
6

Approximate matching

6.1 Basic concepts

Approximate string matching, also called "string matching allowing errors,"
is the problem of finding a pattern p in a text T when a limited number k of
differences is permitted between the pattern and its occurrences in the text.

From the many existing models defining a "difference," we focus on the
most popular one, called Levenshtein distance or edit distance [Lev65]. Other
more complex models exist, especially in computational biology, but the
edit distance model has received the most attention and the most effective
algorithms have been developed for it. Some of these algorithms can be
extended to more complex models.

Under edit distance, one difference equals one edit operation: a character
insertion, deletion, or substitution. That is, the edit distance between two
strings x and y, ed(x, y), is the minimum number of edit operations required
to convert x into y, or vice versa. For example, ed(annual,annealing) =
4. The approximate string matching problem becomes that of finding all
occurrences in T of every p' that satisfies ed(p,p') < k. To ensure a linear
size output it is customary to report only the starting or ending positions
of the occurrences.

Note that the problem only makes sense for 0 < k < m, because otherwise
every text substring of length m can be converted into p by substituting the
m characters. The case k = 0 corresponds to exact string matching. We
call a = k/rn the "error level." It gives a measure of the "fraction" of the
pattern that can be altered.

We concentrate on algorithms that are the fastest in the cases that are
likely to be of use in some foreseeable application, particularly text retrieval
and computational biology. In particular, a < 1/2 in most cases of interest.

We present four approaches. The first approach, which is also the oldest
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146 Approximate matching

and most flexible, adapts a dynamic programming algorithm that computes
edit distance. The second uses an automaton-based formulation of the prob-
lem and deals with the ways to simulate the automaton. The third, one of
the most successful approaches, is based on the bit-parallel simulation of
other approaches. Finally, the fourth approach uses a simple necessary con-
dition to filter out large text areas and another algorithm to search the areas
that cannot be discarded. Filtration is the most successful approach for low
error levels.

6.2 Dynamic programming algorithms

The oldest solution to the problem relies on dynamic programming. Discov-
ered and rediscovered many times since the 1960s, the final search algorithm
is attributed to Sellers [Sel80]. Although the algorithm is not very efficient,
taking O(mn) time, it is among the most adaptable to more complex dis-
tance functions.

We first show how to compute the edit distance between two strings.
Later, we extend the algorithm to search for a pattern in a text allowing
errors. We then show how this algorithm can be made faster on average.
Finally, we discuss alternative algorithms based on dynamic programming.

6.2.1 Computing edit distance

We need to compute ed(x,y). A matrix Mo...|a;|)o...|2/| is rilled, where Mis-
represents the minimum number of edit operations needed to match x\,,,i to
yi...j, that is, Mjj = ed(xi...i,yi...j). This is computed as follows:

Mo,o <- 0

Mij <- min(M i_1)i_i + S(xi,yj), M^j + 1, M i ;J_i + 1)

where 5(a,b) = 0 if a = b and 1 otherwise, and M is assumed to take the
value oo when accessed outside its bounds. At the end, M\x\^y\ = ed(x,y).

The rationale of the formula is as follows. Mo5o is the edit distance be-
tween two empty strings. For two strings of length i and j , we assume
inductively that all the edit distances between shorter strings have already
been computed, and try to convert x\,,,i into yi...j.

Consider the last characters x% and yj. If they are equal, we do not need
to consider them, just convert xi..i_i into yi...j-i at a cost M{-ij-i. On
the other hand, if they are not equal, we must deal with them. Following
the three allowed operations, we can substitute x% by yj and convert a?i...i_i
into yi...j-i at a cost M J _ I J _ I + 1, delete Xi and convert x\,,,i-\ into yi...j at
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6.2 Dynamic programming algorithms 147

a cost Mj- i j + 1, or insert yj at the end of xi...f and convert xi...f into yi...j-i
at a cost Mij-i + 1. Note that the insertions in one string are equivalent to
deletions in the other.

Therefore, the algorithm is 0(|x||y|) time in the worst and average cases.
An alternative formulation that yields faster coding is as follows:

Mly0 <r- t, M0J <r- j (6.1)

M . ( Mi-ij-i tfxi = yj ,
%'3 \ 1 + min(Mi_iJ_i,Mi_iJ-,MiJ_i) otherwise

which is equivalent to the previous one because neighboring cells in M differ
at most by 1. Therefore, when S(xi,yj) = 0, we have that Mi_i :j_i cannot
be larger than M J _ I J + 1 or M J J _ I + 1.

From the matrix it is possible to determine an optimal path, that is, a
minimum cost sequence of matrix cells that goes from cell Mo:o to M\x\^yy
Multiple paths may exist. Each path is related to an alignment, which is
a mapping between the characters of x and y that shows how characters
should be matched, substituted, and deleted to make x and y equal. A
complete reference on alignments is [Gus97].

Figure 6.1 illustrates the algorithm to compute ed(annual, annealing).
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Fig. 6.1. Example of the dynamic programming algorithm to compute the edit
distance between "annual" and "annealing". The path in bold yields the only
optimal alignment. On the right we show the alignment, where the dashed line
means a substitution.

6.2.2 Text searching

Searching a pattern p in a text T is basically similar to computing edit
distance, with x = p and y = T. The only difference is that we must allow
an occurrence to begin at any text position. This is achieved by setting
MQJ = 0 for all j € 0 . . . n. That is, the empty pattern occurs with zero
errors at any text position because it matches with a text substring of length
zero.
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148 Approximate matching

The resulting algorithm needs O(mn) time. If we use a matrix M, it also
needs O(mn) space. However, we can work with just O(m) space. The
key observation is that to compute M*j we only need the values of M*5j_i.
Therefore, instead of building the whole matrix M, we process T character
by character and maintain a column C of M, which is updated after reading
each new text position j to keep the invariant C{ = Mij.

The algorithm initializes its column Co...m with the values C{ <— i and
processes the text character by character. At each new text character t j , its
column vector is updated to Cg_m. The update formula is

1 + min(Cj_i, C[_x,Ci) otherwise

and the text positions where Cm < k are reported as ending positions of
occurrences. Observe that since C = M*j_i is the old column and C = M*j
is the new one, Ci-\ corresponds to Mi_i j_ i , C'i_1 to Mi-ij and d to
Mij-i in formula (6.1).

Figure 6.2 applies this algorithm to search for the pattern "annual" in
the text "annealing" with at most k = 2 errors. In this case there are three
occurrences.
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Fig. 6.2. Example of the dynamic programming algorithm to search for "annual"
in the text "annealing" with two errors. Each column of this matrix is a value
of the column C at some point in time. Bold entries indicate ending positions of
occurrences in the text.

6.2.3 Improving the average case

A simple twist to the dynamic programming algorithm [Ukk85], which re-
tains all its flexibility, takes O(kn) time on average [CL92, BYN99]. We call
it D P . The idea is that, since a pattern does not normally match in the
text, the values at each column read from top to bottom quickly reach k + 1
(i.e., mismatch), and that if a cell has a value larger than k + 1, the result
of the search does not depend on its exact value. A cell is called active if
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6.2 Dynamic programming algorithms 149

its value is at most k. The algorithm keeps count of the last active cell and
avoids working on subsequent cells.

The last active cell must be recomputed for each new column. When
moving from one text position to the next, the last active cell can be incre-
mented by at most one since neighbors in M differ by at most one, so we
check in constant time whether we have activated the next cell. However, it
is also possible that the formerly last active cell becomes inactive now. In
this case we have to search upwards in the column for the new last active
cell. Although we can work O(m) at a given column, we cannot work more
than O(n) overall, because there are at most n increments of this value in
the whole process, and hence there are no more than n decrements. So, the
last active cell is maintained at 0(1) worst-case amortized cost per column.

Figure 6.3 shows pseudo-code for this algorithm. Its basic idea of avoiding
to compute some inactive cells has been used extensively in other algorithms.
In particular, the bit-parallel algorithms that we cover later profit from this
technique to reduce their average search time.

DP
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

(p = PiP2 . . .pm, T = tit2 ...tn, k)
Preprocessing

For i e 0 .. . m Do d <- i
lact«— k + 1 /* last active cell */

Searching
For pos G 1. . . n Do

pC <- 0, nC <- 0
For i el... lact Do

If Pi = tpos T h e n nC <- pC
Else

If pC < nC Then nC <- pC
If d < nC Then nC <- d
nC 4r- nC + 1

End of if
pC 4r- d, d ^nC

End of for
While Ciact > k Do lact <- lact - 1
If lact = m Then report an occurrence at pos
Else lact <- lact + 1

End of for

Fig. 6.3. An 0{kn) expected time dynamic programming algorithm. Note that it
works with just one column vector.
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6.2.4 Other algorithms based on dynamic programming

There are many other algorithms based on this scheme. From the practical
point of view, the most interesting is "column partitioning" [CL92], which
obtains O(kn/-\/\E\) expected time [NavOla]. This is the fastest algorithm
based on dynamic programming. But it is hard to extend to more complex
distance functions, and in this case newer bit-parallel algorithms are faster.

From the theoretical point of view, some of the most important algorithms
are based on dynamic programming. If we are restricted to polynomial space
in m and k, then the best existing algorithms use this technique and achieve
O(kn) worst-case search time with O(m) extra space. The most competitive
in practice are [GP90, CL94], which are still slower than algorithms that do
not offer such a worst-case guarantee. When k is much smaller than m, an
O(n(l + k4/m)) time algorithm [CH98] becomes of interest. The worst-case
lower bound for the problem when only polynomial space in m and k can
be used is an open issue.

