
9 Adversarial Machine Learning
Challenges

Machine learning algorithms provide the ability to quickly adapt and find patterns in
large diverse data sources and therefore are a potential asset to application develop-
ers in enterprise systems, networks, and security domains. They make analyzing the
security implications of these tools a critical task for machine learning researchers and
practitioners alike, spawning a new subfield of research into adversarial learning for
security-sensitive domains. The work presented in this book advanced the state of the
art in this field of study with five primary contributions: a taxonomy for qualifying
the security vulnerabilities of a learner, two novel practical attack/defense scenarios
for learning in real-world settings, learning algorithms with theoretical guarantees on
training-data privacy preservation, and a generalization of a theoretical paradigm for
evading detection of a classifier. However, research in adversarial machine learning has
only begun to address the field’s complex obstacles—many challenges remain. These
challenges suggest several new directions for research within both fields of machine
learning and computer security. In this chapter we review our contributions and list a
number of open problems in the area.

Above all, we investigated both the practical and theoretical aspects of applying
machine learning in security domains. To understand potential threats, we analyzed the
vulnerability of learning systems to adversarial malfeasance. We studied both attacks
designed to optimally affect the learning system and attacks constrained by real-world
limitations on the adversary’s capabilities and information. We further designed defense
strategies, which we showed significantly diminish the effect of these attacks. Our
research focused on learning tasks in virus, spam, and network anomaly detection,
but also is broadly applicable across many systems and security domains and has far-
reaching implications to any system that incorporates learning. Here is a summary of
the contributions of each component of this book followed by a discussion of open
problems and future directions for research.

Framework for Secure Learning
The first contribution discussed in this book was a framework for assessing risks to a
learner within a particular security context (see Table 3.1). The basis for this work is a
taxonomy of the characteristics of potential attacks. From this taxonomy (summarized
in Table 9.1), we developed security games between an attacker and defender tailored to
the particular type of threat posed by the attacker. The structure of these games was pri-
marily determined by whether or not the attacker could influence the training data; either
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Table 9.1 Our Taxonomy of Attacks against Machine Learning Systems

Axis Attack Properties

Influence Causative – influences training
and test data

Exploratory – influences test
data

Security
violation

Confidentiality –
goal is to uncover
training data

Integrity – goal is false
negatives (FNs)

Availability –
goal is false
positives (FPs)

Specificity Targeted – influence prediction
of particular test instance

Indiscriminate – influence
prediction of all test instances

a Causative or Exploratory attack. The goal of the attacker contributed to the game in
two ways. First, it generically specifies the attack function (i.e., whether the attack had an
Integrity, Availability, or Privacy goal specifying which class of data points is desirable
for the adversary). Second, it specifies whether that goal is focused on a small number of
points (a Targeted attack) or is agnostic to which errors occur (an Indiscriminate attack).

Beyond security games, we augmented the taxonomy by further exploring the con-
tamination mechanism used by the attacker. We proposed a variety of different possible
contamination models for an attacker. Each of these models is appropriate in different
scenarios, and it is important for an analyst to identify the most appropriate contam-
ination model in the threat assessment. We further demonstrated the use of different
contamination models in our subsequent investigation of practical systems.

Causative Attacks against Real-World Learners
The second major contribution we presented was a practical and theoretical evaluation
of two risk minimization procedures in two separate security domains (spam filtering
and network anomalous flow detection) under different contamination models. Within
these settings we not only analyzed attacks against real-world systems but we also sug-
gested defense strategies that substantially mitigate the impact of these attacks.

