CHAPTER O

Tree models

REE MODELS ARE among the most popular models in machine learning. For example,
the pose recognition algorithm in the Kinect motion sensing device for the Xbox game
console has decision tree classifiers at its heart (in fact, an ensemble of decision trees
called a random forest about which you will learn more in Chapter 11). Trees are ex-
pressive and easy to understand, and of particular appeal to computer scientists due
to their recursive ‘divide-and-conquer’ nature.

In fact, the paths through the logical hypothesis space discussed in the previous
chapter already constitute a very simple kind of tree. For instance, the feature tree in
Figure 5.1 (left) is equivalent to the path in Figure 4.6 (left) on p.117. This equivalence
is best seen by tracing the path and the tree from the bottom upward.

1. The left-most leaf of the feature tree represents the concept at the bottom of the
path, covering a single positive example.

2. The next concept up in the path generalises the literal Length=3 into
Length = [3,5] by means of internal disjunction; the added coverage (one pos-
itive example) is represented by the second leaf from the left in the feature tree.

3. By dropping the condition Teeth = few we add another two covered positives.

4. Dropping the ‘Length’ condition altogether (or extending the internal disjunc-
tion with the one remaining value ‘4’) adds the last positive, and also a negative.

5. Dropping Beak = yes covers no additional examples (remember the discussion

129

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

130 5. Tree models

Figure 5.1. (left) The path from Figure 4.6 on p.117, redrawn in the form of a tree. The coverage
numbers in the leaves are obtained from the data in Example 4.4. (right) A decision tree learned

on the same data. This tree separates the positives and negatives perfectly.

about closed concepts in the previous chapter).
6. Finally, dropping Gills = no covers the four remaining negatives.

We see that a path through the hypothesis space can be turned into an equivalent fea-
ture tree. To obtain a tree that is equivalent to the i-th concept from the bottom in the
path, we can either truncate the tree by combining the left-most i leaves into a single
leaf representing the concept; or we can label the left-most i leaves positive and the
remaining leaves negative, turning the feature tree into a decision tree.

Decision trees do not employ internal disjunction for features with more than two
values, but instead allow branching on each separate value. They also allow leaf la-
bellings that do not follow the left-to-right order of the leaves. Such a tree is shown in
Figure 5.1 (right). This tree can be turned into a logical expression in many different
ways, including:

(Gills=no A Length =3) v (Gills=no A Length =4 A Teeth = many)
V (Gills=no A Length =5)
Gills=no A [Length =3 v (Length =4 A Teeth = many) v Length = 5]
—[(Gills=no A Length =4 A Teeth = few) v Gills = yes]
(Gills=yes v Length = [3,5] v Teeth = many) A Gills=no

The first expression is in disjunctive normal form (DNE see Background 4.1 on p.105)

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5. Tree models 131

and is obtained by forming a disjunction of all paths from the root of the tree to leaves
labelled positive, where each path gives a conjunction of literals. The second expres-
sion is a simplification of the first using the distributive equivalence (A A B) v (A A C) =
A A (B V C). The third expression is obtained by first forming a DNF expression repre-
senting the negative class, and then negating it. The fourth expression turns this into
CNF by using the De Morgan laws (A A B)= AV “Band “"(Av B)=-7AA —B.

There are many other logical expressions that are equivalent to the concept defined
by the decision tree. Perhaps it would be possible to obtain an equivalent conjunctive
concept? Interestingly, the answer to this question is no: some decision trees repre-
sent a conjunctive concept, but many trees don't and this is one of them.! Decision
trees are strictly more expressive than conjunctive concepts. In fact, since decision trees
correspond to DNF expressions, and since every logical expression can be equivalently
written in DNE it follows that decision trees are maximally expressive: the only data
that they cannot separate is data that is inconsistently labelled, i.e., the same instance
appears twice with different labels. This explains why data that isn't conjunctively sep-
arable, as in our example, can be separated by a decision tree.

There is a potential problem with using such an expressive hypothesis language.
Let A be the disjunction of all positive examples, then A is in disjunctive normal form.
A clearly covers all positives — in fact, A’s extension is exactly the set of positive exam-
ples. In other words, in the hypothesis space of DNF expressions (or of decision trees),
A is the LGG of the positive examples, but it doesn’t cover any other instances. So A
does not generalise beyond the positive examples, but merely memorises them — talk
about overfitting! Turning this argument around, we see that one way to avoid overfit-
ting and encourage learning is to deliberately choose a restrictive hypothesis language,
such as conjunctive concepts: in such a language, even the LGG operation typically
generalises beyond the positive examples. And if our language is expressive enough
to represent any set of positive examples, we must make sure that the learning algo-
rithm employs other mechanisms to force generalisation beyond the examples and
avoid overfitting — this is called the inductive bias of the learning algorithm. As we will
see, most learning algorithms that operate in expressive hypothesis spaces have an in-
ductive bias towards less complex hypotheses, either implicitly through the way the
hypothesis space is searched, or explicitly by incorporating a complexity penalty in the
objective function.

Tree models are not limited to classification but can be employed to solve almost
any machine learning task, including ranking and probability estimation, regression
and clustering. The tree structure that is common to all those models can be defined

11f we allowed the creation of new conjunctive features, we could actually represent this tree as the con-
junctive concept Gills = no A F = false, where F = Length =4 A Teeth = few is a new conjunctive feature.
The creation of new features during learning is called constructive induction, and as shown here can extend
the representational power of a logical language.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

132 5. Tree models

as follows.

Definition 5.1 (Feature tree). A feature tree is a tree such that each internal node
(the nodes that are not leaves) is labelled with a feature, and each edge emanating
from an internal node is labelled with a literal. The set of literals at a node is called
asplit. Each leaf of the tree represents a logical expression, which is the conjunction
of literals encountered on the path from the root of the tree to the leaf. The extension
of that conjunction (the set of instances covered by it) is called the instance space
segment associated with the leaf. 9

Essentially, a feature tree is a compact way of representing a number of conjunctive
concepts in the hypothesis space. The learning problem is then to decide which of the
possible concepts will be best to solve the given task. While rule learners (discussed in
the next chapter) essentially learn these concepts one at a time, tree learners perform
a top—down search for all these concepts at once.

Algorithm 5.1 gives the generic learning procedure common to most tree learners.
It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough to be
labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D;
BestSplit(D, F) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks a
set of instances is homogeneous if they are (mostly) of a single class, and the most
appropriate label would be the majority class. For clustering tasks a set of instances is
homogenous if they are close together, and the most appropriate label would be some
exemplar such as the mean (more on exemplars in Chapter 8).

Algorithm 5.1: GrowTree(D, F) — grow a feature tree from training data.