6.3 Algorithms based on automata

An alternative and very useful way to consider the approximate search prob-
lem is to model the search with a nondeterministic finite automaton (NFA).
This automaton, in its deterministic form, was proposed first in [Ukk85],
and later explicitly presented in [BY91, WM92b, BYN99].

Consider the NFA for k = 2 errors under edit distance shown in Fig-
ure 6.4. Every row denotes the number of errors seen. Every column rep-
resents matching a pattern prefix. Horizontal arrows represent matching a
character (i.e., if the pattern and text characters match, we advance in the
pattern and in the text). All the others increment the number of errors by
moving to the next row: Vertical arrows insert a character in the pattern
(we advance in the text but not in the pattern), solid diagonal arrows substi-
tute a character (we advance in the text and pattern), and dashed diagonal
arrows delete a character of the pattern (they are e-transitions, since we
advance in the pattern without advancing in the text). The initial self-loop
allows an occurrence to start anywhere in the text. The automaton signals
(the end of) an occurrence whenever a rightmost state is active.

It is not hard to see that once a state in the automaton is active, all
the states in the same column and higher numbered rows are active too.
Moreover, at a given text position, if we collect the smallest active rows
at each NFA column, we obtain the current vertical vector of the dynamic
programming matrix. For example, after reading the text "anneal", the
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seventh column in Figure 6.2 shows that C = [0,1,1, 2, 3, 2,1]. Compare it
with the least active row per NFA column in Figure 6.4.

*KQ) 1 error

2 errors

Fig. 6.4. An NFA for approximate string matching of the pattern "annual" with
two errors. The shaded states are those active after reading the text "anneal".

The original proposal of [Ukk85] was to make this automaton deterministic
using the classical algorithm to convert an NFA into a DFA. This way, 0{n)
worst-case search time is obtained, which is optimal. The main problem
then becomes the construction and storage requirements of the DFA. An
upper bound to the number of states of the DFA is O(min(3m,m(2m|E|)fc))
[Ukk85]. In practice, this automaton cannot be used for m > 20, and
nowadays it is not the best choice even for small m: Bit-parallel algorithms
are simpler and faster thanks to their higher locality of reference.

An alternative way to look at the DFA is to consider that each DFA state
is a possible column of the dynamic programming matrix, so the prepro-
cessing precomputes the transitions among columns for each possible input
character.

Later developments [WMM96] based on the Four-Russians approach tack-
led the space and preprocessing cost problem by cutting columns into "re-
gions" and building a DFA of regions. Figure 6.5 shows a schematic view of
the automaton.

Given O(s) space, the algorithm obtains O(A;n/logs) expected time and
O(mn/logs) worst-case time. Although it is the fastest choice in practice
for long patterns and high error level (a > 0.7), we do not include the
details of this algorithm because it is complicated and because it is not the
fastest in the most interesting cases: 0.7 is too high an error level for most
applications.
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Fig. 6.5. On the left is the full DFA, where each column is a state. On the right
is the Four-Russians version, where each region of a column is a state. The arrows
show dependencies between consecutive regions.

6.4 Bit-parallel algorithms

Bit-parallelism has been heavily used for approximate searching, and many
of the best results are obtained using this approach. The results are most
useful for short patterns, and in many cases these are the patterns of in-
terest. In cases when the representation does not fit in a single computer
word, standard techniques permit the simulation of a virtual computer word
formed from a number of physical words. Then, the techniques developed in
Section 6.2.3 for the algorithm DP can be applied, so that only the computer
words holding "active" data are updated.

Bit-parallel algorithms simulate "classical" algorithms. In approximate
searching we find some that parallelize the work of the NFA and others that
parallelize the work of the dynamic programming matrix.

6.4.I Parallelizing the NFA

If we consider the first row of Figure 6.4, we are left with an NFA for
exact string matching, the same one that is simulated using the Shift-And
approach (Section 2.2.2). Different techniques have been proposed to extend
this idea to the more general automaton.

6.4-1.1 Row-wise bit-parallelism

The simplest technique [WM92b], which we call BPR, packs each row i of
the NFA in a different machine word Ri, with each state represented by a
bit. For each new text character, all the transitions of the automaton are
simulated using bit operations among the k + 1 bit masks. Notice that all
k + 1 bit masks have the same structure, that is, the same bit is aligned to
the same text position. The update formula to obtain the new R[ values at

https://doi.org/10.1017/CBO9781316135228.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.006


6.4 Bit-parallel algorithms 153

text position j from the current Ri values is

where B is the table from the Shift-And algorithm. We start the search
with Ri = 0m~zP, which is equivalent to C{ = % in the D P algorithm. As
expected, RQ undergoes a simple Shift-And process, while the other rows
receive ones (i.e., active states) from previous rows as well. The formula
for R[ expresses horizontal, vertical, diagonal, and dashed diagonal arrows,
respectively. Figure 6.6 gives pseudo-code for this algorithm.

B P R
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

(P = PlP2...Pm,T = t1t2...tn,k)

Preprocessing
For c G E Do B[c] <- 0m

For j G 1. . . m Do £[pj] <- 5[pj] | 0
Searching

For i G 0 . . i D o ^ f - O
m"*l*

For pos G 1... n Do
o/d,R ̂ - Ro
newR <- ((oldR « 1) | O™'1!)
Ro <- newR
For i G 1 . . . A; D o

newR <- ((Ri « 1) & B[tpos

oldR ^ Ri, Ri <<r- newR
End of for
If newRk lO™"1 / 0m Then

End of for

m-jioj-l

& B[tpos]

]) | o/d,R | ((oldR | new;^) << 1)

report an occurrence at pos

Fig. 6.6. Row-wise bit-parallel simulation of the NFA. The length of the pattern
must be less than w.

The cost of this simulation is 0(k\m/w\n) in the worst and average cases,
which is O(kn) for patterns typical in text searching (i.e., m < w). Notice
that for short patterns this is competitive with the best worst-case algo-
rithms. As we see next, one can do much better, but this algorithm has
maximum flexibility when it comes to adapting it to more complex cases
such as wild cards or regular expression searching allowing errors.

Example of BPR We search for the string "annual" in the text "annea-
l ing" allowing k = 2 errors. Note that, at any point, the bit representations
of i?o, Ri-) and i?2 resemble the active states in the NFA of Figure 6.4,
provided we read the states right to left and discard the first column of the
NFA, which is never represented because it is known to be active all the
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time. In particular, compare the bit map after reading the text "anneal"
with the active states of Figure 6.4. It is also interesting to compare the bit
maps to the column values of Figure 6.2 to check that Ci is the least active
row at NFA column i.

a
1
n
u
*

01000 1
100000
000110
00 1000
000000

B =

# 1 = 0 0 0 0 0 1
#2 = 0 0 0 0 1 1

6. Reading 1 10 0 0 0 0
# o = 0 0 0 0 0 0
R1= 10 0 0 1 1
# 2 = 1 1 0 1 1 1

The last bit of #2 is set again, so we
mark an occurrence. Note that the
position matches even in # 1 , i.e., with
k = 1 errors.

1. Reading a 0 10 0 0 1
#o~=^ 0 0 0 0 0 1
#1 = 0 0 0 0 11
R2= 0 0 0 1 1 1

2. Reading n 0 0 0 1 1 0
#o~=^ 0000 10
R1= 0 0 0 111
R2= 0 0 1111

3. Reading n 0 0 0 1 1 0
#0 = 0 0 0 10 0
R1= 0 0 1 1 1 1
R2= 0 1 1 1 1 1

4. Reading e 0 0 0 0 0 0
# 0 = 0 0 0 0 0 0
R1 = 0 0 1 1 0 1
# 2 = 0 1 1 1 1 1

5. Reading a 0 10 0 0 1
#0 = 0 0 0 0 0 1
R1 = 0 10 0 11
#2 = 1 1 1 1 1 1

The last bit of #2 is set, so we mark an
occurrence.

7. Reading i 0 0 0 0 0 0
#o~=^ 0 0 0 0 0 0
#1 = 0 0 0 0 0 1
#2 = 10 0 1 1 1

The last bit of #2 is set, so we mark
an occurrence. Note that this occur-
rence is just a consequence of having
matched with k < 2 errors at the pre-
vious positions, since no more matches
of pattern letters are involved.

8. Reading n 0 0 0 1 1 0
# 0 = 0 0 0 0 0 0
#1 = 0 0 0 0 11
#2 = 0 0 0 111

9. Reading g 0 0 0 0 0 0
# o = 0 0 0 0 0 0
#i = 0 0 0 0 0 1
#2 = 0 0 0 111

6.4-1-2 Diagonal-wise bit-parallelism

In light of the row-wise parallelization presented above, the classical dynamic
programming algorithm can be thought of as a column-wise parallelization
of the automaton where, as explained, each NFA column corresponds to
a cell in C that stores the smallest active row at that column. Neither
algorithm is able to increase the parallelism even if all the NFA states fit
in a computer word, because the ̂ -transitions of the automaton cause zero-
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time dependencies. That is, the current values of two rows or two columns
depend on each other and hence cannot be computed in parallel.

