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94 BW Transform of Thue–Morse Words

The goal of the problem is to show the inductive structure of the Burrows–
Wheeler transform of Thue–Morse words. The words are produced by the
Thue–Morse morphism μ from {a,b}∗ to itself defined by μ(a) = ab
and μ(b) = ba. Iterating μ from letter a gives the nth Thue–Morse word
τn = μn(a) of length 2n.

The Burrows–Wheeler transform BW(w) of w is the word composed of the
last letters of the sorted conjugates (rotations) of w. The list of Thue–Morse
words starts with τ0 = a, τ1 = ab, τ2 = abba and τ3 = abbabaab and the
transforms of the last two are BW(τ2) = baba and BW(τ3) = bbababaa.

Below the bar, morphism from {a,b}∗ to itself is defined by a = b and
b = a.

Question. Show the Burrows–Wheeler transform BW(τn+1), n > 0, is the
word bk · BW(τn) · ak , where k = 2n−1.

Solution
The solution comes from a careful inspection of the array of sorted conjugates
producing the transform.

Let Sn+1 be the 2n+1 × 2n+1 array whose rows are the sorted rotations of
τn+1. By definition BW(τn+1) is the rightmost column of Sn+1. The array splits
into three arrays, with Tn+1 its top 2n−1 rows, Mn+1 its middle 2n rows and
Bn+1 its bottom 2n−1 rows.

Example. Below are the rotations of τ2 = abba (R2 on the left) and its sorted
rotations (S2 on the right). Thus BW(τ2) = baba.

R2 =
a b b a
b b a a
b a a b
a a b b

S2 =
a a b b
a b b a
b a a b
b b a a

The array S3 gives BW(τ3) = BW(abbabaab) = bbababaa.

S3 =

a a b a b b a b
a b a a b a b b
a b a b b a b a
a b b a b a a b
b a a b a b b a
b a b a a b a b
b a b b a b a a
b b a b a a b a
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The decomposition of S3 into T3, M3 and B3 shows that BW(τ3) is b2 ·abab ·
a2 = b2 · BW(τ2) · a2.

T3 =
a a b a b b a b
a b a a b a b b

M3 =

a b a b b a b a
a b b a b a a b
b a a b a b b a
b a b a a b a b

B3 =
b a b b a b a a
b b a b a a b a

Since rows of Sn are sorted, a simple verification shows they remain sorted
when μ is applied to them. The last column of μ(Sn) is then BW(τn) by the
definition of μ.

It remains to find rotations of τn+1 that are in Tn+1 and in Bn+1, which
eventually proves Mn+1 = μ(Sn).

Observation. The number of occurrences of a’s and those of b’s in τn are both
equal to 2n−1.

In the word τn+1 = μ(τn) let us consider the occurrences of ba that are
images of an occurrence of b in τn. By the observation, there are 2n−1 such
occurrences of ba. Equivalently, they start at an even position on τn+1 (there
are other occurrences of ba when n is large enough).

Rows of Tn+1 are composed of rotations obtained by splitting τn+1 in the
middle of these factors ba. All rows of Tn+1 start with a and end with b.

Since there is no occurrence of bbb in τn, the (alphabetically) greatest row
of Tn+1 cannot start with ababa and in fact starts with abaa. Thus this row
is smaller than the top row of μ(Sn) that is prefixed by abab, since it is the
image of a rotation of τn prefixed by aa.

Symmetrically, Bn+1 is composed of rotations obtained by splitting occur-
rences of ab starting at an even position on τn+1. Proving they are all larger
than the last row of μ(Sn) is proved similarly as above.

To conclude, since Tn+1 and Bn+1 each have k = 2n−1 rows, Mn+1 =
μ(Sn). Rows of Tn+1 end with b and provide the prefix bk of BW(τn+1). Rows
of Bn+1 end with a and provide the suffix ak of BW(τn+1).
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95 BW Transform of Balanced Words

The Burrows–Wheeler operation maps a word w to the word BW(w) com-
posed of the last letters of the sorted conjugates of w. The goal of the problem
is to characterise primitive words w ∈ {a,b}+ for which BW(w) ∈ b+a+.
Such a word w can then be compressed to a word of length log |w| by
representing the exponents of a and of b.

The characterisation is based on the notion of balanced words. The density
(or weight) of a word u ∈ {a,b}+ is the number of occurrences of letter a in it,
that is, |u|a. A word w is said to be balanced if any two factors of w, u and v

of the same length have almost the same density. More formally, factors satisfy

|u| = |v| %⇒ −1 ≤ |u|a − |v|a ≤ 1.