Input :data D; set of features F.
Output : feature tree T with labelled leaves.
1 if Homogeneous(D) then return Label(D) ; // Homogeneous, Label: see text
2 § —BestSplit(D, F) ; /1 e.g., BestSplit-Class (Algorithm 5.2)
3 split D into subsets D; according to the literals in S;
4 foreachido
5 if D; # @ then T; —GrowTree(D;, F) else T;j is a leaf labelled with Label(D);
6 end
7 return a tree whose root is labelled with S and whose children are T;

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.1 Decision trees 133

Algorithm 5.1 is a divide-and-conquer algorithm: it divides the data into subsets,
builds a tree for each of those and then combines those subtrees into a single tree.
Divide-and-conquer algorithms are a tried-and-tested technique in computer science.
They are usually implemented recursively, because each subproblem (to build a tree
for a subset of the data) is of the same form as the original problem. This works as
long as there is a way to stop the recursion, which is what the first line of the algorithm
does. However, it should be noted that such algorithms are greedy: whenever there is a
choice (such as choosing the best split), the best alternative is selected on the basis of
the information then available, and this choice is never reconsidered. This may lead to
sub-optimal choices. An alternative would be to use a backtracking search algorithm,
which can return an optimal solution, at the expense of increased computation time
and memory requirements, but we will not explore that further in this book.

In the remainder of this chapter we will instantiate the generic Algorithm 5.1 to

classification, ranking and probability estimation, clustering and regression tasks.

5.1 Decision trees

As already indicated, for a classification task we can simply define a set of instances D
to be homogenous if they are all from the same class, and the function Label(D) will
then obviously return that class. Notice that in line 5 of Algorithm 5.1 we may be calling
Label(D) with a non-homogeneous set of instances in case one of the D; is empty, so
the general definition of Label(D) is that it returns the majority class of the instances
in D.? This leaves us to decide how to define the function BestSplit(D, F).

Let’s assume for the moment that we are dealing with Boolean features, so D is
split into Dy and D;. Let’s also assume we have two classes, and denote by D® and
D" the positives and negatives in D (and likewise for D} etc.). The question is how
to assess the utility of a feature in terms of splitting the examples into positives and
negatives. Clearly, the best situation is where D{ = D® and D, = @, or where D} =
and D; = D". In that case, the two children of the split are said to be pure. So we
need to measure the impurity of a set of n® positives and n~ negatives. One important
principle that we will adhere to is that the impurity should only depend on the relative
magnitude of n® and n~, and should not change if we multiply both with the same
amount. This in turn means that impurity can be defined in terms of the proportion
p=n®/(n®+n"), which we remember from Section 2.2 as the 8=empirical probability
of the positive class. Furthermore, impurity should not change if we swap the positive
and negative class, which means that it should stay the same if we replace p with 1 - p.

We also want a function that is 0 whenever p = 0 or p = 1 and that reaches its maximum

2If there is more than one largest class we will make an arbitrary choice between them, usually uniformly
random.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

134 5. Tree models

48 =
Imp(p) Giniindex 7| TR

Figure 5.2. (left) Impurity functions plotted against the empirical probability of the positive
class. From the bottom: the relative size of the minority class, min(p,1 — p); the Gini index,
2p(1 - p); entropy, —plog, p— (1 - p)log, (1 - p) (divided by 2 so that it reaches its maximum in
the same point as the others); and the (rescaled) square root of the Gini index, \/m —notice
that this last function describes a semi-circle. (right) Geometric construction to determine the
impurity of a split (Teeth = [many, few] from Example 5.1): p is the empirical probability of the
parent, and p; and p» are the empirical probabilities of the children.

for p = 1/2. The following functions all fit the bill.

Minority class min(p,1 — p) —this is sometimes referred to as the error rate, as it mea-
sures the proportion of misclassified examples if the leaf was labelled with the
majority class; the purer the set of examples, the fewer errors this will make. This

impurity measure can equivalently be written as 1/2 —[p —1/2|.

Gini index 2p(1 — p) - this is the expected error if we label examples in the leaf ran-
domly: positive with probability p and negative with probability 1 - p. The prob-
ability of a false positive is then p(1 — p) and the probability of a false negative
a-pp.?

entropy —plog, p—(1-p)log,(1—p) - this is the expected information, in bits, con-
veyed by somebody telling you the class of a randomly drawn example; the purer
the set of examples, the more predictable this message becomes and the smaller
the expected information.

A plot of these three impurity measures can be seen in Figure 5.2 (left), some of
them rescaled so that they all reach their maximum at (0.5,0.5). I have added a fourth
one: the square root of the Gini index, which I will indicate as v/Gini, and which has an
advantage over the others, as we will see later. Indicating the impurity of a single leaf
Dj as Imp(D;), the impurity of a set of mutually exclusive leaves {D;,..., D} is then

3When I looked up ‘Gini index’ on Wikipedia I was referred to a page describing the Gini coefficient, which
—inamachine learning context—is a linear rescaling of the AUC to the interval [-1, 1]. This is quite a different
concept, and the only thing that the Gini index and the Gini coefficient have in common is that they were
both proposed by the Italian statistician Corrado Gini, so it is good to be aware of potential confusion.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.1 Decision trees 135

defined as a weighted average

I |D;|
Imp({D1,..., D)) = Y —Imp(D)) (5.1)

= 1D

where D = D; U...U D;. For a binary split there is a nice geometric construction to find
Imp({D1, D,}) given the empirical probabilities of the parent and the children, which is
illustrated in Figure 5.2 (right):

1. We first find the impurity values Imp(D;) and Imp(D-) of the two children on the
impurity curve (here the Gini index).

2. We then connect these two values by a straight line, as any weighted average of
the two must be on that line.

3. Since the empirical probability of the parent is also a weighted average of the

empirical probabilities of the children, with the same weights (i.e., p = % p1+

% p2 — the derivation is given in Equation 5.2 on p.139), p gives us the correct

interpolation point.

This construction will work with any of the impurity measures plotted in Figure 5.2
(left). Note that, if the class distribution in the parent is very skewed, the empirical
probability of both children may end up to the left or to the right of the p = 0.5 vertical.
This isn’t a problem - except for the minority class impurity measure, as the geometric
construction makes it clear that all such splits will be evaluated as having the same
weighted average impurity. For this reason its use as an impurity measure is often
discouraged.

Example 5.1 (Calculating impurity). Consider again the data in Example 4.4 on
p-115. We want to find the best feature to put at the root of the decision tree. The
four features available result in the following splits:

Length =[3,4,5] [24,0-][1+,3-][2+,2—]
Gills = [yes, no] [0+,4-][5+,1-]
Beak = [yes, no] [5+,3-1[0+,2-]

Teeth = [many,few] [3+,4—][2+,1-]

Let’s calculate the impurity of the first split. We have three segments: the first
one is pure and so has entropy 0; the second one has entropy —(1/4)log,(1/4) —
(3/4)1og,(3/4) = 0.5+ 0.31 = 0.81; the third one has entropy 1. The total entropy
is then the weighted average of these, which is 2/10-0+4/10-0.81+4/10-1 = 0.72.