In [BYN99] the bit-parallel formula for a diagonal-wise parallelization
was found. We call B P D the resulting algorithm. They pack the states of
the automaton along diagonals instead of rows or columns, running in the
direction of the diagonal arrows. There are m — k + 1 complete diagonals,
which are numbered left to right from 0 to m — k. Let D{ be the row
number of the first active state in diagonal i. All the subsequent states in
the diagonal are active because of the e-transitions. The new D\ values after
reading text position j are

D'i <- m i n ( A + l , A + i + 1, g{i-l,tj)) (6.2)

where the first term represents the substitutions, the second term the inser-
tions, and the last term the matches. Deletions are implicit since only the
lowest-row active state of each diagonal is represented. The main problem
is how to compute the function g, defined as

g(i, c) = min ( {k + 1} U { r, r > Di AND j>i+i+r = c } )

which expresses the fact that from all active states at diagonal i, namely,
r € {Di, Di + 1, . . . , k}, those that can follow a horizontal arrow (i.e.,
Pi+i+r = c) move to diagonal i + 1. We take the minimum over those r.
Another way to understand g is to note that an active state that crosses a
horizontal edge has to propagate all the way down along the diagonal.

This process is simulated in [BYN99] by representing the D{ values in
unary and using arithmetic operations on the bits to produce the desired
propagation effect (in Section 4.4 a similar flooding problem is solved in de-
tail). The update formula can be understood either numerically (operating
on the Di) or logically (simulating the arrows of the automaton). A com-
puter word D holds m — k blocks, one per diagonal excluding DQ because
it is known to be always active. From left to right, D\ to Dm_^ are repre-
sented. Inside each block there are k + 2 bits. The rightmost bit is always
zero to avoid propagation of arithmetic operations to adjacent blocks, and
the other k + 1 bits are used to represent Di in unary: The leftmost D{ bits
of block i are 1 and the others are 0. The typical B table is used, except
that its bits are reversed. A table BB is computed from B in order to align
the corresponding horizontal arrows to the arrangement made in D.

Figure 6.7 shows the algorithm. The representation does not include the
states to the right of the last full diagonal. As a result, some occurrences
are lost. However, those occurrences are uninteresting in most applications
since they are trivial extensions of occurrences already found, in the sense
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that no new pattern characters match the text (such as the one found after
processing "anneali" in the example of BPR) . To ensure that those occur-
rences are consistently discarded, line 14 removes all the active states in the
last diagonal after an occurrence is reported. Hence the algorithm reports
any occurrence that ends with a text character matching the pattern.

Line 11 updates D according to formula (6.2), by AND-ing four expressions,
an operation that corresponds to minimization in unary. The first expression
represents Dj + 1, the second Dj+i + 1, the third g(i — l,tpos), and the last
cleans up separators. About the third expression, note that x holds the
states of the previous diagonal that arrive by horizontal transitions, and we
make the last zero flood the block to the right.

B P D (p = p l P 2 . . . p m , T = t i t 2 ...tn, k)
1. Preprocessing
2. F o r c e E Do B[c] <- l m

3. For j € 1 . . . m Do B\pj] <- B\pj] & l m - J 0 1 J - 1

4. For c G E Do
5. BB[c]^0 sk+1(B[c],0) 0 sk+1(B[c],l) ... 0 sk+1(B[c], m - k - 1)
6. End of for
7. Searching
8. D-h- (01*+1)m-fc

9. For pos e 1 . . . n Do
10. x <- (D » (k + 2)) | BB[tpos]
11. D^((D «1)\ (0k+1l)m-k)

& ((£> << 0 + 3)) | (0fc+1l)m-fc-101*+1)
& (({x + (0*+1l)m-*;) A x) » 1) & (01*+!)™-*

12. If.D&0 (m- fc-1) ( fc+2)010 fc = 0(m-fc)(fc+2) Then
13. Report an occurrence at pos
14. D <r- D | Q(m-
15. End of if
16. End of for

k+1 bits k+1 bits

k+2 bits k+2 bits

im-ki (k+2) bits

Fig. 6.7. Diagonal-wise bit-parallel simulation of the NFA. It requires that (m —
k)(k + 2) < w. The function st(D,j) extracts the j-th to the (j + £ - l)-th bits of
D, that is, si(DJ) = (D » j) & Q(m-k)(k+2)-e1e^ Qn t h e bottom we show how
the unary Di values are arranged in the mask D.
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The resulting algorithm is O(n) worst-case time and very fast in practice
if all the bits of the automaton fit in a computer word, while the row-wise
simulation remains O(kn). In general, it is O(\k(m — k)/w]n) worst-case
time. It can be made O( \k2 /w~\n) on average by updating only the computer
words holding active states, using an adaptation of the technique for active
cells presented for DP. The scheme can handle classes of characters, wild
cards, and different integral costs in the edit operations [BYN99], but it is
less flexible than row-wise simulation.

Example of BPD We search for the string "annual" in the text "annea-
ling" allowing k = 2 errors. This time the bit representation for D is harder
to relate visually to the NFA of Figure 6.4. The rule is to read full NFA
diagonals, excluding the first, and to map them to blocks. Each diagonal
must be read from top to bottom and its active states mapped to the zeros
of its block, read from right to left.

B =

a
1
n
u
*

10 1110
011111
111001
110 111
111111

= 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

T a b l e BB

a
1
n
u
*

0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0
0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1. Reading a

BB[a\ 0101 0011 0111 0110

D~= 0000 0111 0111 0111

2. Reading n

BB[n] 0 1 1 1 0110 0100 0001

D~= 0001 0000 0111 0111

3. Reading n

BB[n] 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1
D~= 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1

4. Reading e

BB[e] 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
D = 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1

5. Reading a

BB[a\ 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0
D~= 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1

The highest bit of £>m_fc = D4 (third
bit read right to left in D) is zero, so
we mark an occurrence and clean the
last diagonal:

£> = 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1

6. Reading 1

BB[1] 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
D = 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1

The highest bit of D4 is zero again, so
we mark an occurrence and clean the
last diagonal:

£> = 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1
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7. Reading i 8. Reading n

BB[i] 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 BB[n] 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1

D = 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 D = 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1

Unlike the classical algorithm, we do g Reading g
not mark an occurrence here, because it
does not involve any new matching pat- BB\s\ 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
tern character. This is a consequence JJ _—nnii n i i i 0 1 1 1 0 1 1 1
of having cleaned the last diagonal in
the previous step.

6.4-2 Parallelizing the DP matrix
A better way to parallelize the computation [Mye99] is to represent the dif-
ferences between consecutive rows or columns of the dynamic programming
matrix instead of the absolute values. Let us call

Ahij = Mij-Mij-i G {-1,0,+1}

Auij = Mij-Mi-u G {-1,0, +1}

Adij = Mij - Mi_ij_i G {0,1}

the horizontal, vertical, and diagonal differences among consecutive cells.
Their range of values comes from the properties of the dynamic programming
matrix.

We present a version [HyyOl] that differs slightly from that of [Mye99]:
Although both perform the same number of operations per text character,
the one we present is easier to understand.

Let us introduce the following boolean variables. The first four refer to
horizontal/vertical positive/negative differences and the last to the diagonal
difference being zero:

= Ahij = +1 HNij = Ahij = - 1

Note that Auij = VPij - VNij, Niij = HP^ - HNij, and Mij
— D0ij. It is clear that these values completely define Mij = Y^r=i...i ^v
The key idea is to notice some dependencies among the above values:

, then A/i^j = —1. Therefore, the only possibility is that AL>^J_I =
+ 1 and hence Adij = 0, otherwise the A ranges of values would be vio-
lated. The last two conditions are equivalent to VPij-i AND DOij. On
the other hand, if these two conditions hold, HNij holds.
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By symmetric arguments it can be seen that VNij is logically equivalent
to HPi-ij AND DOij.

If HPij holds, then VPij—i cannot hold without violating the ranges of
the A values. So the choices for AWJJ_I are —1 and 0. In the first case
we have VNij—i, whereas in the second we have that neither VPij—i nor
DOij hold. Moreover, this is a logical equivalence: If WVjj_i, then HPij
has to hold; and if both VPij-i and DOij are false, then HPij has to
hold as well.

Symmetrically, we can see that VPij is logically equivalent to HNi-ij
OR (NOT HPi-ij AND NOT DOij).

Finally, DOij can be true for three possible reasons, which correspond
to formula (6.1). First, it may happen that Pi = Tj. Second, it may
be the case that Mij = 1 + Mjj_i = Mi—ij—i, which means HPij AND
VNij—i. Third, it may occur that Mij = 1 + Mi—ij = M J _ I J _ I , which
means VPij AND HNi—ij. From these conditions we use only (Pi = Tj)
OR VN^j-i OR HNi-ij. Note again that if any of these three conditions
hold, then DOij holds, so we have a logical equivalence.

Hence we have proved the following equivalences:

HNlyJ = VPU-i AND DOy

i-xj AND DOij

ij ij-! OR NOT (VPij-! OR DOij)

VPij = HNi-ij OR NOT (HPi-ij OR DOij)

D0lyJ = {Pi = Tj) OR VNij-! OR HNi-!j .

The algorithm traverses the text and, at each text position j , keeps track
of the five values above for every i. Since each value needs only one bit, we
keep bit masks HN, VN, HP, VP, and DO and update them for every new
text character Tj read. Hence, for example, the i-th bit of the bit mask HN
will correspond to the value HNij. The index j — 1 refers to the previous
value of the bit mask (before processing Tj), whereas j refers to the new
value, after processing Tj.