The first system, which we analyzed in Chapter 5, was the spam filter SpamBayes’
learning algorithm. This algorithm is based on a simple probabilistic model for spam
and has also been used by other spam filtering systems (BogoFilter, Thunderbird’s spam
filter, and the learning component of Apache SpamAssassin filter (Apa n.d.)), suggest-
ing that the attacks we developed would also be effective against other spam filters.
Similarly, they may also be effective against analogous learning algorithms used in dif-
ferent domains. We demonstrated that the vulnerability of SpamBayes originates from
its modeling assumptions that a message’s label depends only on the tokens present in
the message and that those tokens are conditionally independent. While these modeling
assumptions are not an inherent vulnerability, in this setting, conditional independence
coupled with the rarity of most tokens and the ability of the adversary to poison large
numbers of vulnerable tokens with every attack message makes SpamBayes’ learner
highly vulnerable to malicious contamination.
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Motivated by the taxonomy of attacks against learners, we designed real-world Caus-
ative attacks against SpamBayes’ learner and demonstrated the effectiveness of these
attacks using realistic adversarial control over the training process of SpamBayes. Opti-
mal attacks against SpamBayes caused unreasonably high false-positive rates using only
a small amount of control of the training process (causing more than 95% misclassifica-
tion of ham messages when only 1% of the training data is contaminated). The Usenet
dictionary attack also effectively used a more realistically limited attack message to
cause misclassification of 19% of ham messages with only 1% control over the training
messages, rendering SpamBayes unusable in practice. We also showed that an informed
adversary can successfully target messages. The focused attack changed the classifica-
tion of the target message virtually 100% of the time with knowledge of only 30% of
the target’s tokens. Similarly, a pseudospam attack was able to cause nearly 90% of the
target spam messages to be labeled as either unsure or ham with control of less than
10% of the training data.

To combat attacks against SpamBayes, we designed a data sanitization technique;
reject on negative impact. RONI expunges any message from the training set if it has an
undue negative impact on a calibrated test filter. This technique proved to be a success-
ful defense against dictionary attacks as it detected and removed all of the malicious
messages we injected. However, RONI also has costs: it causes a slight decrease in ham
classification, it requires a substantial amount of computation, and it may slow the learn-
ing process. Nonetheless, this defense demonstrates that attacks against learners can be
detected and prevented.

The second system, which we presented in Chapter 6, was a PCA-based classifier for
detecting anomalous traffic in a backbone network using only volume measurements.
This anomaly detection system inherited the vulnerabilities of the underlying PCA algo-
rithm; namely, we demonstrated that PCA’s sensitivity to outliers can be exploited by
contaminating the training data, allowing the adversary to dramatically decrease the
detection rate for DoS attacks along a particular target flow.

To counter the PCA-based detector, we studied Causative Integrity attacks that poison
the training data by adding malicious noise; i.e., spurious traffic sent across the network
by compromised nodes that reside within it. This malicious noise was designed to inter-
fere with PCA’s subspace estimation procedure. Based on a relaxed objective function,
we demonstrated how an adversary can approximate optimal noise using a global view
of the traffic patterns in the network. Empirically, we found that by increasing the mean
link rate by 10% with globally informed chaff traffic, the FNR increased from 3.67% to
38%—a 10-fold increase in misclassification of DoS attacks. Similarly, by only using
local link information the attacker was able to mount a more realistic add-more-if-bigger
attack. For this attack, when the mean link rate was increased by 10% with add-more-if-
bigger chaff traffic, the FNR increased from 3.67% to 28%—an eight-fold increase
in misclassification of DoS attacks. These attacks demonstrate that with sufficient
information about network patterns, attackers can mount attacks against the PCA detec-
tor that severely compromise its ability to detect future DoS attacks traversing the net-
work it is monitoring.

We also demonstrated that an alternative robust method for subspace estimation can
be used to make the resulting DoS detector less susceptible to poisoning attacks. The
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alternative detector was constructed using a subspace method for robust PCA devel-
oped by Croux et al. and a more robust method for estimating the residual cutoff thresh-
old. Our resulting Antidote detector was affected by poisoning, but its performance
degraded more gracefully than PCA. Under nonpoisoned traffic, Antidote performed
nearly as well as PCA, but for all levels of contamination using add-more-if-bigger
chaff traffic, the misclassification rate of Antidote was approximately half the FNR of
the PCA-based solution. Moreover, the average performance of Antidote was much
better than the original detector; it outperforms ordinary PCA for more flows and by
a large amount. For multiweek boiling frog attacks, Antidote also outperformed PCA
and caught progressively more attack traffic in each subsequent week.