Similar calculations for the other three features give the following entropies:

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

136 5. Tree models

Gills 4/10-0+6/10-(—(5/6)log,(5/6) — (1/6)log,(1/6)) = 0.39;

Beak 8/10-(—(5/8)log,(5/8) — (3/8)10g,(3/8)) +2/10-0 = 0.76;

Teeth 7/10-(—(3/7)log,(3/7) — (4/7)log, (4/7))
+3/10-(—(2/3)1og,(2/3) — (1/3)10g,(1/3)) = 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;
and the other two are somewhere in between.
The calculations for the Gini index are as follows (notice that these are on a
scale from 0 to 0.5):
Length 2/10-2-(2/2-0/2)+4/10-2-(1/4-3/4)+4/10-2-(2/4-2/4) = 0.35;
Gills 4/10-0+6/10-2-(5/6-1/6) =0.17;
Beak 8/10-2-(5/8-3/8)+2/10-0=0.38;
Teeth 7/10-2-(3/7-4/7)+3/10-2-(2/3-1/3) =0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2
(right) for a geometric illustration of the last calculation concerning ‘Teeth’.

Adapting these impurity measures to k > 2 classes is done by summing the per-
class impurities in a one-versus-rest manner. In particular, k-class entropy is defined
as Zle —-pilog, pi, and the k-class Gini index as Zle pi(1—p;). In assessing the qual-
ity of a feature for splitting a parent node D into leaves Dy, ..., Dy, it is customary to
look at the purity gain Imp(D) —Imp({Ds,..., D;}). If purity is measured by entropy, this
is called the information gain splitting criterion, as it measures the increase in infor-
mation about the class gained by including the feature. However, note that Algorithm
5.1 only compares splits with the same parent, and so we can ignore the impurity of the
parent and search for the feature which results in the lowest weighted average impurity
of its children (Algorithm 5.2).

We now have a fully instantiated decision tree learning algorithm, so let’s see what
tree it learns on our dolphin data. We have already seen that the best feature to split on
at the root of the tree is ‘Gills’: the condition Gills = yes leads to a pure leaf [0+,4—] la-
belled negative, and a predominantly positive child [5+, 1—]. For the next split we have
the choice between ‘Length’ and ‘Teeth)’, as splitting on ‘Beak’ does not decrease the im-
purity. ‘Length’ resultsin a [2+,0-][1+,1-][2+,0—] splitand ‘Teeth’ ina [3+,0—][2+, 1]
split; both entropy and Gini index consider the former purer than the latter. We then
use ‘Teeth’ to split the one remaining impure node. The resulting tree is the one shown
previously in Figure 5.1 on p.130, and reproduced in Figure 5.3 (left). We have learned

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.1 Decision trees 137

A: Gills

NG c
H “E
=yes .
EB: Length) C: [0+, 4-] \ ;
F
3 B A

p1

p4-5
1

Positives

=4 =5

D: [2+, 0-] (E: Teeth) F:[2+, 0-]
D L
/few xmany e

G: [0+, 1-] H:[1+4, 0-]

p1,p3

Negatives

Figure 5.3. (left) Decision tree learned from the data in Example 4.4 on p.115. (right) Each inter-
nal and leaf node of the tree corresponds to a line segment in coverage space: vertical segments
for pure positive nodes, horizontal segments for pure negative nodes, and diagonal segments for

impure nodes.

our first decision tree!

The tree represents a partition of the instance space, and therefore also assigns a
class to the 14 instances that were not part of the training set — which is why we can
say that the tree generalises the training data. Leaf C leaves three feature values un-
specified, with a total of 3-2-2 = 12 possible combinations of values; four of these were
supplied as training examples, so leaf C covers eight unlabelled instances and classifies
them as negative. Similarly, two unlabelled instances are classified as positive by leaf

Algorithm 5.2: BestSplit-Class(D, F) — find the best split for a decision tree.

Input :data D; set of features F.
Output :feature f to split on.
1 Imin <1
2 foreach fe€ Fdo
3 split D into subsets Dy, ..., D; according to the values v; of f;
4 if Imp({Dy,...,D;}) < Imin then

5 Iin <Imp({Dy,...,D}});
6 Joest — 15

7 end

8 end

©

return fpest

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

138 5. Tree models

D, and a further two by leaf F; one is classified as negative by leaf G, and the remain-
ing one as positive by leaf H. The fact that more unlabelled instances are classified as
negative (9) than as positive (5) is thus mostly due to leaf C: because it is a leaf high up
in the tree, it covers many instances. One could argue that the fact that four out of five
negatives have gills is the strongest regularity found in the data.

It is also worth tracing the construction of this tree in coverage space (Figure 5.3
(right)). Every node of the tree, internal or leaf, covers a certain number of positives and
negatives and hence can be plotted as a line segment in coverage space. For instance,
the root of the tree covers all positives and all negatives, and hence is represented by
the ascending diagonal A. Once we add our first split, segment A is replaced by segment
B (an impure node and hence diagonal) and segment C, which is pure and not split any
further. Segment B is further split into D (pure and positive), E (impure) and F (pure
and positive). Finally, E is split into two pure nodes.

This idea of a decision tree coverage curve ‘pulling itself up’ from the ascending di-
agonal in a divide-and-conquer fashion is appealing — but unfortunately it is not true
in general. The ordering of coverage curve segments is purely based on the class distri-
butions in the leaves and does not bear any direct relationship to the tree structure. To
understand this better, we will now look at how tree models can be turned into rankers
and probability estimators.

5.2 Ranking and probability estimation trees

Grouping classifiers such as decision trees divide the instance space into segments,
and so can be turned into rankers by learning an ordering on those segments. Unlike
some other grouping models, decision trees have access to the local class distributions
in the segments or leaves, which can directly be used to construct a leaf ordering that
is optimal for the training data. So, for instance, in Figure 5.3 this ordering is [D - F] - H
- G -C, resulting in a perfect ranking (AUC = 1). The ordering can simply be obtained
from the empirical probabilities p, breaking ties as much as possible by giving prece-
dence to leaves covering a larger number of positives. Why is this ordering optimal?
Well, the slope of a coverage curve segment with empirical probability p is p/(1 — p);
since p — ITpﬁ is a monotonic transformation (if p > p’ then % > %) sorting the
segments on non-increasing empirical probabilities ensures that they are also sorted
on non-increasing slope, and so the curve is convex. This is an important point, so
I'll say it again: the ranking obtained from the empirical probabilities in the leaves of
a decision tree yields a convex ROC curve on the training data. As we shall see later in

“Tie breaking — although it does not alter the shape of the coverage curve and isn't essential in that sense —
can also be achieved by subtracting e <« 1 from the number of positives covered. The Laplace correction also
breaks ties in favour of larger leaves but isn’'t a monotonic transformation and so might change the shape of
the coverage curve.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.2 Ranking and probability estimation trees 139

the book, some other grouping models including 8=rule lists (Section 6.1) share this
property, but no grading model does.