We also say the word w is circularly balanced if w2 is balanced.

Question. For a primitive word w ∈ {a,b}+, show that w is circularly
balanced if and only if BW(w) ∈ b+a+.

Fibonacci words are typical examples of circularly balanced words. Below
is a graph showing the cycle to recover a conjugate of fib4 (length F6 = 8
and density F5 = 5), from b3a5. Following the cycle from the top left letter,
letters of aabaabab are those met successively on the bottom line. Starting
from another letter gives another conjugate of fib4 = abaababa, which itself
is obtained by starting from the first occurrence of a on the top line. In fact,
any word of length |fibn| and density |fibn−1| is circularly balanced if and only
if it is a conjugate of fibn.

BW(fib4)

sorted letters

b b b a a a a a

a a a a a b b b

Question. Show that BW(fibn) ∈ b+a+ for n > 0.

For example, BW(fib1) = BW(ab) = ba, BW(fib2) = BW(aba) = baa
and BW(fib3) = BW(abaab) = bbaaa.

Solution
Transformation of a circularly balanced word. We start with a proof of
the direct implication in the first question. First note that BW(w), composed
of letters ending lexicographically sorted factors of length |w| in w2, is
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234 Text Compression

equivalently composed of the letters preceding occurrences of these sorted
factors starting at positions 1 to |w| on w2. The solution comes readily from
the next lemma.

Lemma 7 For a circularly balanced primitive word w, let bu and av be two
factors of w2 with |u| = |v| = |w|. Then u < v.

w2
0 |w|

b z a a z b
u

v

Proof Let z be the longest common prefix of u and v. Since u and v are
conjugates of w and w is primitive, u �= v. Thus either both za is a prefix of u

and zb is a prefix of v (like in the above picture) or both zb is a prefix of u and
za a prefix of v. But the second case is impossible because |bzb| = |aza| and
|bzb|a − |aza|a = −2, contradicting the balanced condition. The first case
shows that u < v.

A direct consequence of the lemma is that any conjugate of w whose
occurrence is preceded by b in w2 is smaller than any conjugate preceded
by a. Thus BW(w) ∈ b+a+.

Converse implication. To prove the converse implication we show that
BW(w) �∈ b+a+ if w is not circularly balanced, which is a direct consequence
of the next lemma.

Lemma 8 If the primitive word y ∈ {a,b}+ is not balanced then it contains
two factors of the form aza and bzb, for a word z.

y

0
a z a ū b z b v̄

u v

Proof Let u and v be factors of y of minimal length m = |u| = |v| with
||u|a − |v|a| > 1. Due to the minimality of m, u and v start with different
letters, say a and b respectively. Let z be the longest common prefix of a−1u

and b−1v. The inequality ||u|a − |v|a| > 1 implies |z| < m − 2. Then u =
azcū and v = bzdv̄ for words ū and v̄ and for letters c and d, c �= d. Due to
the minimality of m again, we cannot have both c = b and d = a. Then c = a
and d = b (see the above picture), which shows that words aza and bzb are
factors of y, as expected.
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To conclude, when w is not circularly balanced, w2 is not balanced and by
the above lemma contains two factors of the forms aza and bzb. Therefore,
the conjugate of w prefixed with za and preceded by a is smaller than the
conjugate prefixed with zb, and preceded by b. Therefore ab is a subsequence
of BW(w), which implies BW(w) �∈ b+a+.

Case of Fibonacci words. To prove the statement of the second question, we
show that Fibonacci words are circularly balanced. Since their squares are
prefixes of the infinite Fibonacci word f, it is enough to show that the latter
does not contain two factors of the forms aza and bzb for any word z. This
yields the result using the conclusion of the first question.

Recall that f is generated by iteration of the morphism φ from {a,b}∗ to
itself defined by φ(a) = ab and φ(b) = a: f = φ∞(a). The word is also a
fixed point of φ: φ(f) = f.

Related to the question, note that, for example, aa is a factor of f but bb is
not, and similarly that bab is a factor of f but aaa is not. That is, f avoids bb
and aaa among many other (binary) words.

Lemma 9 The infinite Fibonacci word f does not contain two factors aza and
bzb for any word z.

. . a z a

a a b u a

b a φ−1(u) b

. . . . b z b . .

a b a b u a b

a a φ−1(u) a

Proof The proof is by contradiction, assuming f contains two factors of the
stated forms. Let z be the shortest possible word for which both aza and bzb
occur in f.