Privacy-Preserving Learning
In Chapter 7, we explored learning under attacks on Privacy. After contributing a brief
survey of pivotal breaches that influenced thinking on data privacy, we laid the founda-
tion for differential privacy—a formal semantic property that guarantees that informa-
tion released does not significantly depend on any individual datum. We reviewed the
simplest generic mechanism for establishing differential privacy: the Laplace mecha-
nism that introduces additive noise to nonprivate releases, with a scale that depends on
sensitivity of releases to data perturbation. After briefly introducing the support vector
machine (SVM), we provided an overview of the objective perturbation approach of
Chaudhuri et al. (2011). Instead of optimizing the SVM’s convex program, we mini-
mized the same program with a random linear term added to the objective.

We discussed our own output perturbation approach (Rubinstein et al. 2012) in
Section 7.4. We applied existing results on SVM algorithmic stability to determine the
level of classifier perturbation; i.e., the scale of our Laplace noise. We next formulated
the utility of privacy-preserving approximations, as the high-probability pointwise sim-
ilarity of the approximate response predictions compared to nonprivate classifications.
We demonstrated results on the utility of both approaches to differentially private SVMs.
We generalized our results from the linear SVM (or SVMs with finite-dimensional
feature mappings) to SVMs trained with translation-invariant kernels. These results
work even for the RBF kernel that corresponds to an infinite-dimensional feature map-
ping. To do so, we used a technique from large-scale SVM learning that constructs a
low-dimensional random kernel that uniformly approximates the desired translation-
invariant kernel. Finally we explored lower bounds, which frame fundamental limits on
what can possibly be learned privately while achieving high utility. The mechanisms
explored, while endowed with theoretical guarantees on privacy and utility, are easily
implemented and practical.

Evasion Attacks
In Chapter 8, we generalized Lowd & Meek’s near-optimal evasion framework for quan-
tifying query complexity of classifier evasion to the family of convex-inducing classi-
fiers; i.e., classifiers that partition space into two regions, one of which is convex. For
the �p costs, we demonstrated algorithms that efficiently use polynomially many queries
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to find a near-optimal evading instance for any classifier in the convex-inducing clas-
sifiers, and we showed that for some �p costs efficient near-optimal evasion cannot be
achieved generally for this family of classifiers. Further, the algorithms we presented
achieve near-optimal evasion without reverse engineering the classifier boundary and,
in some cases, achieve better asymptotic query complexity than reverse-engineering
approaches. Further, we showed that the near-optimal evasion problem is generally eas-
ier than reverse engineering the classifier’s boundary.

A contribution from this work was an extensive study of membership query algo-
rithms that efficiently accomplish ε-IMAC search for convex-inducing classifiers with
weighted �1 costs (see Section 8.2). When the positive class is convex, we demonstrated
efficient techniques that outperform the previous reverse-engineering approaches for
linear classifiers. When the negative class is convex, we applied the randomized ellip-
soid method introduced by Bertsimas & Vempala to achieve efficient ε-IMAC search.
If the adversary is unaware of which set is convex, it can trivially run both searches to
discover an ε-IMAC with a combined polynomial query complexity; thus, for �1 costs,
the family of convex-inducing classifiers can be efficiently evaded by an adversary; i.e.,
this family is ε-IMAC searchable.

Further, we also extended the study of convex-inducing classifiers to general �p costs
(see Section 8.3). We showed that F convex is only ε-IMAC searchable for both positive
and negative convexity for any ε > 0 if p = 1. For 0 < p < 1, the MultiLineSearch

algorithms of Section 8.2.1 achieve identical results when the positive set is convex,
but the nonconvexity of these �p costs precludes the use of the randomized ellipsoid
method. The ellipsoid method does provide an efficient solution for convex negative
sets when p > 1 (since these costs are convex). However, for convex positive sets, we
showed that for p > 1 there is no algorithm that can efficiently find an ε-IMAC for all
ε > 0. Moreover, for p = 2, we proved that there is no efficient algorithm for finding an
ε-IMAC for any fixed value of ε.

9.1 Discussion and Open Problems

In the course of our research, we have encountered many challenges and learned impor-
tant lessons that have given us some insight into the future of the field of adversar-
ial learning in security-sensitive domains. Here we suggest several intriguing research
directions for pursuing secure learning. We organize these directions into two top-
ics: i) unexplored components of the adversarial game and ii) directions for defensive
technologies . Finally, we conclude by enumerating the open problems we suggested
throughout this book.