As already noted, the segment ordering cannot be deduced from the tree structure.
The reason is essentially that, even if we know the empirical probability associated with
the parent of a split, this doesn’t constrain the empirical probabilities of its children.
For instance, let [n®,n"] be the class distribution in the parent with n = n® + n", and
let [ny,n,] and [nj, n,] be the class distributions in the children, with n; = ny + n;
and np = n; + n, . We then have
e mn_ m

. ny .
- + e — + — 52
p n n np n np n p1 n P2 6-2)

In other words, the empirical probability of the parent is a weighted average of the
empirical probabilities of its children; but this only tellsus that py < p< prorp. < p <
p1- Even if the place of the parent segment in the coverage curve is known, its children
may come much earlier or later in the ordering.

Example 5.2 (Growing a tree). Consider the tree in Figure 5.4 (top). Each node is
labelled with the numbers of positive and negative examples covered by it: so, for
instance, the root of the tree is labelled with the overall class distribution (50 pos-
itives and 100 negatives), resulting in the trivial ranking [50+,100—]. The corre-
sponding one-segment coverage curve is the ascending diagonal (Figure 5.4 (bot-
tom)). Adding split (1) refines this ranking into [30+,35—][20+,65—], resulting in
a two-segment curve. Adding splits (2) and (3) again breaks up the segment cor-
responding to the parent into two segments corresponding to the children. How-
ever, the ranking produced by the full tree— [15+,3—][29+, 10—][5+,62—][1+,25—]
—is different from the left-to-right ordering of its leaves, hence we need to reorder
the segments of the coverage curve, leading to the top-most, solid curve.

So, adding a split to a decision tree can be interpreted in terms of coverage curves

as the following two-step process:
6= split the corresponding curve segment into two or more segments;
8= reorder the segments on decreasing slope.

The whole process of growing a decision tree can be understood as an iteration of these
two steps; or alternatively as a sequence of splitting steps followed by one overall re-
ordering step. It is this last step that guarantees that the coverage curve is convex (on
the training data).

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

140 5. Tree models

50

Positives
%

Negatives

Figure 5.4. (top) Abstract representation of a tree with numbers of positive and negative exam-
ples covered in each node. Binary splits are added to the tree in the order indicated. (bottom)
Adding a split to the tree will add new segments to the coverage curve as indicated by the arrows.
After a split is added the segments may need reordering, and so only the solid lines represent

actual coverage curves.

It is instructive to take this analysis a step further by considering all possible rank-
ings that can be constructed with the given tree. One way to do that is to consider the
tree as a feature tree, without any class labels, and ask ourselves in how many ways
we can label the tree, and what performance that would yield, given that we know the
numbers of positives and negatives covered in each leaf. In general, if a feature tree
has [leaves and we have c classes, then the number of possible labellings of leaves
with classes is c’; in the example of Figure 5.4 this is 2% = 16. Figure 5.5 depicts these
16 labellings in coverage space. As you might expect, there is a lot of symmetry in this

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.2 Ranking and probability estimation trees 141

50

A

Positives

0 100

Negatives

Figure 5.5. Graphical depiction of all possible labellings and all possible rankings that can be
obtained with the four-leaf decision tree in Figure 5.4. There are 2% = 16 possible leaf labellings;
e.g., ‘+—+—"denotes labelling the first and third leaf from the left as + and the second and fourth
leaf as —. Also indicated are some pairwise symmetries (dotted lines): e.g., + — +— and —+ —+
are each other’s inverse and end up at opposite ends of the plot. There are 4! = 24 possible blue-
violet-red- paths through these points which start in — — —— and switch each leaf to + in

some order; these represent all possible four-segment coverage curves or rankings.

plot. For instance, labellings occur in pairs (say + — +— and — + —+) that occur in op-
posite locations in the plot (see if you can figure out what is meant by ‘opposite’ here).
We obtain a ranking by starting in — — —— in the lower left-hand corner, and switching
each leaf to + in some order. For instance, the optimal coverage curve follows the order
-———,——+—, +—+—, +—++, ++++. Fora tree with / leaves there are /! permutations
of its leaves and thus /! possible coverage curves (24 in our example).

If I were to choose a single image that would convey the essence of tree models, it
would be Figure 5.5. What it visualises is that the class distributions in the leaves of an
unlabelled feature tree can be used to turn one and the same tree into a decision tree,

aranking tree, or a probability estimation tree:

to turn a feature tree into a ranker, we order its leaves on non-increasing empiri-
cal probabilities, which is provably optimal on the training set;

8= to turn the tree into a probability estimator, we predict the empirical probabili-
ties in each leaf, applying Laplace or m-estimate smoothing to make these esti-

mates more robust for small leaves;

¢= to turn the tree into a classifier, we choose the operating conditions and find the

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

142 5. Tree models

operating point that is optimal under those operating conditions.

The last procedure was explained in Section 2.2. We will illustrate it here, assuming
the training set class ratio clr = 50/100 is representative. We have a choice of five la-
bellings, depending on the expected cost ratio ¢ = cpN/cpp of misclassifying a positive

in proportion to the cost of misclassifying a negative:

+—+— would be the labelling of choice if ¢ = 1, or more generally if 10/29 < ¢ < 62/5;
+—++ would be chosen if 62/5 < ¢ < 25/1;

++++ would be chosen if 25/1 < ¢; i.e., we would always predict positive if false neg-
atives are more than 25 times as costly as false positives, because then even
predicting positive in the second leaf would reduce cost;

——+— would be chosen if 3/15< ¢ < 10/29;

———— would be chosen if ¢ < 3/15; i.e., we would always predict negative if false
positives are more than 5 times as costly as false negatives, because then even

predicting negative in the third leaf would reduce cost.

The first of these options corresponds to the majority class labelling, which is what
most textbook treatments of decision trees recommend, and also what I suggested
when I discussed the function Label(D) in the context of Algorithm 5.1. In many cir-
cumstances this will indeed be the most practical thing to do. However, it is important
to be aware of the underlying assumptions of such a labelling: these assumptions are
that the training set class distribution is representative and the costs are uniform; or,
more generally, that the product of the expected cost and class ratios is equal to the
class ratio as observed in the training set. (This actually suggests a useful device for
manipulating the training set to reflect an expected class ratio: to mimic an expected
class ratio of ¢, we can oversample the positive training examples with a factor cif ¢ > 1,
or oversample the negatives with a factor 1/¢ if ¢ < 1. We will return to this suggestion
below.)