Considering words avoided by f like a3 and b2, it follows that z should
start with ab and end with a. A simple verification shows that the length of z

should be at least 4, then z = abua with u �= ε (see picture). Indeed, the two
occurrences of a cannot coincide because f avoids a3. Then u cannot be empty
because ababab does not occur in f, as it would be the image by φ of aaa
that is avoided by f.

The words aabua, a prefix of aza, and ababuab uniquely factorise
on {a,ab}, which is a suffix code. Thus, φ−1(aabua) = baφ−1(u)b and
φ−1(ababuab) = aaφ−1(u)a occur in f. But this contradicts the minimality
of z’s length because aφ−1(u) is shorter than z. Therefore, f does not contain
two factors of the forms aza and bzb, which achieves the proof.
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Notes
The result of the problem was first shown by Mantaci et al. and appeared in
a different form in [185]. Part of the present proof uses Proposition 2.1.3 in
[176, chapter 2], which states additionally that the word z in the lemma of the
above converse implication is a palindrome.

The question is related to Christoffel words that are balanced Lyndon words,
as proved by Berstel and de Luca [33] (see also [35, 176]). The result is stated
by Reutenauer in [208] as follows: let w be a Lyndon word for which p = |w|a
and q = |w|b are relatively prime. Then w is a Christoffel word if and only if
BW(w) = bqap.

(7,4)

a a

b a a

b a a

b a

b

(8,5)

a a

b a a

b a

b a a

b a

b

Lower Christoffel words approximate from below segments of the plane start-
ing from the origin. The pictures show the Christoffel word aabaabaabab
(left) representing the path on grid lines closely below the segment from
(0,0) to (7,4). The Lyndon word conjugate of Fibonacci word fib5 =
abaababaabaab (right) of length F7 = 13 and density F6 = 8 approxi-
mates the segment from (0,0) to (F6,F5) = (8,5).
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96 In-place BW Transform

The Burrows–Wheeler transform (BW) of a word can be computed in linear
time, over a linear-sortable alphabet, using linear space. This is achieved via
a method to sort the suffixes or conjugates of the word, which requires linear
extra space in addition to the input.

The problem shows how the input word is changed to its transform with
constant additional memory space but with a slower computation.

Let x be a fixed word of length n whose last letter is the end-marker #,
smaller than all other letters. Sorting the conjugates of x to get BW(x) then
amounts to sorting its suffixes. The transform is composed of letters preceding
suffixes (circularly for the end-marker). For the example of x = banana# we
get BW(x) = annb#aa:

BW(x)

a #
n a #
n a n a #
b a n a n a #
# b a n a n a #
a n a #
a n a n a #

Question. Design an in-place algorithm to compute the Burrows–Wheeler
transform of an end-marked word of length n in time O(n2) using only
constant extra space.

Solution
Let initially z = x. The goal is to transform (the array) z in-place into BW(x).
The computation is performed by scanning z right to left.

Let xi denote the suffix x[i . . n − 1] of x, 0 ≤ i < n. During iteration i,
the word z = x[0 . . i] · BW(x[i + 1 . . n − 1]) is transformed into the word
x[0 . . i − 1] · BW(x[i . . n − 1]). To do it, letter c = x[i] is processed to find
the rank of xi among the suffixes xi , xi+1, . . . , xn−1.

If p is the position of # on z, p − i is the rank of xi+1 among the suffixes
xi+1, xi+2, . . . , xn−1. Then z[p] should be c at the end of iteration i, since it
precedes the suffix xi+1.

To complete the iteration it remains to locate the new position of #. Since it
precedes xi itself we have to find the rank of xi among the suffixes xi , xi+1, . . . ,
xn−1. This can easily be done by counting the number q of letters smaller than
c in z[i + 1 . . n − 1] and the number t of letters equal to c in z[i + 1 . . p − 1].
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Then r = q + t is the sought rank of xi . Eventually the computation consists
in shifting z[i + 1 . . i + r] one position to the left in z and by setting z[i + r]
to #.

Example. For x = banana# the picture below simulates the whole computa-
tion. At the beginning of iteration i = 2 (middle row), we have z = ban·an#a
and we process the underline letter c = n. In an#a there are three letters
smaller than c and, before #, one letter equal to it. Then r = 4. After
substituting c for #, the factor z[3 . . 3 + 4 − 1] is shifted and the end marker
inserted after it. This gives z = ba · anna#.

i x r

b a n a n a #
4 b a n a n a # 2 = 2 + 0
3 b a n a a n # 2 = 1 + 1
2 b a n a n # a 4 = 3 + 1
1 b a a n n a # 3 = 1 + 2
0 b a n n # a a 4 = 4 + 0

a n n b # a a

BW(x)

Algorithm InPlaceBW implements the above strategy. It begins with
iteration i = n − 3, since x[n − 2 . . n − 1] is its own transform.