9.1.1 Unexplored Components of the Adversarial Game

As suggested in Chapter 3, adversarial learning and attacks against learning algorithms
have received a great deal of attention. While many types of attacks have been explored,
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there are still many elements of this security problem that are relatively unexplored. We
summarize some promising ones for future research.

9.1.1.1 Research Direction: The Role of Measurement and Feature Selection
As discussed in Section 2.2.1, the measurement process and feature selection play an
important role in machine learning algorithms that we have not addressed in this book.
As suggested in Section 3.1, these components of a learning algorithm are also suscepti-
ble to attacks. Some prior work has suggested vulnerabilities based on the features used
by a learner (e.g., Mahoney & Chan 2003; Venkataraman et al. 2008; Wagner & Soto
2002), and others have suggested defenses to particular attacks on the feature set (e.g.,
Globerson & Roweis 2006; Sculley et al. 2006) It has been observed that high dimen-
sionality serves to increase the attack surface of Exploratory attacks (Sommer & Paxson
2010; Amsaleg et al. 2016), suggesting that (randomized) feature selection be used as a
defensive strategy. In game-theoretic models of Causative attacks, high dimensions also
have computational consequences on finding equilibrium solutions (Alpcan et al. 2016).
However, it has also been observed that traditional approaches to feature reduction can
be vulnerable to feature substitution (Li & Vorobeychik 2014). The full role of feature
selection remains unknown.

Selecting a set of measurements is a critical decision in any security-sensitive domain.
As has been repeatedly demonstrated (e.g., Wagner & Soto 2002) irrelevant features can
be leveraged by the adversary to cripple the learner’s ability to detect malicious instances
with little cost to the attacker. For example, in Chapter 5, we showed that tokens unre-
lated to the spam concept can be used to poison a spam filter. These vulnerabilities
require a concerted effort to construct tamper-resistant features, to identify and elimi-
nate features that have been corrupted, and to establish guidelines for practitioners to
meet these needs.

Further, feature selection may play a pivotal role in the future of secure learning.
As discussed in Direction 9.1.1.2, these methods can provide some secrecy for the
learning algorithm and can eliminate irrelevant features. In doing so, feature selec-
tion methods may provide a means to gain an advantage against adversaries, but
they may also be attacked. Exploring these possibilities remains a significant research
challenge.

9.1.1.2 Research Direction: The Effect of Attacker Capabilities
In Section 1.2, we acknowledge that adversarial learning should adhere to Kerck-
hoffs’ Principle: resilient learning systems should not assume secrecy to provide
security. However, to understand under what threat models learnability is possible,
it is important to characterize the impact of the adversary’s capabilities on attack
effectiveness.

Question 9.1 Consider underlying stochastic data. How is learning on such data
affected by the attacker’s information about the data and learner, as well as the attacker’s
control over the data? What are appropriate parameterizations of attacker capabilities for
characterizing learnability?
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As learning algorithms generally find patterns in their training data, it is not neces-
sary to exactly reproduce the training data to discover information about the learned
hypothesis. In many cases, to approximate the learned hypothesis, the adversary need
only have access to a similar dataset.

As observed by Papernot, McDaniel, Goodfellow, Jha, Celik, & Swami (2016) for
a special case, reverse-engineered models can be used as surrogates in successful eva-
sion attacks. To the extent that this approach works in general, reverse engineering can
amplify an adversary’s ability to launch subsequent misclassification attacks.

Question 9.2 How accurate must a surrogate model be for effective misclassification
attacks against a target?

As in the near-optimal evasion framework in Chapter 8, the adversary can procure a
great deal of information about the learned hypothesis with little information about the
training algorithm and hypothesis space.

One motivation for studying reverse-engineering attacks—outside their use in
enabling low-information misclassification attacks—is situations in which the defender
wishes to protect commercial-in-confidence information about the learner. Tramèr et al.
(2016) develop practical reverse-engineering attacks against cloud-based ML-as-a-
service systems, both for cases where the model returns only class labels and where
the model returns precise confidence values permitting an approach based on solving
systems of (nonlinear) equations.