So let’s assume that the class distribution is representative and that false negatives
(e.g., not diagnosing a disease in a patient) are about 20 times more costly than false
positives. As we have just seen, the optimal labelling under these operating condi-
tions is + — ++, which means that we only use the second leaf to filter out negatives.
In other words, the right two leaves can be merged into one — their parent. Rather
aptly, the operation of merging all leaves in a subtree is called pruning the subtree.
The process is illustrated in Figure 5.6. The advantage of pruning is that we can sim-
plify the tree without affecting the chosen operating point, which is sometimes useful
if we want to communicate the tree model to somebody else. The disadvantage is that
we lose ranking performance, as illustrated in Figure 5.6 (bottom). Pruning is therefore
not recommended unless (i) you only intend to use the tree for classification, not for

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.2 Ranking and probability estimation trees 143

Positives

Negatives

Figure 5.6. (top) To achieve the labelling + — ++ we don’t need the right-most split, which can
therefore be pruned away. (bottom) Pruning doesn't affect the chosen operating point, but it
does decrease the ranking performance of the tree.

ranking or probability estimation; and (ii) you can define the expected operating con-
ditions with sufficient precision. One popular algorithm for pruning decision trees is
called reduced-error pruning, and is given in Algorithm 5.3. The algorithm employs a
separate pruning set of labelled data not seen during training, as pruning will never im-
prove accuracy over the training data. However, if tree simplicity is not really an issue,
I recommend keeping the entire tree intact and choosing the operating point through
the leaf labelling only; this can similarly be done using a hold-out data set.

Sensitivity to skewed class distributions

Ijust mentioned in passing that one way to make sure the training set reflects the right
operating conditions is to duplicate positives or negatives so that the training set class
ratio is equal to the product of expected cost and class ratios in deployment of the
model. Effectively, this changes the aspect ratio of the rectangle representing the cov-

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

144 5. Tree models

erage space. The advantage of this method is that it is directly applicable to any model,
without need to interfere with search heuristics or evaluation measures. The disad-
vantage is that it will increase training time — and besides, it may not actually make a
difference for the model being learned. I will illustrate this with an example.

Example 5.3 (Cost-sensitivity of splitting criteria). Suppose you have 10 pos-
itives and 10 negatives, and you need to choose between the two splits
[8+,2—-][2+,8—] and [10+,6—][0+,4—]. You duly calculate the weighted average
entropy of both splits and conclude that the first split is the better one. Just to be
sure, you also calculate the average Gini index, and again the first split wins. You
then remember somebody telling you that the square root of the Gini index was
a better impurity measure, so you decide to check that one out as well. Lo and
behold, it favours the second split...! What to do?

You then remember that mistakes on the positives are about ten times as
costly as mistakes on the negatives. You're not quite sure how to work out the
maths, and so you decide to simply have ten copies of every positive: the splits
are now [80+,2—][20+,8—] and [100+,6—][0+,4—]. You recalculate the three split-
ting criteria and now all three favour the second split. Even though you're slightly
bemused by all this, you settle for the second split since all three splitting criteria
are now unanimous in their recommendation.

So what is going on here? Let’s first look at the situation with the inflated numbers
of positives. Intuitively it is clear that here the second split is preferable, since one of
the children is pure and the other one is fairly good as well, though perhaps not as

Algorithm 5.3: PruneTree(T, D) — reduced-error pruning of a decision tree.

Input : decision tree T; labelled data D.

Output : pruned tree 7.
1 for every internal node N of T, starting from the bottom do
2 Ty <—subtree of T rooted at N;
3 Dy — {x € D|x is covered by N};

4 if accuracy of Ty over Dy is worse than majority class in Dy then
5 replace Ty in T by aleaf labelled with the majority class in Dy;
6 end

7 end

8 return pruned version of T

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.2 Ranking and probability estimation trees 145

good as [80+,2—]. But this situation changes if we have only one-tenth of the number

of positives, at least according to entropy and Gini index. Using notation introduced

n

earlier, this can be understood as follows. The Gini index of the parent is 2% = and

2]
the weighted Gini index of one of the children is %22—1 2L So the weighted impurity
1 m
nyny/lny
n®n/n

of the child in proportion to the parent’s impurity is ; let’s call this relative im-

purity. The same calculations for v/ Gini give

. . n®n
¢= impurity of the parent: g ;

weighted impurity of the child: %

5]
.. . nyny
relative impurity: -
n

The important thing to note is that this last ratio doesn’t change if we multiply all num-

®
nom

ny nlr

bers involving positives with a factor c. That is, v/Gini is designed to minimise relative
impurity, and thus is insensitive to changes in class distribution. In contrast, relative
impurity for the Gini index includes the ratio n;/n, which changes if we inflate the
number of positives. Something similar happens with entropy. As a result, these two
splitting criteria emphasise children covering more examples.

A picture will help to explain this further. Just as accuracy and average recall have
isometrics in coverage and ROC space, so do splitting criteria. Owing to their non-
linear nature, these isometrics are curved rather than straight. They also occur on ei-
ther side of the diagonal, as we can swap the left and right child without changing the
quality of the split. One might imagine the impurity landscape as a mountain looked
down on from above - the summit is a ridge along the ascending diagonal, represent-
ing the splits where the children have the same impurity as the parent. This mountain
slopes down on either side and reaches ground level in ROC heaven as well as its op-
posite number (‘ROC hell’), as this is where impurity is zero. The isometrics are the
contour lines of this mountain — walks around it at constant elevation.

Consider Figure 5.7 (top). The two splits among which you needed to choose in
Example 5.3 (before inflating the positives) are indicated as points in this plot. I have
drawn six isometrics in the top-left of the plot: two splits times three splitting criteria.
A particular splitting criterion prefers the split whose isometric is the highest (closest
to ROC heaven) of the two: you can see that only one of the three (v/Gini) prefers the
split on the top-right. Figure 5.7 (bottom) demonstrates how this changes when in-
flating the positives with a factor 10 (a coverage plot would run off the page here, so I
have plotted this in ROC space with the grid indicating how the class distribution has
changed). Now all three splitting criteria prefer the top-right split, because the entropy

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

146 5. Tree models

Positives

Negatives

Positives

Negatives

Figure 5.7. (top) ROC isometrics for entropy in blue, Gini index in violet and v/Gini in red
through the splits [8+,2-][2+,8—] (solid lines) and [10+,6—][0+,4—] (dotted lines). Only v/Gini
prefers the second split. (bottom) The same isometrics after inflating the positives with a factor
10. All splitting criteria now favour the second split; the v/Gini isometrics are the only ones that
haven't moved.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.2 Ranking and probability estimation trees 147

and Gini index ‘mountains’ have rotated clockwise (Gini index more so than entropy),
while the v/Gini mountain hasn’t moved at all.