Under this light, it is clear that we can first compute DO, then HN and
HP, and finally VN and VP. However, there is a circular dependency
regarding DOij; it depends on HNi-ij, which in turn depends on D0i-ij.
That is, current DOij values depend on other current DOi'j values. This
corresponds, again, to the zero-time dependency problem and complicates
computing DO in one shot. However, a solution exists.
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Let us expand the formula for DOij:

DOij = {Pi = Tj) OR FiVij-i OR (VPi-^-i AND

which has the form D{ = X{ OR (l^-i AND Di-i). Unrolling the first
values we get

£>i = X1

D2 = X2 OR (Y1 AND Xi)D2 X2 OR (Y1 AND Xi)

D 3 = X5 OR (Yjj AND X2) OR (Yjj AND Y"i AND X\)

Dj = OR \=l(Xr AND Yj. AND yr+i AND . . . ANDAND Yi-\) .

Let s be such that Ys... y$_i = 1 and Ys-i = 0. It should be clear that
Di will be activated if Xr = 1 for some s < r < i. In other words, Di
will be activated if there is a bit set in X in the area covered by the last
contiguous block of bits set in Y. If we compute (Y + (X k, Y)): the result
is that every Xr = 1 that is aligned to a Yr = 1 will propagate a change
until one position after the end of the block. This covers all the positions %
that should be set in D because of Xr being aligned to a block of l's in Y.
If we compute (Y + (X & Y)) A Y, the bits that changed will be on. Note
that, since there may be several Xr bits under the same block of Y, all but
the first such r positions will remain unchanged and hence not marked by
the XOR operation. To fix this and to account for the case JQ = 1, we OR
the final result with X. An example is as follows:

y = 000 1 1 1 1 1 0 0 0 0 1 1

X = 00001010000101

X kY = 0 0 0 0 1 0 1 0 0 0 0 0 0 1

{Y + (X kY)) = 0 0 1 0 1 0 0 1 0 0 0 1 0 0

(Y + (XkY))AY = 0 0 1 1 0 1 1 0 0 0 0 1 1 1

DO = ((y + (x k y)) A Y) 1 x = 0 0 1 1 1 1 1 0 0 0 0 1 1 1

Once the solution to DO is obtained, the rest flows easily. Figure 6.8 gives
pseudo-code. The value err stores Cm = Mmj explicitly and is updated
using HPmj and HNmj. Note that the shifts correctly introduce zeros.

We call this algorithm BPM. It uses the bits of the computer word better
than the previous bit-parallel algorithms, with a worst case of 0(\m/w]n)
and an average case of O(\k/w]n), achieved by updating only the computer
words having "active" cells, as for DP. The update formula is a little more
complex than that of BPD and the algorithm is a bit slower, but it adapts
better to longer patterns because fewer computer words are needed. On the
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BPM (v = T =
1.
2.
3.
4.
5.
6.
7.

10.
11.
12.
13.
14.
15.
16.
17.
18.

Preprocessing
For c e S Do £[c] <-
For j G l . . . m D o 5

Searching
For pos G 1. . . n Do

DO

# P
X<h

yp

-((yp + (x&
^ yp & DO
^ VN | ~ (yp
î p « I

^X & DO
<- (HN « 1)

k)

#[PJ] I O"1^^^-1

DO)

x

(X | DO)
If i7P & lO771"1 / 0m Then err ^- err + 1
Else If tf TV & 10™-1 / 0m Then err <- err - 1
If err < A; Then report an occurrence at pos

End of for

Fig. 6.8. Bit-parallel simulation of the dynamic programming matrix. It requires
m < w.

other hand, B P M is even less flexible than B P D when it comes to searching
for complex patterns or different distance functions.

Note that the algorithm can be adapted to compute edit distance simply
by adding "| 0 m - 1 r ' at the end of line 12 in Figure 6.8, since this time there
is a horizontal increment at row zero (not represented in the bit masks).

Example of B P M We search for the string "annual" in the text "anne-
a l ing" allowing k = 2 errors. The easiest way to understand what is going
on is to relate the bit masks to the A values and these in turn to those of
the dynamic programming matrix of Figure 6.2.

It is interesting to verify that err correctly maintains the value of the last
cell of the current column of the D P matrix.

B =

VN
VP
err

a
1
n
u
*

01000 1
100000
000110
00 1000
000000

1. Reading a 0 10 0 0 1

= 000000
= 111111
= 6

D0 =
HN =
HP =
VN =
VP =
err =

111111
111111
000000
000000
111110

5
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2. Reading n 0 0 0 1 1 0 6. Reading 1 10 0 0 0 0

3.

4.

5.

D0 =
HN =
HP =
VN =
VP =
err =

Reading n
D0 =

HN =
HP =
VN =
VP =
err =

Reading e
D0 =

HN =
HP =
VN -
VP =
err =

Reading a
D0 =

HN =
HP =
VN =

1
1
0
0
1

0
1
1
0
0
1

0
0
0
0
0
1

0
1
1
0
0

1
1
0
0
1

0
1
1
0
0
1

0
0
0
0
0
1

1
1
1
0
1

11
11
00
00
11
4

0 1
11
11
00
0 1
10
3

00
0 1
00
0 1
0 1
00
3

00
0 1
00
11
00

1
1
0
1
0

1
1
0
1
0
0

0
0
0
1
0
1

0
1
1
0
0

0
0
1
0
1

0
0
0
0
0
1

0
0
0
0
0
1

1
1
1
0
0

DO
HN
HP
VN
VP
err

We mark

7. Reading
DO

HN
HP
VN
VP
err

We mark

8. Reading
DO

HN
HP
VN

VP
err

9. Reading

=
=
=
=
=
=
an

i

=
=
=
=
=
=

an

n

=
=
=
=
—
=

g

1 1 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 1
1 1 0 0 0 0
0 0 1 1 0 1

1

occurrence since err < 2

0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 1 0 0 1 0
1 0 0 0 0 0
0 0 1 0 11

2

occurrence since err < 2

0 0 0 1 1 0
1 0 0 1 1 0
0 0 0 0 10
1 1 0 0 0 0
1 0 0 0 0 0

0 1 1 1 0 1
3

0 0 0 0 0 0
VP = 10 0 1 1 0
err = 2

We mark an occurrence since err < 2.

D0 =
HN =
HP =
VN =
VP =
err =

100000
000000
1000 10
000000
0 110 11

4

6.5 Algorithms for fast filtering the text

The idea behind filtration algorithms is that it may be easier to tell that a
text position does not match than to tell that it does. So these algorithms
filter the text, discarding areas that cannot match. They are unable on their
own to tell that there is a match, so every filtration algorithm needs to be
coupled with a nonfiltration algorithm to check the nondiscarded text areas
for potential occurrences.

Filtering algorithms only improve the average-case performance, and their
major attraction is the potential for algorithms that do not inspect every text
character. The performance of filtration algorithms is related to the amount
of text that they are able to discard, and it is very sensitive to the error
level. Most filters work very well on low error levels and poorly otherwise,
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so when evaluating filtration algorithms it is important to consider not only
their time efficiency but also their tolerance to errors.

There are many filtration algorithms, among which we have selected the
two that are the best in most cases. The first, PEX, is the best when the
alphabet size is not too small, for example, on English text. The second
one, ABNDM, is the best on DNA and other small-alphabet texts.

6.5.1 Partitioning into k + 1 pieces
The idea behind this algorithm, which we call PEX, is that if a pattern is
cut into k + 1 pieces, then at least one of the pieces must appear unchanged
in an approximate occurrence. This is evident, since k errors cannot alter
k + 1 pieces, at least under the edit distance model. Indeed, a more general
lemma turns out to be useful [Mye94, BYN99]:

Lemma 1 Let Occ match p with k errors, p = pl .. .pi be a concatenation
of subpatterns, and a\... ctj be nonnegative integers such that A = ^1=1 ai-
Then, for some i 6 l...j, Occ includes a substring that matches p% with
[a,ik/A\ errors.

To see this, note that if each p% matches only with 1 + [aik/A\ errors, then
the whole p cannot match with less than k + 1 errors. If we set A = j = k +1
and a, = 1, then the simpler case shows up.

The proposal in [WM92b, BYN99, NBY99] is to split the pattern into
k + 1 approximately equal length pieces, search the pieces in the text with
a multipattern search algorithm, and then check the neighborhood of their
occurrences. Some care has to be exercised to report the occurrences in
order and to avoid reporting the same occurrences more than once.

The "neighborhood" must be large enough to hold any occurrence. Oc-
currences are of length at most m + k under edit distance. If pattern piece
Ph-..i2 matches at text position £?-_J+(J2_J1), then the occurrence can start at
most i\ — 1 + k positions before tj since the insertions can all occur at the
beginning of the occurrence, and it can finish at most m — %2 + k positions
after tj+^i2_ilj since the insertions can all occur at the end of the occurrence.
Hence we need to check the text area Tj_(il_i^_k^j+(m_il^+k, which is of
length m + 2k. Note that if two pieces happen to be equal, each occurrence
must trigger two verifications with different areas.

Two choices need to be made to obtain a concrete algorithm. The most
important one is which multipattern search algorithm to use (Chapter 3).
Multiple Shift-And is used in [WM92b], while [BYN99, NBY99] use Set
Horspool.
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The second choice is the verification algorithm. Although many authors
care little about this choice and resort to plain dynamic programming, a
faster technique such as BPM reduces the cost per verification from O(m?)
to O(m2/w).

It is shown in [BYN99] that the cost of the multipattern search dominates
for a < l/(31ogisi m). Above that error level, the cost of verifying candi-
date text positions starts to dominate and the filter efficiency deteriorates
abruptly. In the area where the filter behaves well, its search cost is about

Hierarchical verification To reduce unnecessary verification costs, "hier-
archical verification" is introduced in [NBY99]. The idea is that, since the
verification cost is quadratic in the pattern length, we pay too much verify-
ing the whole pattern each time a small piece matches. We could reject the
occurrence with a cheaper test for a shorter pattern piece.