Question 9.3 In general, how effective is reverse engineering at building surrogate
models? What guarantees, in terms of query complexity, are possible?

Perhaps the most obvious ingredient to be protected is the training data used to create
the learned hypothesis. Settings discussed throughout this book consider adversaries
that (partially) control inputs; even in such settings, differential privacy guarantees (as
explored in Chapter 7) hold for arbitrary manipulation of all but a single private training
datum.

Feature selection (as presented in Section 2.2.1) could potentially play a role in
defending against an adversary by allowing the defender to use dynamic feature selec-
tion. In many cases, the goal of the adversary is to construct malicious data instances
that are inseparable from innocuous data from the perspective of the learner. However,
as the attack occurs, dynamic feature selection could be employed to estimate a new
feature mapping φ′

D
that would allow the classifier to continue to separate the classes in

spite of the adversary’s alterations.

9.1.2 Development of Defensive Technologies

The most important challenge remaining for learning in security-sensitive domains is to
develop general-purpose secure learning technologies. In Section 3.3.5, we suggested
several promising approaches to defend against learning attacks, and several secure
learners have been proposed (e.g., Dalvi et al. 2004; Globerson & Roweis 2006; Wang
et al. 2006) However, the development of defenses will inevitably create an arms race, so
successful defenses must anticipate potential counterattacks and demonstrate that they
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are resilient against reasonable threats. With this in mind, the next step is to explore gen-
eral defenses against larger classes of attack to exemplify trustworthy secure learning.

9.1.2.1 Research Direction: Game-Theoretic Approaches to Secure Learning
Since suggested by Dalvi et al. (2004), the game-theoretic approach to designing defen-
sive classifiers has rapidly expanded (e.g., Brückner & Scheffer 2009; Kantarcioglu
et al. 2009; Biggio et al. 2010; Großhans et al. 2013) In this approach, adversarial
learning is treated as a game between a learner (which chooses a model) and an adver-
sary (which chooses data or a data transform). Both players are constrained and seek
to optimize an objective function (typically at odds with the other player’s objective).
These approaches find an optimal model against the adversary and one that is thus
robust against attacks. This game-theoretic approach is particularly appealing for secure
learning because it incorporates the adversary’s objective and limitations directly into
the classifier’s design through an adversarial cost function. However, this cost function
is difficult to specify for a real-world adversary, and using an inaccurate cost func-
tion may again lead to inadvertent blind spots in the classifier. This raises interesting
questions:

Question 9.4 How can a machine learning practitioner design an accurate cost function
for a game-theoretic cost-sensitive learning algorithm? How sensitive are these learners
to the adversarial cost? Can the cost itself be learned?

Game-theoretic learning approaches are especially interesting because they directly
incorporate the adversary as part of the learning process. In doing so, they make a
number of assumptions about the adversary and its capabilities, but the most dan-
gerous assumption made is that the adversary behaves rationally according to its
interests. While this assumption seems reasonable, it can cause the learning algo-
rithm to be overly reliant on its model of the adversary. For instance, the orig-
inal adversary-aware classifier proposed by Dalvi et al. attempts to preemptively
detect evasive data, but will classify data points as benign if a rational adversary
would have altered them; i.e., in this case, the adversary can evade this classi-
fier by simply not changing its behavior. Such strange properties are an undesir-
able side effect of the assumption that the adversary is rational, which raises another
question:

Question 9.5 How reliant are adversary-aware classifiers on the assumption that the
adversary will behave rationally? Are there game-theoretic approaches that are less
dependent on this assumption?

9.1.2.2 Research Direction: Broader Incorporation of Research Methods
Currently, choosing a learning method for a particular task is usually based on the
structure of application data, the speed of the algorithm in training and predic-
tion, and expected accuracy (often assessed on a static dataset). However, as our
research has demonstrated, understanding how an algorithm’s performance can change
in security-sensitive domains is critical for its success and for widespread adoption
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in these domains. Designing algorithms to be resilient in these settings is a critical
challenge.