The upshot of all this is that if you learn a decision tree or probability estimation
tree using entropy or Gini index as impurity measure — which is what virtually all avail-
able tree learning packages do — then your model will change if you change the class
distribution by oversampling, while if you use v/Gini you will learn the same tree each
time. More generally, entropy and Gini index are sensitive to fluctuations in the class dis-
tribution, v/Gini isn’t. So which one should you choose? My recommendation echoes
the ones I gave for majority class labelling and pruning: use a distribution-insensitive
impurity measure such as v/Gini unless the training set operating conditions are rep-
resentative.’

Let’s wrap up the discussion on tree models so far. How would you train a decision

tree on a given data set, you might ask me? Here’s a list of the steps [would take:

1. First and foremost, I would concentrate on getting good ranking behaviour, be-
cause from a good ranker I can get good classification and probability estima-
tion, but not necessarily the other way round.

2. T'would therefore try to use an impurity measure that is distribution-insensitive,
such as v/Gini; if that isn’t available and I can’t hack the code, I would resort to
oversampling the minority class to achieve a balanced class distribution.

3. I would disable pruning and smooth the probability estimates by means of the
Laplace correction (or the m-estimate).

4. Once I know the deployment operation conditions, I would use these to select
the best operating point on the ROC curve (i.e., a threshold on the predicted
probabilities, or a labelling of the tree).

5. (optional) Finally, I would prune away any subtree whose leaves all have the

same label.

Even though in our discussion we have mostly concentrated on binary classification
tasks, it should be noted that decision trees can effortlessly deal with more than two
classes — as, indeed, can any grouping model. As already mentioned, multi-class im-
purity measures simply sum up impurities for each class in a one-versus-rest manner.
The only step in this list that isn’t entirely obvious when there are more than two classes
is step 4: in this case I would learn a weight for each class as briefly explained in Section
3.1, or possibly combine it with step 5 and resort to reduced-error pruning (Algorithm
5.3) which might be already implemented in the package you're using.

51t should be noted that it is fairly easy to make measures such as entropy and Gini index distribution-
insensitive as well: essentially, this would involve compensating for an observed class ratio clr # 1 by dividing
all counts of positives, or positive empirical probabilities, by cir.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

148 5. Tree models

5.3 Tree learning as variance reduction

We will now consider how to adapt decision trees to regression and clustering tasks.
This will turn out to be surprisingly straightforward, and is based on the following idea.
Earlier, we defined the two-class Gini index 2p(1 — p) of a leaf as the expected error
resulting from labelling instances in the leaf randomly: positive with probability p and
negative with probability 1 — p. You can picture this as tossing a coin, prepared such
that it comes up heads with probability p, to classify examples. Representing this as
a random variable with value 1 for heads and 0 for tails, the expected value of this
random variable is p and its variance p(1 — p) (look up ‘Bernoulli trial’ online if you
want to read up on this). This leads to an alternative interpretation of the Gini index as
avariance term: the purer the leaf, the more biased the coin will be, and the smaller the
variance. For k classes we simply add up the variances of all one-versus-rest random
variables.®

More specifically, consider a binary split into n; and n, = n — n; examples with
empirical probabilities p; and p-, then the weighted average impurity of these children

in terms of the Gini index is

ny, . R ny, . R ny o Nz »

Z2pi(= po) + 21 - po) =2(=0 + =20?)

n P1 P1 " p2 p2 p 01T 02
where 0'? is the variance of a Bernoulli distribution with success probability p;. So,
finding a split with minimum weighted average Gini index is equivalent to minimising
weighted average variance (the factor 2 is common to all splits and so can be omitted),
and learning a decision tree boils down to partitioning the instance space such that

each segment has small variance.

Regression trees

In regression problems the target variable is continuous rather than binary, and in that
case we can define the variance of a set Y of target values as the average squared dis-

tance from the mean: .

Var(Y) =
=1y

> y-9?

yeyYy

where y = I_llfl Y yey ¥ is the mean of the target values in Y; see Background 5.1 for some

useful properties of variance. If a split partitions the set of target values Y into mutually

exclusive sets {Y1, ..., Y;}, the weighted average variance is then
Ly;l Lyl 1 1 Lyl
J j 2 -2 2 i'—2
Var({Yy,...,V;}) = ——Var(Y;) = — | — -¥5l=— -y —9
27y V0= L |Yj|yezyjy T P Ml
(5.4)

6This implicitly assumes that the one-versus-rest variables are uncorrelated, which is not strictly true.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.3 Tree learning as variance reduction 149

The variance of a set of numbers X < R is defined as the average squared difference from
the mean:

Var(X) = — Y (x-%)?
|X | vex
where X = ﬁ Y cex X is the mean of X. Expanding (x — %)% = x2 - 2Xx +%2 this can be

written as

Var(X) = Zx —2xe+Zx) (Zx — 2% X[% + | X|%2 Zx
xeX xeX xeX 1 X1 xeX |X| xeX

(5.3)

So the variance is the difference between the mean of the squares and the square of the
mean.
It is sometimes useful to consider the average squared difference from another value x’ €

R, which can similarly be expanded:

Y (x-x)? Y x%-2x4|XI%+1X|x"? | = Var(X) + (' - %)
|X | xeX |X | xeX

The last step follows because from Equation 5.3 we have ﬁ Y yex ¥ = Var(X) + X2,

Another useful property is that the average squared difference between any two elements

of X is twice the variance:

— %, LG Y (Var(X) + (' -®?) = Var(X) + — Y. (x' ~%)? = 2Var(X)
|X| x'eX xeX |X| x'eX |X|x€X

If X < R9 is a set of d-vectors of numbers, we can define the variance Var; (X) for each of
the d coordinates. We can then interpret the sum of variances Z?:I Var; (X) as the average
squared Euclidean distance of the vectors in X to their vector mean X = |17| Y xex X.

(You will sometimes see sample variance defined as ﬁ Y vex (x—%)2, which is a some-
what larger value. This version arises if we are estimating the variance of a population
from which X is a random sample: normalising by | X| would underestimate the popula-
tion variance because of differences between the sample mean and the population mean.
Here, we are only concerned with assessing the spread of the given values X and not with

some unknown population, and so we can ignore this issue.)

Background 5.1. Variations on variance.