Assume that the pattern is partitioned into j = k + 1 = 2r pieces. Instead
of splitting it into k + 1 pieces in one shot, we do it hierarchically. The
pattern is first split in half, each half to be searched with [k/2\ errors due
to Lemma 1. The halves are then recursively split in two, until the number
of errors allowed becomes zero.

Figure 6.9 illustrates the resulting tree. The leaves of this tree are the
pieces actually searched. When a leaf occurs in the text, instead of checking
the whole pattern as in the basic technique, the parent of the leaf is checked
(with k = 1 errors in the example) in a small area around the piece that
matched. The extension of this area is computed as before, according to
the piece length and the error level permitted. If that parent node is not
found, then the verification stops and the multipattern scanning resumes.
Otherwise the verification continues with the grandparent of the leaf and so
on, until the root (i.e., the whole pattern) is found.

aaabbbcccddd u_

aaabbb cccddd , ,
— - T : - ^ k=l error

bbb ccc ddd
k=0 errors

Fig. 6.9. The hierarchical verification method for a pattern split into four parts.
The boxes (leaves) are the elements that are really searched, and the root represents
the whole pattern. At least one pattern at each level must appear in any occurrence
of the complete pattern. If the bold box is found, all the bold lines may be verified.
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This technique is correct because Lemma 1 applies to each level of the
tree: The grandparent cannot appear if none of its children appear, even if
a grandchild appeared.

Let us go back to Figure 6.9. If one searches for the pattern "aaabbbcc-
cddd" with three errors in the text "xxxbbbxxxxxx", and splits the pattern
into four pieces to be searched for without errors, then the piece MbbbM will
be found in the text. In the original approach, one would verify the complete
pattern with k = 3 errors in the text area, while with hierarchical verifica-
tion one checks only its parent "aaabbb" with one error and immediately
determines that there cannot be a complete occurrence. This latter check is
much cheaper.

The analysis in [NBY99] shows that with hierarchical verification the area
of applicability of the algorithm grows to a < 1/ logisi m.

When k + 1 is not a power of 2, it is advisable to keep the binary tree as
balanced as possible. For example, if k + 1 = 3, then we split the pattern
into three pieces (leaves) of length |_rrz,/3j. In the binary tree, the left child
of the root has length 2|_ra/3j and is searched with |_2A;/3J = 1 errors, while
the second child is the leftmost leaf with length |_m/3j to be searched with
L&/3J = 0 errors. The node that is searched with one error is then split into
its two leaves. Pseudo-code for the algorithm that builds this tree is shown
in Figure 6.10 together with the resulting tree for the pattern "annual" with
k = 2. Pseudo-code for the PEX algorithm is shown in Figure 6.11.

Example of PEX We search for the string "annual" in the text "any.an-
nealing" allowing k = 2 errors. The corresponding partition is given in
Figure 6.10. As can be seen, the same occurrences can be found many
times.

1. Found | an | y.annealing

Search for
inside
failed

"annu" with k = 1
I any_aI nnealing
(so abort verification)

2. Found any_ | an | nealing

Search for "annu" with k = 1
inside any | _annea~] ling
found (so go upper in the tree)

Search
inside
found

for "annual" with k = 2
an y_annealin g
(report positions 9,10,11)

3. Found any_anne | al | ing

Search
inside
found

for "annual" with k = 2
an y_annealin g
(report positions 9,10,11)
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CreateTree (p = pipi+i ...Pj, k, myParent, idx, plen)
1. Create new node
2. from(node) <— i
3. to(node) «— j
4. left-i- \(k + l)/2]
5. parent(node) <— myParent
6. err (node) <— k
7. If k = 0 Then leafidx <— node
8. Else
9. CreateTree(pi...i+ie/t.piell_i, [(Ze/* • /c)/(/c + 1)J, node, idx, plen)
10. CreateTree(pi+ieft.pien...j, [((k + 1 - left) • k)/(k + 1)J,

node, idx + left, plen)
11. End of if

a n n u a l (k=2)

a n n u (k=1) N
v

a n (k=0) n u (k=0) a l (k=0)

Fig. 6.10. Recursive algorithm to build the hierarchical verification tree on Pi...j
with k errors. The other variables are myParent (parent of the node to be built),
idx (next leaf index to assign), and plen (length of the pieces). At the bottom is
an example for the pattern "annual" with k = 2.

6.5.2 Approximate BNDM

Just as B D M / B N D M is better than Boyer-Moore algorithms for small
alphabet sizes, an extension of B N D M proposed in [NR00] works better
than PEX on DNA. We call it ABNDM.

The modification is to build an NFA to search the reversed pattern al-
lowing errors, modify it to match any pattern suffix, and apply essentially
B N D M (Section 2.4.2) using this automaton. Figure 6.12 shows the result-
ing automaton.

This automaton recognizes any reverse prefix of p allowing k errors. The
text window will be abandoned when no pattern factor matches with k
errors what was read. At that point, the window is shifted to the next
pattern prefix found with k errors (position last).

The occurrences must start exactly at the initial window position. This
makes it easier to report initial rather than final positions of the pattern
occurrences, although with some care we can report the sorted final positions
without repetitions.
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P E X (p = p i p 2 . . . p m , T = tit2...tn, k)
1. Preprocessing
2. CreateTree(p, k, 0, 0, [m/(k-\-1)\)
3. Preprocess multipattern search for

{Pfrom(node) • • -Pto(node), node = leafi, I G {0 . . . ft}}
4. Searching
5. For (pos, i) G output of multipattern search Do
6. node —̂ /ea/i
7. zn —̂ from(node)
8. node —̂ parent(node)
9. cand «— TRUE
10. While cand = TRUE AND node / 6> Do
11. pi •<— pos — (in — from(node)) — err(node)
12. p2 •<— pos + (to(node) — in + 1) + err(node)
13. Verify text area TP1...P2 for pattern piece PfrOm(node)...to(node)

allowing err (node) errors
14. If pattern piece was not found Then cand —̂ FALSE
15. Else node —̂ parent (node)
16. End of while
17. If cand = TRUE Then
18. Report the positions where the whole p was found
19. End of if
20. End of for

Fig. 6.11. Filtration algorithm based on partitioning into exact searches. It as-
sumes that the multipattern search algorithm delivers its results in the form
(text-position, piece-that .matched).

The window length is m — fc, not ra, to ensure that if there is an occurrence
starting at the window position then a factor of the pattern occurs in any
suffix of the window.

Reaching the beginning of the window does not guarantee an occurrence,
however. Since the occurrences are of varying length, we only know that a
factor of the pattern has occurred with at most k errors. In particular, if
no pattern prefix has been read with k errors or less, no match can start at
the initial window position. On the other hand, if we found such a pattern
prefix, we would have to check the area by computing the edit distance from
the beginning of the window, reading at most m + k text characters.

This verification can be done with the algorithm to compute edit distance
given in Section 6.2.1. Another choice is to use B P R , where we remove the
initial self-loop in Figure 6.4. The formula is the same except for i?o, where
it becomes

R'o <- (Ro « 1) & B[tj]

The other bit-parallel algorithms are more complicated to adapt.
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2 errors

Fig. 6.12. The NFA to search for any reverse prefix of "annual" allowing two errors.
We show the active states after reading the text window "any_".

As with the original NFA of Figure 6.4, there are many ways to simulate
the automaton of Figure 6.12. Given that this algorithm works well for
small k values, using row-wise parallelization is a good choice. In particular,
specializing the code for constant k values is a good idea. The only change
is that we have to initialize the automaton with all the states active and
remove the self-loop.

Other schemes, such as B P D and B P M , are more complicated to use.
B P D needs more bits than for searching, because the whole automaton
needs to be represented, not just the full diagonals. In principle (m + k +
2) (k + 2) bits are necessary. B P M was not designed to tell whether the au-
tomaton has any active state (there is, however, recent work on this [HN01]).
This is the first example where the flexibility of B P R pays off.

Figure 6.13 shows the algorithm. We initialize it after reading the first
character of the window.

The algorithm works well for small alphabets and short patterns; it needs
m < w because of bit-parallelism. With longer patterns it is possible to
use more computer words, but the results quickly deteriorate because the
trick of only updating the computer words holding active states does not
work well. The reason is that, since we initialize the NFA with all the
states activated, the active states tend to be distributed uniformly over the
whole pattern. On the other hand, making the automaton deterministic
as with B D M generates an exponential number of states, just as the DFA
construction reviewed in Section 6.3.
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ABNDM (p = = tit2...tn, k)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

0
Preprocessing

For c e E Do £[c]
For j G 1. . . m Do

Searching
pos —̂ 0
While pos < n — (m — k) Do

j <r- m — k — 1
D , D[i 1

new;^ ^- l m

For i e 1 . . . k Do ,
While newR / 0

ra — k — 1

—̂ newR
AND j / 0 Do

Ro «— newR
For z G 1. .. k Do

new;^ ^- ((Ri « 1) & 5[tpoa+J-])
oldR | ((oldR | newR) << 1)

o/d.R ^ Ri, Ri ^r- newR
End of for

If new;^ & lO™"1 / 0m Then /* prefix recognized */
If j > 0 Then last <- j
Else check a possible occurrence starting at pos + 1

End of if
End of while
pos —̂ pos +

End of while

Fig. 6.13. The extension of BNDM to approximate searching. It assumes m — k>
1.

Example of A B N D M We search for the string "annual" in the text
"any.annealing" allowing k = 1 errors. We have reduced the error level
because k = 2 is too high to be illustrative.

