.
Line 4. v2 •<— @
Line 6. v2 <— v2.
Line 7. last2 = 3.
We return to the while loop of Pa r se 2 ,
line 2.
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3. As plast2 ^ $,
we read (A [71 |GA) ((AG| AAA)*)$.

( I )

Line 4.

Line 5.

Line 7.

v2^

v2^

last2 :

4. We enter line
we read
Line 9.

(AT [

©

©
= 4.

8,
1 ]

We call:

"•)
\©

GA)((AG|AAA)*)$.

5. Parse3((AT|GA)((AG|AAA)*) , 5)
last3 = 5,v3 = 9,

we read (ATI [G] A) ((AGI AAA)*)$.
Line 4. v3 «— ©
Line 6. v3 «- v3.
Line 7. last3 = 6.
We return to the while loop of Parse3 ,
line 2.

6- As plast3 / $,
we read (AT IG [T] ) ((AG I AAA) *) $.
Line 4. v3 «- ©

Line 5. v3 Q

® ©
Line 7. last = 7.

7. We enter line 19,

we read (AT I GA [ 7 ] ((AG I AAA) *) $.

Line 20. We quit the function Parse3.
We return (vs,7).
Coming back to Parse2 line 9,

, last2

0 y)

•7.

© ©

last1 <— 7.
Line 16. last1 -i- 8.
Line 18. v1 <— vl.
We return to the while loop of Parse1,
line 2.

9- As p; a s t i ^ $,
we read (ATlGA) | T | (AG|AAA)*)$.
Line 15. We call:

10. Parse2((AT|GA)((AG|AAA)*) , 9)

last2 = 9, v2 = 9.
As Plast2 ^ $,
we read (AT I GA) ( | T | AG I AAA) *) $.
Line 15. We call:

11. Parse3((ATlGA) ((AGlAAA)*) , 10)

last3 = 10, v3 = 9,

we read (AT I GA) (( \Y\ GI AAA) *) $.
Line 4. v3 <— ©
Line 6. v3 «- v3.
Line 7. Zasi3 = 11.
We return to the while loop of Pa r se 3 ,
line 2.

12- As plasts ^ $,
we read (AT I GA) ((A [G] I AAA) *) $.
Line 4. v3 «— ©

Line 5. t;3 •<— / \

Line 10. v2

(o)

We enter line 19,
we read again (AT I GA |T] ((AG I AAA) *) $.
Line 20. We quit the function Parse2.
We return (v2,7).
Coming back to Parse1 line 15,

Line 7. Zasi3 = 12.

13. We enter line 8,
we read (ATlGA) ((AG [ I ] AAA)*)$.
Line 9. We call:
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14. Parse4((AT|GA)((AG|AAA)*) , 13)
last4' = 13, v4 = 6,
we read (ATIGA)C(AGI [ T J A A ) * ) $ .

Line 4. «4 •<— ©
Line 6. w4 «— w4.
Line 7. Zasi4 = 14.
We return to the while loop of Parse4

line 2.

Regular expression matching

18. We enter line 19,
we read again (AT I GA) ((AG IAAA [7]*)$ .
Line 20. We quit the function Parse 3 .
We return (v3,16).
Coming back to Parse2 line 15,

15. As plast, ± $,
we read (AT I GA) ((AGIA [71 A) *) $.
Line 4. vr ©

A j \

Line 5. v «— / \
(AJ) ( A )

Line 7. /ast4 = 15.
We return to the while loop of Parse4 ,
line 2.

( A ) (a)

( A ) ( A )

last2 <— 16
Line 16. last2 <— 17.
Line 18. v2 <- v2.
We return to the while loop of Parse2 ,
line 2.

16. AsPlast4^$,
we read (AT I GA) ((AG IAA [TJ ) *) $.

Line 4. vi <— ©

Line 5. «;

® ®
Line 7. last4 = 16.

19. As Plast2 ± $,
we read (AT I GA) ((AG IAAA) | T | ) $.

f
(I)

Line 12. IT <- CO

/ \
® (o)

CO

17. We enter line 19,

we read (AT I GA) ((AGIAAA [7]*)$ .

Line 20. We quit the function Parse 4 .
We return (i;4,16).
Coming back to Parse3 line 9,

CO

(A) (A)

Line 13. last2 <- 18.

vr
, last3 16.

(I )

3 /V £ l
Line 10. t;3 <- / \ / \

® (o) CO ®
( A ) ( A )
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20. We enter line 19,
we read (AT I GA) ((AG I AAA) * [ 7 ] $.
Line 20. We quit the function Parse2

We return (i;2,18).
Coming back to Parse1 line 15,

5.8 Building a parse tree

Line 17. v1

143

|

( • ) ( • )

© © © ©

©
last1 -f- 18
Line 16. last1 -i- 19.

© © © ©

(* ) ( A )

We return to the while loop of Parse1,
line 2.

21. ksplasti =$ ,
We stop the function and return
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