So, in order to obtain a regression tree learning algorithm, we replace the impurity
measure Imp in Algorithm 5.2 with the function Var. Notice that |—11,| 2 yey y? is con-
stant for a given set Y, and so minimising variance over all possible splits of a given
parent is the same as maximising the weighted average of squared means in the chil-

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

150 5. Tree models

(Leslie] (x)=4513 T(x)=77 1(x)=870 (Leslie]

=yes \ =no =yes \=no

1(x)=1900 (x)=1411 1(x)=625 (x)=185

Figure 5.8. A regression tree learned from the data in Example 5.4.

dren. The function Label(Y) is similarly adapted to return the mean value in Y, and
the function Homogeneous(Y) returns true if the variance of the target values in Y is
zero (or smaller than a low threshold).

Example 5.4 (Learning a regression tree). Imagine you are a collector of vintage
Hammond tonewheel organs. You have been monitoring an online auction site,
from which you collected some data about interesting transactions:

Model Condition Leslie Price
1. B3 excellent no 4513
2. T202 fair yes 625
3. Al00 good no 1051
4. T202 good no 270
5. M102 good yes 870
6. Al100 excellent no 1770
7. T202 fair no 99
8. Al00 good yes 1900
9. El12 fair no 77

From this data, you want to construct a regression tree that will help you deter-
mine a reasonable price for your next purchase.

There are three features, hence three possible splits:

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.3 Tree learning as variance reduction 151

Model = [A100,B3,E112,M102,T202] [1051,1770,1900][4513][77][870][99,270,625]
Condition = [excellent, good, fair] [1770,4513][270,870,1051,1900]([77,99, 625]
Leslie = [yes, no] [625,870,1900](77,99,270,1051,1770,4513]
The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted
average of squared means is 3.21 - 105. The means of the second split are 3142,
1023 and 267, with weighted average of squared means 2.68-105; for the third split
the means are 1132 and 1297, with weighted average of squared means 1.55-10°.
We therefore branch on Model at the top level. This gives us three single-instance
leaves, as well as three A100s and three T202s.

For the A100s we obtain the following splits:
Condition = [excellent, good, fair] [1770][1051,1900](]
Leslie = [yes, no] [1900][1051,1770]
Without going through the calculations we can see that the second split results in
less variance (to handle the empty child, it is customary to set its variance equal
to that of the parent). For the T202s the splits are as follows:
Condition = [excellent, good, fair] [11270][99, 625]
Leslie = [yes, no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned
regression tree is depicted in Figure 5.8.

Regression trees are susceptible to overfitting. For instance, if we have exactly one
example for each Hammond model then branching on Model will reduce the average
variance in the children to zero. The data in Example 5.4 is really too sparse to learn
a good regression tree. Furthermore, it is a good idea to set aside a pruning set and
to apply reduced-error pruning, pruning away a subtree if the average variance on the
pruning set is lower without the subtree than with it (see Algorithm 5.3 on p.144). It
should also be noted that predicting a constant value in a leaf is a very simple strategy,
and methods exist to learn so-called model trees, which are trees with linear regression
models in their leaves (8= linear regression is explained in Chapter 7). In that case, the
splitting criterion would be based on correlation of the target variable with the regres-
sor variables, rather than simply on variance.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

152 5. Tree models

Clustering trees

The simple kind of regression tree considered here also suggests a way to learn cluster-
ing trees. This is perhaps surprising, since regression is a supervised learning problem
while clustering is unsupervised. The key insight is that regression trees find instance
space segments whose target values are tightly clustered around the mean value in the
segment — indeed, the variance of a set of target values is simply the (univariate) av-
erage squared Euclidean distance to the mean. An immediate generalisation is to use
a vector of target values, as this doesn't change the mathematics in an essential way.
More generally yet, we can introduce an abstract function Dis : & x & — R that mea-
sures the distance or dissimilarity of any two instances x, x’ € &, such that the higher
Dis(x, x') is, the less similar x and x" are. The cluster dissimilarity of a set of instances
D is then calculated as

1

Dis(D) = > Y Dis(x,x) (5.5)

|D |2 xeD x'eD

The weighted average cluster dissimilarity over all children of a split then gives the split
dissimilarity, which can be used to inform BestSplit(D, F) in the 8= GrowTree algorithm
(Algorithm 5.1 on p.132).

Example 5.5 (Learning a clustering tree using a dissimilarity matrix).
Assessing the nine transactions on the online auction site from Example
5.4, using some additional features such as reserve price and number of bids
(these features do not matter at the moment but are shown in Example 5.6), you
come up with the following dissimilarity matrix:

0 1
11
6
13
10
3
13
3
12

—
w
—
(=]
—
w
—
[\

S O W =
NN =D O = O
[— I R T \C R
O N O W o O =
W = b O W R = W W
o B O kO SN O
O R =N RN W
© B O W o o~ O

This shows, for instance, that the first transaction is very different from the other
eight. The average pairwise dissimilarity over all nine transactions is 2.94.
Using the same features from Example 5.4, the three possible splits are (now

with transaction number rather than price):

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.3 Tree learning as variance reduction 153

Model = [A100,B3,E112,M102,T202] [3,6,8][1][9](5](2,4,7]
Condition = [excellent, good, fair] [1,6][3,4,5,8][2,7,9]
Leslie = [yes, no] [2,5,8]11,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is 3% (0+1+2+1+0+1+2+
1+0) = 0.89; and among transactions 2, 4 and 7 it is 3l2 (0+1+0+1+0+0+0+0+0) =
0.22. The other three children of the first split contain only a single element and
so have zero cluster dissimilarity. The weighted average cluster dissimilarity of
the splitis then 3/9-0.89+1/9:0+1/9-0+1/9-0+3/9-0.22 = 0.37. For the second
split, similar calculations result in a split dissimilarity of2/9-1.5+4/9-1.19+3/9-
0 = 0.86, and the third split yields 3/9-1.56 +6/9-3.56 = 2.89. The Model feature
thus captures most of the given dissimilarities, while the Leslie feature is virtually

unrelated.

Most of the caveats of regression trees also apply to clustering trees: smaller clusters
tend to have lower dissimilarity, and so it is easy to overfit. Setting aside a pruning set
to remove the lower splits if they don’t improve the cluster coherence on the pruning
set is recommended. Single examples can dominate: in the above example, removing
the first transaction reduces the overall pairwise dissimilarity from 2.94 to 1.5, and so
it will be hard to beat a split that puts that transaction in a cluster of its own.