B =

a
1
n
u
*

100010
00000 1
011000
000 100
000000

Reading _ 0 0 0 0 0 0
R ^ 0 0 0 0 0 0
R1= 10 0 1 1 0

The last bit of R\ is set, so last«— 3.

Reading y 0 0 0 0 0 0

1. Iany_a I nnealing

Reading a 10 0 0 10
Ro= 10 0 0 10
fli = 1 1 1 1 1 1

last <r- 4.

Ro= 000000
Ri= 000000

The automaton runs out of active
states, so we shift the window by last =
3.
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2. any | _anne | a l ing

Reading e 0 0 0 0 0 0
Ro= 0 0 0 0 0 0
Rx = 1 1 1 1 1 1

last <- 4.

Reading n 0 1 1 0 0 0
Ro= 0 0 0 0 0 0
Ri= 0 1 1 0 0 0

Reading n 0 1 1 0 0 0
Ro= 0 0 0 0 0 0
Ri= 0 10 0 0 0

Reading a 10 0 0 10
Ro= 0 0 0 0 0 0
Ri= 10 0 0 0 0

The last bit of R\ is set, so last

Reading . 0 0 0 0 0 0

Approximate matching

Ro= 000000
Ri= 000000

The automaton runs out of active
states, so we shift by last = 1.

3. any_

Reading a 1 0 0 0 1 0
Ro= 10 0 0 10
Ri = 1 1 1 1 1 1

last <- 4.

Reading e 0 0 0 0 0 0
Tfo = 0 0 0 0 0 0
R1= 10 0 1 1 0

The last bit of R\ is set, so last 3.

Reading n 0 1 1 0 0 0
Ro= 0 0 0 0 0 0
Ri= 0 0 10 0 0

Reading n 0 1 1 0 0 0
Tfo = 0 0 0 0 0 0
Ri= 0 10 0 0 0

Reading a 10 0 0 10
Ro= 0 0 0 0 0 0
Ri= 10 0 0 0 0

The last bit of R\ is set and j = 0, so we
compute edit distance between the pat-
tern and prefixes of the text "anneali".
Since we find a match (k < 1) against
the prefix "anneal", we report the text
position 5.
We shift the window by last = 3.

4. any_ann | ea l in | g

Reading n 0 1 1 0 0 0
Ro =
Ri =

last <- 4.

011000
111111

• 3 .

Reading i 0 0 0 0 0 0
Ro= 0 0 0 0 0 0
R1= 1 1 1 0 0 0

The last bit of R\ is set, so last •

Reading 1 0 0 0 0 0 0
Ro= 0 0 0 0 0 0
Ri= 0 0 0 0 0 0

The automaton runs out of active
states, so we shift by last = 3.

Since the window falls out of the text,
we stop.

6.5.3 Other filtration algorithms

There are many proposals for filtration. In particular, we have left out
some algorithms that are slightly faster than PEX and A B N D M for a few
(ra,fc, |£|) combinations [TU93, JTU96, BYN99, CL94, ST95]. In general,
however, the differences in performance do not justify the programming
effort.

There exist filtration algorithms that are optimal on average. It was
proved in [CM94] that a lower bound for the expected time of approximate
searching is O((k + logisi m)n/m). In the same paper, a filtration algorithm
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with that complexity is obtained. The complexity is valid for a < 1 — e/
a limit shown impossible to improve [BYN99] since at that point there are
too many real occurrences in the text. Although it is optimal in theory,
the algorithm is not fast in practice. Whether a practical algorithm with
optimal complexity exists is still an open issue.

On the other hand, most filters achieve O(k logisi(m)n/m) time for a =
0 ( 1 / logisi m). The central issue is that, in order to break this barrier, it
seems necessary to reduce the problem to pieces that are searched with fewer
errors instead of with zero errors. This is precisely what is done in [CM94],
as well as in other niters [BYN99] that reach the limit a < 1 — e/^/[E\. This
last technique does not skip text characters, but it is a reasonable alternative
in practice for medium error levels.

6.6 Multipattern approximate searching

A natural extension to the approximate search problem is that of searching
multiple patterns simultaneously. Not many algorithms have been proposed
for this, and all of them are filters that lose efficiency for high enough error
levels.

6.6.1 A hashing based algorithm for one error

A good solution for k = 1 proposed in [MM96], which we call MultiHash,
is based on the observation that if p matches p' with one error, then there
are m — 1 characters that match. The idea is to obtain m strings from p,
which we call "signatures," by removing one character at a time, that is,

{ P 2 ' P 3 • • • P m , P i P 3 • • • P m , P 1 P 2 P A • • • P m , •••, P 1 P 2 • . . P m - i } - W e d e f i n e t h e

j - th signature of a string x of length m as

Sx,j = X\X2 . . . Xj-iXj + i ...Xm

For example, for the pattern p ="annual" the signatures are SP:\ =
"nnual", SPy2 = Sp^ = "anual", Sp^ = "annal", SPys = "annul", and
Sp,6 = "annua".

If we search for r patterns, then we obtain m signatures from each, for a
total of rm signatures. All the patterns have to be the same length. If this
is not the case, they are truncated to the length of the shortest pattern.

Those rm signatures are stored in a hash table, which will be used for
exact searching. To search the text, all m-length windows ij t j+i. . . £j+m_i
are considered.
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For each such window, all m signatures are obtained: ti+2^+3 • •
ti+iU+3 ... ti+m-ii • • •, U+iti+2 • • • U+m-2- We abreviate the notation and
call Sij = Sti...ti+m_1,j- Each such signature is searched for in the hash table
and, if it is found, an occurrence is reported.

We now show that the method is correct. If p and a text occurrence
p' match with one substitution error, so that P1P2 • • -Pj-io-Pj+i • • -Pm =
p'iP2 • • •p'j_1bp'j+1.. .p'm, then p' and p are equal after removing a and 6,
and hence the occurrence will be found because the j - t h signatures of p
and the text window are the same. If they match with an insertion in p',
PlP2 • .-Pj-iPjPj+i ...pm= p'iP'2 • ••P'j-iP'jbp'j+i • • -P'm-n t n e n s i n c e t n e t e x t

windows are of length m there will be a window x = p'ip'2 • • -P'j-iP'jP'j+i • • •
p'm_iCJ and the signatures Sx>m = Spj+i match. Finally, p and p' may match
a f t e r a d e l e t i o n i n p ' , p i p 2 . ..pj-iPjpj+i . . . p m = P1P2 • --P'j-iP'j+i •••Pm

' - I n this case the text window of interest is x = P1P2 • • -P'J-IP''

Pmi

The way to compute the hash function is important. A formula like

m—1

h(x\ ... xm-i) = 2_. Xi<il~l mod s

for relative primes (d, s), as used in [KR87], is known to distribute the strings
fairly uniformly in a table H[0... s — 1]. Moreover, it permits computing
the hash value of each signature of the new window in 0(1) time using
those of the previous window. Say that the new window is tj+it ,+2 . . . ti+m-
Then, its j - t h signature is Si+ij = ti+iti+2 • • • ti+j-iti+j+i... ti+m, which
is obtained from the (j + l)-th signature of the previous region 5 y + i =
UU+i • • • U+j-iU+j+i • • • U+m-i by the formula Sij+iti+m = tiSi+ij. Hence,
h(Si+ij) = ((h(Sij+i) — U)I'd + ti+mdm~2) mod s, which can be computed
in constant time.

Since the hash values can be computed in constant time and we have to
perform m searches per text window, the search time is 0(mn), independent
of the number of patterns. We are not accounting for the collision problem
in the hashing scheme. On average, the search time remains constant if the
size of the hash table is proportional to the number of signatures inserted.
Hence the method takes on average 0(mn) time and 0(rm) space.

The scheme works well in practice even for thousands of patterns. In
this respect the method is unbeatable. On the other hand, it is costly to
extend to more than one error. For k errors we should consider the 0(mk)
alternatives of removing k characters from every pattern and every text
window, for a total average cost of 0(mkn) time and 0(mkr) space.
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Figure 6.14 shows the algorithm. At any point in the execution it holds
hj = h(Sposj)- The time of the preprocessing and the initial filling of h can
be reduced by noticing that Sxj+i = (Sxj + (XJ — Xj+i)d,i) mod s. Hence
the algorithm takes time O(rm + ran) plus collisions.

M u l t i H a s h (P = {p\ p 2 , . . . , p r } , T = tit2...tn, k = 1)
1.
2.
3.
4.
5.
6.
7.
Q
O.

9.
10.
11.
12.
13.
14.
15.
16.

Preprocessing
H <r- empty hash table
For i G 1 ... r Do

For j G 1. . . m Do insert (Spij,i) in if^Sp^-)]
Searching

For j G l . . . m - l D o / i j f - M#i,j)
For pos G 1. . . n — m + 1 Do

For j G 1. . . m Do
For 0,z) G if[fy] Do

If x = Sposj Then report pattern p? at pos
End of for
hj «— ((/fy+i — tpos)/d + tpos+md171'2) mod s

End of for
/ i m -<— oldhi

End of for

Fig. 6.14. Hashing-based scheme to search for multiple patterns with one error. We
assume that H is a hash table where we insert pairs of the form (key, value) and
then retrieve the set of pairs associated with a given cell. We also assume that tn + i
can be accessed, although its value is irrelevant.