Generally, competing against an adversary is a difficult problem and can be com-
putationally intractable. However, the framework of robust statistics as outlined in
Section 3.5.4.3 partially addresses the problem of adversarial contamination in training
data. This framework provides a number of tools and techniques to construct learners
robust against security threats from adversarial contamination. Many classical statisti-
cal methods often make strong assumptions that their data is generated by a stationary
distribution, but adversaries can defy that assumption. For instance, in Chapter 6, we
demonstrated that a robust subspace estimation technique significantly outperformed
the original PCA method under adversarial contamination.

Robust statistics augment classical techniques by instead assuming that the data
comes from two sources: a known distribution and an unknown adversarial distribu-
tion. Under this setting, robust variants exist for parameter estimation, testing, lin-
ear models, and other classic statistical techniques. Further, the breakdown point and
influence function provide quantitative measurements of robustness, which designers of
learning systems can use to evaluate the vulnerability of learners in security-sensitive
tasks and select an appropriate algorithm accordingly. However, relatively few learn-
ing systems are currently designed explicitly with statistical robustness in mind. We
believe, though, that as the field of adversarial learning grows, robustness consider-
ations and techniques will become an increasingly prevalent part of practical learn-
ing design. The challenge remains to broadly integrate robust procedures into learn-
ing for security-sensitive domains and use them to design learning systems resilient to
attacks.

9.1.2.3 Research Direction: Online Learning
An alternative complementary direction for developing defenses in security-sensitive
settings is addressed by the game-theoretic expert aggregation setting described in Sec-
tion 3.6. Recall that in this setting, the learner receives advice from a set of experts and
makes a prediction by weighing the experts’ advice based on their past performance.
Techniques for learning within this framework have been developed to perform well
with respect to the best expert in hindsight. A challenge that remains is designing sets
of experts that together can better meet a security objective. Namely,

Question 9.6 How can one design a set of experts (learners) so that their aggregate is
resilient to attacks in the online learning framework?

Ideally, even if the experts may be individually vulnerable, they are difficult to
attack as a group. We informally refer to such a set of experts as being orthogo-
nal. Orthogonal learners have several advantages in a security-sensitive environment.
They allow us to combine learners designed to capture different aspects of the task.
These learners may use different feature sets and different learning algorithms to reduce
common vulnerabilities; e.g., making them more difficult to reverse engineer. Finally,
online expert aggregation techniques are flexible: existing experts can be altered or
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new ones can be added to the system whenever new vulnerabilities in the system are
identified.

To properly design a system of orthogonal experts for secure learning, the designer
must first assess the vulnerability of several candidate learners. With that analysis, the
designer should then choose a base set of learners and sets of features for them to learn
on. Finally, as the aggregate predictor matures, the designer should identify new security
threats and patch the learners appropriately. This patching could be done by adjusting
the algorithms, changing their feature sets, or even adding new learners to the aggregate.
Perhaps this process could itself be automated or learned.

9.2 Review of Open Problems

Many exciting challenges remain in the field of adversarial learning in security-sensitive
domains. Here we recount the open questions we suggested throughout this manuscript.

Problems from Chapter 6

6.1 What are the worst-case poisoning attacks against the
Antidote-subspace detector for large-volume network anomalies?
What are game-theoretic equilibrium strategies for the attacker and
defender in this setting? How does Antidote’s performance compare to
these strategies? 163

6.2 Can subspace-based detection approaches be adapted to incorporate the
alternative approaches? Can they find both temporal and spatial
correlations and use both to detect anomalies? Can subspace-based
approaches be adapted to incorporate domain-specific information such
as the topology of the network? 164

Problems from Chapter 7

7.1 Can the mechanisms and proof techniques used for differentially private
SVM by output perturbation be extended to other kernel methods? 197

7.2 Is there a general connection between algorithmic stability and global
sensitivity? 198

7.3 An important open problem is to reduce the gap between upper and
lower bounds on the optimal differential privacy of the SVM. 198

Problems from Chapter 8

8.1 Can we find matching upper and lower bounds for evasion algorithms?
Is there a deterministic strategy with polynomial query complexity for
all convex-inducing classifiers? 232