An interesting question is: how should the leaves of a clustering tree be labelled?
Intuitively, it makes sense to label a cluster with its most representative instance. We
can define an instance as most representative if its total dissimilarity to all other in-
stances is lowest — this is defined as the medoid in Chapter 8. For instance, in the A100
cluster transaction 6 is most representative because its dissimilarity to 3 and 8 is 1,
whereas the dissimilarity between 3 and 8 is 2. Likewise, in the T202 cluster transac-
tion 7 is most representative. However, there is no reason why this should always be
uniquely defined.

A commonly encountered scenario, which both simplifies the calculations involved
in determining the best split and provides a unique cluster label, is when the dissim-
ilarities are Euclidean distances derived from numerical features. As shown in Back-
ground 5.1, if Dis(x, x') is squared Euclidean distance, then Dis(D) is twice the average
squared Euclidean distance to the mean. This simplifies calculations because both the
mean and average squared distance to the mean can be calculated in O(|D]) steps (a
single sweep through the data), rather than the oD% required if all we have is a dis-
similarity matrix. In fact, the average squared Euclidean distance is simply the sum of
the variances of the individual features.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

154 5. Tree models

=A100 =M102 =T202

(16,14,9.7)| | (45, 30, 22) (1,0,5) ©,5,2) (3.3,0, 4.3)

Figure 5.9. A clustering tree learned from the data in Example 5.6 using Euclidean distance on

the numerical features.

Example 5.6 (Learning a clustering tree with Euclidean distance). We extend
our Hammond organ data with two new numerical features, one indicating the
reserve price and the other the number of bids made in the auction. Sales price
and reserve price are expressed in hundreds of pounds in order to give the three
numerical features roughly equal weight in the distance calculations.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22
T202 fair yes 6 0 9
A100 good no 11 8 13
T202 good no 3

M102 good yes 9 5 2
A100 excellent no 18 15 15
T202 fair no 1 0 3
A100 good yes 19 19 1
E112 fair no 1 0 5

The means of the three numerical features are (13.3,8.6,7.9) and their variances
are (158,101.8,48.8). The average squared Euclidean distance to the mean is
then the sum of these variances, which is 308.6 (if preferred we can double
this number to obtain the cluster dissimilarity as defined in Equation 5.5). For
the A100 cluster these vectors are (16,14,9.7) and (12.7,20.7,38.2), with average
squared distance to the mean 71.6; for the T202 cluster they are (3.3,0,4.3) and
(4.2,0,11.6), with average squared distance 15.8. Using this split we can construct
a clustering tree whose leaves are labelled with the mean vectors (Figure 5.9).

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

5.4 Tree models: Summary and further reading 155

In this example we used categorical features for splitting and numerical features
for distance calculations. Indeed, in all tree examples considered so far we have only
used categorical features for splitting.” In practice, numerical features are frequently
used for splitting: all we need to do is find a suitable threshold ¢ so that feature F can
be turned into a binary split with conditions F = ¢ and F < ¢. Finding the optimal split
point is closely related to 8= discretisation of numerical features, a topic we will look at
in detail in Chapter 10. For the moment, the following observations give some idea
how we can learn a threshold on a numerical feature:

¢= Although in theory there are infinitely many possible thresholds, in practice we
only need to consider values separating two examples that end up next to each
other if we sort the training examples on increasing (or decreasing) value of the
feature.

We only consider consecutive examples of different class if our task is classifi-
cation, whose target values are sufficiently different if our task is regression, or
whose dissimilarity is sufficiently large if our task is clustering.

8= Each potential threshold can be evaluated as if it were a distinct binary feature.

5.4 Tree models: Summary and further reading

Tree-based data structures are ubiquitous in computer science, and the situation is no
different in machine learning. Tree models are concise, easy to interpret and learn,
and can be applied to a wide range of tasks, including classification, ranking, proba-
bility estimation, regression and clustering. The tree-based classifier for human pose
recognition in the Microsoft Kinect motion sensing device is described in Shotton et al.
(2011).

Iintroduced the feature tree as the common core for all these tree-based models,
and the recursive GrowTree algorithm as a generic divide-and-conquer algorithm
that can be adapted to each of these tasks by suitable choices for the functions
that test whether a data set is sufficiently homogeneous, find a suitable label if it
is, and find the best feature to split on if it isn't.

8= Using a feature tree to predict class labels turns them into decision trees, the
subject of Section 5.1. There are two classical accounts of decision trees in ma-
chine learning, which are very similar algorithmically but differ in details such as
heuristics and pruning strategies. Quinlan’s approach was to use entropy as im-
purity measure, and progressed from the ID3 algorithm (Quinlan, 1986), which

7Categorical features are features with a relatively small set of discrete values. Technically, they distinguish
themselves from numerical features by not having a scale or an ordering. This is further explored in Chapter
10.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

156 5. Tree models

itself was inspired by Hunt, Marin and Stone (1966), to the sophisticated C4.5
system (Quinlan, 1993). The CART approach stands for ‘classification and regres-
sion trees’ and was developed by Breiman, Friedman, Olshen and Stone (1984);
it uses the Gini index as impurity measure. The /Gini impurity measure was
introduced by Dietterich, Kearns and Mansour (1996), and is hence sometimes
referred to as DKM. The geometric construction to find Imp({D;, D»}) in Figure
5.2 (right) was also inspired by that paper.

8= Employing the empirical distributions in the leaves of a feature tree in order to
build rankers and probability estimators as described in Section 5.2 is a much
more recent development (Ferri et al., 2002; Provost and Domingos, 2003). Ex-
perimental results demonstrating that better probability estimates are obtained
by disabling tree pruning and smoothing the empirical probabilities by means
of the Laplace correction are presented in the latter paper and corroborated by
Ferri et al. (2003). The extent to which decision tree splitting criteria are insensi-
tive to unbalanced classes or misclassification costs was studied and explained
by Drummond and Holte (2000) and Flach (2003). Of the three splitting criteria
mentioned above, only v/Gini is insensitive to such class and cost imbalance.

8= Tree models are grouping models that aim to minimise diversity in their leaves,
where the appropriate notion of diversity depends on the task. Very often diver-
sity can be interpreted as some kind of variance, an idea that already appeared
in (Breiman et al., 1984) and was revisited by Langley (1994), Kramer (1996) and
Blockeel, De Raedt and Ramon (1998), among others. In Section 5.3 we saw how
this idea can be used to learn regression and clustering trees (glossing over many
important details, such as when we should stop splitting nodes).

It should be kept in mind that the increased expressivity of tree models compared
with, say, conjunctive concepts means that we should safeguard ourselves against over-
fitting. Furthermore, the greedy divide-and-conquer algorithm has the disadvantage
that small changes in the training data may lead to a different choice of the feature at
the root of the tree, which will influence the choice of feature at subsequent splits. We
will see in Chapter 11 how methods such as bagging can be applied to help reduce this
kind of model variance.

https://doi.org/10.1017/CBO9780511973000.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.007