6.6.2 Partitioning into k + 1 pieces

The algorithm PEX described in Section 6.5.1 is easily extended to multiple
patterns [BYN97]. We call it MultiPEX. Given r patterns, we split each
pattern into k + 1 pieces. Then we proceed exactly as before: We perform a
multipattern exact search for all those r(k + 1) pieces (Chapter 3), and each
time a piece is found we check the corresponding pattern in the candidate
text area. If a piece belongs to more than one pattern, then all the owners
have to be checked. Hierarchical verification can be used as well.

The algorithm performs well under a wide range of cases. It is shown in
[BYN97] that it can be applied whenever basic PEX can be applied, that
is, a < l/logisi m. The code is basically the same as that of Figure 6.11.
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6.6.3 Superimposed automata

A third idea, which we call MultiBP, is based on the NFA of Figure 6.4.
Given r patterns of the same length to be searched for with k errors, we build
the NFA for each of them and then we superimpose their automata [BYN97].
Superimposition means that the j-th horizontal arrow can be crossed with
the j-th character of any pattern. Figure 6.15 shows an example with the
patterns "annual" and "binary".

1 error

E3) 2 errors

Fig. 6.15. An NFA for approximate string matching of the patterns "annual" and
"binary" with two errors. The shaded states are those that are active after reading
the text "binual".

In particular we are interested in a bit-parallel simulation of the superim-
posed NFA. Let Bi[c] be the bit-parallel table for the i-ih pattern. Then we
build a new table B, where

B[c] = B2[c] Br[c]

and apply any of the algorithms suitable for single patterns, such as BPR,
BPD, BPM, or ABNDM.

The result is equivalent to searching for a single pattern with classes of
characters: We convert the search for {p1, p2, . . . , pr} into the search for

So it is not really necessary to use NFAs: Any bit-parallel algorithm can
be used, in particular BPM.

Of course this is only a filter: If we search for "annual" and "binary",
then "binual" will be found with zero errors. Each time our relaxed search
mechanism reports a match we have to check the area for all the patterns
involved.
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A new hierarchical verification mechanism is advisable here. If we have
superimposed the patterns {p1, p2, p3, p4} and found a possible occurrence,
then we can check for {p1, p2} and {p3, p4} instead of checking for all four
patterns. In many cases we will avoid performing r checks just by testing
two superimposed sets. If, say, the superimposed set {p1, p2} matches, then
we have to check for p1 and p2 separately.

Compared to P E X (Section 6.5.1), this hierarchical verification mecha-
nism is top-down rather than bottom-up. If we find the superimposition
of {p1,... , p r } , then we recursively check the relevant text area for the two
superimposed sets {p1,... ,pLr/2J} a n d |p1+Lr/2J ^ . . . , p r } . Of course all the
2r —1 possible superimpositions are precomputed. The process finishes when
we do not find the pattern set in the area or when a set of just one pattern
is found.

As we superimpose more patterns, it becomes easier to cross the horizon-
tal arrows. Indeed, the probability of crossing raises from 1/|S| to about
r / | S | . Therefore, it is not advisable to superimpose too many patterns.
The optimal number of patterns to superimpose is shown in [BYN97] to be
r' = |S|(1 — a)2. If there are more patterns, one should split them into
groups of r' patterns and search each group separately.

Figure 6.16 shows the preprocessing and Figure 6.17 gives search pseudo-
code for this algorithm. The code is independent of how we simulate the
bit-parallel search. Our recommendation is to use B P D if the patterns fit
in a computer word, and B P M otherwise. We assume that all the prepro-
cessing information is stored in an object B and that "joining" two such
objects produces a new one that reflects their superimposition. For exam-
ple, "joining" tables B\ and B2 into table B (in line 10 of CreateSuperp)
is translated, for BPR, A B N D M , and B P M , into

For c G £ Do B[c] «- Bt[c] \ B2[c]

B P D also needs to reflect these changes in table BB.

6.7 Searching for extended strings and regular expressions

Sometimes one would like to search for complex patterns allowing errors.
There are three classes of algorithms addressing this issue: One extends
classical dynamic programming for simple strings to regular expressions, a
second is based on a Four-Russians approach, and the third uses bit-parallel-
ism. We explain all three approaches but concentrate on bit-parallelism
because it is simpler and yields the best results in most cases.

Since classes of characters are trivially solved by either approach, we focus
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C r e a t e S u p e r p (pl, . . . , pJ)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Create new node
If i = j Then

B(node) —̂ preprocess single pattern p1

idx(node) —̂ i
left(node) <- 6
right(node) —̂ 6

Else
left (node) <- CreateSuperpQ/.. .pL ( '+ j ) / 2 J)
right(node) <- CreateSuperp(p1+L(?+j)/2J .. .pj)
B(node) «— join B(left(node)) and B(right(node))

End of if
Return node

Fig. 6.16. Preprocessing for hierarchical verification of the superimposed search for
multiple patterns.

Verify (node, from, to)
1. B <- B(node)
2. For pos G occurrences reported with B in Tfrornmmmto Do
3. If left(node) = 6 Then report p*

daj(™de) a t pos
4. Else
5. Verify (/e/£ (node), pos — m — k + l,pos)
6. Verify (right(node), pos — m — k + l,pos)
7. End of if
8. End of for

Mult iBP (P = {p\ p2, . . . , pr}, T = ht2 ...tn, k)
9. Preprocessing
10. tree —̂ CreateSuperp^1 .. .pr)
11. Searching
12. Verify (tree, l,n)

Fig. 6.17. Superimposition scheme to search for multiple patterns with errors.

on more complex extensions such as gaps, optional, and repeatable charac-

ters, and regular expressions.

6.7.1 A dynamic programming based approach

This is the oldest solution to the problem [MM89], and a beautiful yet com-

plicated one. To understand it we need to come back to the basic dynamic

programming algorithm (Section 6.2).

Consider the graph of Figure 6.18. Each node corresponds to a cell of
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the dynamic programming matrix of Figure 6.1. The arrows between nodes
represent the cost of insertion in the pattern (horizontal), deletion in the
pattern (vertical), or matching/substitution (diagonal) among neighboring
cells. The cost of the diagonal arrows is 0 or 1, depending on whether the
corresponding characters are equal (match) or different (substitution).

a 1

n 1

Fig. 6.18. Converting the edit distance problem into a shortest path problem. Bold
arrows show the optimum path, of cost 4.

The edit distance problem can be converted into the problem of finding
a shortest path from the upper left to the lower right node. If we are
interested in approximate searching rather than in computing edit distance,
then we assign zero cost to the horizontal arrows of the first row and consider
minimum distances to every node of the last row.

Since the graph is acyclic, the optimum path can be computed in O(mn)
time. This is just another view of the classical dynamic programming algo-
rithm, but this view is more flexible and can be extended to more complex
patterns. In the simplest case, the pattern is represented by the vertical
columns of nodes of the graph.

Figure 6.19 shows a graph over the text "baa", where each "vertical" row
of nodes has been replaced by the NFA of the regular expression " (alb) a*"
(Thompson's construction; see Section 5.2.1). It can be seen that in this case
the distance is zero (i.e., the regular expression matches the text exactly),
and that the best path is achieved thanks to an e-transition.
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Thompson's construction

Fig. 6.19. The graph for the regular expression " (a|b)a*" on the text "baa". Bold
arrows show an optimal path, of cost zero.

The idea of the shortest path can still be applied quite easily if the graph
is acyclic, that is, if the regular expression does not contain the "*" or
the "+" operator. On acyclic regular expressions we can find a topological
order to evaluate the graph so as to find the shortest paths in overall time
O(mn). This requires Thompson's guarantee that there are O(m) edges on
an automaton of m nodes.

Cycles in the NFA pose a problem because no suitable order can be found.
The problem appears when we combine cycles with deletion (vertical) ar-
rows, because a deletion can propagate through a cycle and influence the
departing node. One of the most important results of [MM89] is that those
"back edges" coming from the "*" or "+" operators can be ignored in a first
pass, and then a second pass considering the deletion arrows is enough to
obtain the correct result. For more details we refer the reader to [MM89].

6.7.2 A Four-Russians approach

We have already seen Four-Russians approaches that deal with regular ex-
pression searching without errors (Section 5.3.3) [Myc92] and with simple
string matching allowing errors (Section 6.3) [WMM96]. Both methods ob-
tain O(mn/logs) worst-case time provided O(s) space is available, and the
second method obtains O(kn/ log s) average time with the technique of Sec-
tion 6.2.3.

Both methods are based on similar ideas: An NFA of O(m) states is split
into r "regions" of rn/r states each. For simple patterns [WMM96] a region
is a contiguous pattern substring, while for regular expressions [Mye92] it is
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some subset of the NFA states. Each region can be represented using O(m/r)
bits: For approximate searching of simple patterns we need 2m/r bits since
each cell differs from the previous one by — 1, 0, or +1, and hence two bits
are enough to represent its value; for exact regular expression searching one
bit per state (active or inactive) is enough.

A deterministic automaton, that is, a table storing all the outputs, is
precomputed for each region, requiring 2°(m/ r) space per region. A non-
deterministic automaton of regions simulates the original NFA arrows that
connect different regions. Those arrows are simulated one by one. Either for
simple patterns (where there are three arrows leading to each state; recall
Figure 6.5) or for regular expressions (where regions are properly chosen
and Thompson's construction guarantees O(m) edges), there are O(r) edges
across modules. They have to be updated one by one, so the time is O(rn).
If we have s = O(r)2°(m/ r) space, then we have O(mn/logs) time.