8.2 Are there families larger than the convex-inducing classifiers that are
ε-IMAC searchable? Are there families outside of the convex-inducing
classifiers for which near-optimal evasion is efficient? 232
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8.3 Is some family of SVMs (e.g., with a known kernel) ε-IMAC searchable
for some ε? Can an adversary incorporate the structure of a nonconvex
classifier into the ε-IMAC search? 233

8.4 Are there characteristics of nonconvex, contiguous bodies that are
indicative of the hardness of the body for near-optimal evasion?
Similarly, are there characteristics of noncontiguous bodies that describe
their query complexity? 233

8.5 For what families of classifiers is reverse engineering as easy as evasion? 233
8.6 What covertness criteria are appropriate for a near-optimal evasion

problem? Can a defender detect nondiscrete probing attacks against a
classifier? Can the defender effectively mislead a probing attack by
falsely answering suspected queries? 234

8.7 What can be learned from f̃ about f? How can f̃ best be used to guide
search? Can the sample data be directly incorporated into ε-IMAC-
search without f̃? 234

8.8 What types of additional feedback may be available to the adversary and
how do they affect the query complexity of ε-IMAC-search? 235

8.9 Given access to the membership oracle only, how difficult is near-
optimal evasion of randomized classifiers? Are there families of
randomized classifiers that are ε-IMAC searchable? 235

8.10 Given a set of adversarial queries (and possibly additional innocuous
data) will the learning algorithm converge to the true boundary, or can
the adversary deceive the learner and evade it simultaneously? If the
algorithm does converge, then at what rate? 236

8.11 How can the feature mapping be inverted to design real-world instances
to map to desired queries? How can query-based algorithms be adapted
for approximate querying? 237

8.12 In the real-world evasion setting, what is the worst-case or expected
reduction in cost for a query algorithm after making M queries to a
classifier f ∈ F? What is the expected value of each query to the
adversary, and what is the best query strategy for a fixed number of
queries? 237

Problems from Chapter 9

9.1 Consider underlying stochastic data. How is learning on such data
affected by the attacker’s information about the data and learner, as well
as the attacker’s control over the data? What are appropriate
parameterizations of attacker capabilities for characterizing
learnability? 246

9.2 How accurate must a surrogate model be for effective misclassification
attacks against a target? 247

9.3 In general, how effective is reverse engineering at building surrogate
models? What guarantees, in terms of query complexity, are possible? 247
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9.4 How can a machine learning practitioner design an accurate cost
function for a game-theoretic cost-sensitive learning algorithm? How
sensitive are these learners to the adversarial cost? Can the cost itself be
learned? 248

9.5 How reliant are adversary-aware classifiers on the assumption that the
adversary will behave rationally? Are there game-theoretic approaches
that are less dependent on this assumption? 248

9.6 How can one design a set of experts (learners) so that their aggregate is
resilient to attacks in the online learning framework? 249

9.3 Concluding Remarks

The field of adversarial learning in security-sensitive domains is a new and rapidly
expanding subdiscipline that holds a number of interesting research topics for
researchers in both machine learning and computer security. The research presented in
this book has both significantly affected this community and highlighted several impor-
tant lessons. First, to design effective learning systems, practitioners must follow the
principle of proactive design as discussed in Section 1.2. To avoid security pitfalls,
designers must develop reasonable threat models for potential adversaries and develop
learning systems to meet their desired security requirements. At the same time, machine
learning designers should promote the security properties of their algorithms in addition
to other traditional metrics of performance.

A second lesson that has reemerged throughout this book is that there are inherent
tradeoffs between a learner’s performance on regular data and its resilience to attacks.
Understanding these tradeoffs is important not only for security applications but also
for understanding how learners behave in any non-ideal setting.

Finally, throughout this book, we suggested a number of promising approaches
toward secure learning, but a clear picture of what is required for secure learning has yet
to emerge. Each of the approaches we discussed are founded in game theory, but have
different benefits: the adversary-aware classifiers directly incorporate the threat model
into their learning procedure, the robust statistics framework provides procedures that
are generally resilient against any form of contamination, and the expert aggregation
setting constructs classifiers that can do nearly as well as the best expert in hindsight.
However, by themselves, none of these form a complete solution for secure learning.
Integrating these different approaches or developing a new approach remains the most
important challenge for this field.
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