These ideas can be extended to the more general case of approximate
searching for regular expressions [WMM95]. The idea is identical to that
of exact searching, except that the states of the NFA are not just active or
inactive, but store the minimum error level necessary to make each state
active. Since we search with k errors, the value k + 1 is used to denote any
value larger than k. So for each state we need to store a number in the
range 0...A; + 1, and therefore a deterministic automaton on m/r states
needs O((k + 2)mlr) space. Hence, given O(s) space, the algorithm obtains
0(mn/ logfc+2

 S) time.

When faced with approximate searching, a new problem appears that does
not exist with exact searching, namely, the problem of dependencies derived
from £-transitions in the regular expression. Just as in Section 6.7.1, a two-
sweep algorithm guarantees that all the arrows are considered correctly.

A related work [Mye96] considers "spacers," which are what we have called
"gaps" on PROSITE expressions (Section 4.3), except that a spacer can have
a negative length. This means that a piece of the regular expression may
overlap approximately with the next one in the occurrence. The idea is
to search for one of the regular expressions and use its adjacent spacers
to define the areas where its neighbor expressions should be searched for.
The occurrence is extended until the complete pattern is found. The paper
shows an optimal search order that considers the length of the spacers and
the probability of matching the regular expressions.

The same work shows that if regular expressions are restricted to "network
expressions," that is, no "*" or "+" is permitted, then it is possible to
define the regions in increasing distance from the initial state and to apply
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a technique similar to that of Section 6.2.3 to obtain an O(kn/logk+2s)
average time algorithm.

Note that positive-length gaps can be handled by converting them into
regular expressions, but the resulting DFAs are unnecessarily large.

In general, the Four-Russians approach gives the best results for large
regular expressions, but they are difficult to implement. A simpler approach
that works well on reasonable-sized patterns is presented next.

6.7.3 A bit-parallel approach

Extending the bit-parallel algorithms we have seen in order to handle errors
is quite straightforward [WM92b, NavOlb].

If we want to permit wild cards, then only BPR and BPD are able to
handle them efficiently. And only BPR is flexible enough to handle all the
extensions we are interested in. This is the algorithm we consider now.

Let us go back to Figure 6.4. Each row of the NFA is a replica of the
nondeterministic automaton that searches for a single pattern. The replicas
are linked together using the rule: "Vertical" arrows link the same states
from row i to row % + f; while "diagonal" arrows, either dashed or not, link
each state s at row % to the states, in row % + 1, that can be reached from s
in one transition (the "next" states).

This idea can be generalized to more complex automata [WM92b]. In
particular, if we replace each row by the specialized bit-parallel automata
developed in Chapters 4 and 5, the result is an NFA that is able to search
for the corresponding extended pattern or regular expression with k errors.
Moreover, this automaton can be searched in a "forward" manner as in Sec-
tion 6.4.1 [WM92b] or in a "backward" manner as in Section 6.5.2 [NavOlb].
The only change with respect to the algorithms presented in this chapter is
the bit-parallel simulation of the automata; the general mechanism is the
same. Figure 6.20 shows an example for a regular expression.

To implement the "diagonal" transitions, we compute a table T ,̂ which
for each state set D gives the bit mask of all the states reachable from D in
one step. We have already built this table for regular expression searching
(Section 5.4.2). For simple patterns it is simply T̂ f-D] = (D « 1).

Assume that 1 represents active and 0 inactive. Let /(c, D) be the pattern-
type-dependent update function used to search without errors without the
self-loop, and fo(c,D) with the self-loop.
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Q 0 errors

Q 1 error

Q) 2 errors

Fig. 6.20. Glushkov's NFAs for the regular expression "abcd(d|e) (e |f )de"
searched with two insertions, deletions, or substitutions. To simplify the figure,
the dashed lines represent deletions and substitutions (i.e., they move by £ U {e}),
while the vertical lines represent insertions (i.e., they move by £).

For example, for simple patterns, / corresponds to Shift-And (Sec-
tion 2.2.2) and we have

f(c,D) = {D«l)kB[c]

fo(c,D) = ((D«l) | O™-1!) & B[c]

Note that it holds Td[D] = | c e S /(c,D).
Now, to update the rows after reading text character tpos: we use

R'o ^~ fo(tPos,Ro)
For i £ 1 . . . k Do R[ <r- f(tp08,Ri) \ Ri-i \ Td[Ri-i \ iZ-.J

The formula can be plugged into the BPR and ABNDM algorithms.
It is also possible to deal with very limited cases of multipattern extended

searches allowing errors by combining BPR or ABNDM with the multi-
pattern technique explained in Section 4.6.

6.8 Experimental map

We now present a map of the most efficient approximate string matching
algorithms, for single and multiple strings, leaving aside extended patterns
and regular expressions.

There exist about 40 algorithms for approximate string searching. The
best choices, however, are just a handful of them in most cases. We are
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leaving aside algorithms that happen to be the best by a slight margin in a
few cases in order to present a reasonably simple recommendation.

To give an idea of the areas where each algorithm dominates, Figure 6.21
shows the cases of English text and DNA. Since every filtration algorithm
needs a nonfiltration algorithm for verification, we have presented the non-
filtration algorithms and superimposed in gray the area where the niters
dominate. Therefore, in the grayed area the best choice is to use the cor-
responding filter with the dominating nonfilter as its verification engine. In
the nongrayed area it is better to use directly the dominating nonfiltering
algorithm.

0.5

0.3

PEX
BPD \

BPM

BPD
BPM

BPR

10 70 100

U . J

0.3

0.1

0

BPD

BPR

\
\
\

BPD

BPM

BPM

MABNDM

10 30 30 70 100

Fig. 6.21. The areas where each single pattern matching algorithm is best. Areas
for filtering algorithms are gray. English text is on top and DNA on the bottom.
The figures correspond to a word size of w = 32 bits. For w = 64 bits, the areas of
ABNDM and BPD would grow on the m-axis.

Figure 6.22 shows the case of multipattern searching. On English text,
MultiPEX is the best algorithm for a < 0.3, MultiBP for 0.3 < a <
0.4, and for higher error levels no algorithm is known that improves over
sequentially searching all r patterns. MultiHash is better for k = 1 and
a large number of patterns. For longer computer word sizes the area of
MultiBP would grow to the right along the m-axis.
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On DNA there are few choices: For k = 1 MultiHash is in general the
best option, while for k > 1 and low a value MultiPEX is of some interest.
MultiBP, on the other hand, is in general not applicable because |S | = 4
and hence superimposing as few as 4 patterns means matching almost every
text position.

NONE USEFUL NONE USEFUL

MultiHash (k=1)

Fig. 6.22. The areas where each multipattern algorithm is best on English text, as
a function of a, m, and r. In the left plot (varying m), we have assumed an r less
than 50, while in the right plot we have assumed a pattern less than w characters.

6.9 Other algorithms and references

If one is interested in more complex distance functions, then the dynamic
programming approach is the most flexible. For example, if the operations
have different costs, we add the cost instead of adding 1 when computing
Mjj , that is,

Mo,o 0

6(xi,e), 5(e,yj))

where 5(x, e) and 5(e, y) are the cost of inserting and deleting characters.
For distances that do not allow some operations, we just take them out

of the minimization formula or, equivalently, we assign oo to their 6 cost.
For transpositions (i.e., permitting ab —>• ba in one operation), we introduce
a fourth rule that says that Mjj can be Mj_2j-2 + 1 if Xi-\Xi = yjyj-i
[LW75].

The automata approach can handle different integer costs for the opera-
tions, and some simplifications of the edit distance can be modeled by chang-
ing or removing arrows. For instance, if insertions cost 2 instead of 1, we
make the vertical arrows go from rows % to rows % + 2 in Figure 6.4. Trans-
positions are more complex but can be modeled as well [Mel96, NavOlb].
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All this can be expressed in BPR and ABNDM. Some restricted cases of
different integral costs can be expressed in BPD. There is also some very
recent work on extending BPM to accommodate different costs for the edit
operations [BH01], to include transpositions [HyyOl], and to integrate it into
ABNDM [HN01].

The PEX filter can be adapted, with some care, to other distance func-
tions. The main issue is to determine how many pieces an edit operation can
destroy and how many edit operations can be made before surpassing the
error threshold. For example, a transposition can destroy two pieces in one
operation, so we would need to split the pattern into 2k+ 1 pieces to ensure
that one is unaltered. A more clever solution [NavOla] is to leave a hole of
one character between consecutive pairs of pieces, so that one transposition
cannot alter both.

Readers seeking a deeper coverage of approximate search issues for single
patterns are referred to a recent survey [NavOla]. For those interested in the
distances and patterns used in biological applications, see [SK83, KM95].

There are models of approximate searching that deviate significantly from
those we have covered. For example, there are totally different distance func-
tions, such as Hamming distance (short survey in [Nav98]), reversals [KS95]
(which allow reversing substrings), block distance [Ukk92, LT97] (which al-
lows rearranging and permuting the substrings), swaps [KLPC99] (which
are transpositions between nonadjacent characters), and so on. Although
Hamming distance is a simplification of edit distance, specialized algorithms
exist for it that go beyond our algorithms for edit distance.

With regard to the objects searched, they need not be only sequences
of symbols. Extensions such as approximate searching in multidimensional
texts (short survey in [BYNOOb]) or in graphs [ALL97, NavOO] exist. Approx-
imate searching of context-free grammars also has been pursued [Mye95].
None of these areas is well developed and the algorithms rely on the classi-
cal ones.

Finally, there are nonstandard algorithms, such as approximate (not to
be confused with our exact algorithms for approximate searching), proba-
bilistic, and parallel algorithms [TU88, AGM+90, LV89]. A good survey on
the open theoretical problems in nonstandard stringology, including some
results on Hamming distance, is [MP94].
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