InPlaceBW(x end-marked word of length n)

1 for i ← n − 3 downto 0 do
2 p ← position of # in x[i + 1 . . n − 1]

3 c ← x[i]

4 r ← 0

5 for j ← i + 1 to n − 1 do
6 if x[j ] < c then
7 r ← r + 1

8 for j ← i + 1 to p − 1 do
9 if x[j ] = c then

10 r ← r + 1

11 x[p] ← c

12 x[i . . i + r − 1] ← x[i + 1 . . i + r]

13 x[i + r] ← #

14 return x
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As for the running time, instructions at lines 2, 5–7, 8–10 and 12 all run
in time O(n − i). Then the overall running time is O(n2) in the comparison
model.

Notes
The material of the problem is from [73]. The authors also show how to
invert in-place BW to recover the initial word with the same complexities on a
constant-size alphabet. More on the Burrows–Wheeler transform is in the book
on the subject by Adjeroh et al. [2].

97 Lempel–Ziv Factorisation

The problem deals with a Lempel–Ziv factorisation of words. The factorisation
considered here is the decomposition of a word w into the product w0w1 . . . wk

where each wi is the longest prefix of wiwi+1 . . . wk that occurs in w before
the present position |w0w1 . . . wi−1|. If there is no previous occurrence, wi is
the first letter of wiwi+1 . . . wk .

The factorisation is stored in the array LZ: LZ[0] = 0 and, for
1 ≤ i ≤ k, LZ[i] = |w0w1 . . . wi−1|. For example, the factorisation of
abaabababbabbb is a · b · a · aba · bab · babb · b, which gives the array
LZ = [0,1,2,3,6,9,13,14].

Question. Show how to compute the array LZ of a word in linear time
assuming a fixed-size alphabet.

The same running time can be achieved when the alphabet is linearly
sortable, which is a weaker condition than the above one. This is done from
the longest previous array (LPF) array of the word that computes in linear time
under this condition (see Problem 53).

The LPF array of a word w is defined, for each position i on w, by: LPF[i]
is the length of the longest factor of w that starts both at position i and at a
smaller position. Below is the LPF array of abaabababbabbb.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

w[i] a b a a b a b a b b a b b b

LPF[i] 0 0 1 3 2 4 3 2 1 4 3 2 2 1

Question. Design an algorithm that computes in linear time the Lempel–Ziv
factorisation of a word given its LPF array.

Solution
Direct computation of LZ. A solution to the first question utilises the Suffix
tree T = ST (w) of w. Its terminal nodes (or leaves if w has an end-marker)
are identified with the suffixes of w and can be assumed to be labelled by their
starting positions. Additionally, for each node v of T , first(v) is the smallest
label of a leaf in the subtree rooted at v, which can be computed via a mere
bottom-up traversal of the tree.

Assume LZ[0 . . i − 1] is computed and LZ[i − 1] = j , for 1 ≤ i ≤ k.
To get LZ[i] the tree is traversed from root(T ) along the path spelling a prefix
of w[j . . n − 1] letter by letter. The descent stops if either it cannot continue
or the scanned word does not occur before position j . The latter condition is
checked in the following way: in a given step the current node of the tree is an
explicit node v or possibly an implicit inner node, in which case we look down
for the first explicit node v. Checking if a previous occurrence exists amounts
to checking if first(v) < j .

Building the Suffix tree takes linear time on a linearly sortable alphabet (see
Problem 47) and traversing it takes linear time on a fixed-size alphabet. It is
O(|w| log alph (w)) on a general alphabet.

LZ from LPF. The following algorithm solves the second question.

LZ-factorisation(LPF table of a word of length n)

1 (LZ[0],i) ← (0,0)

2 while LZ[i] < n do
3 LZ[i + 1] ← LZ[i] + max{1,LPF[LZ[i]]}
4 i ← i + 1

5 return LZ

It is clear that LZ[0] is correctly set. Let us assume that, at iteration i of
the while loop, values LZ[j ] are correct for 0 ≤ j ≤ i. In particular, LZ[i] =
|w0w1 . . . wi−1|.
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97 Lempel–Ziv Factorisation 241

Let wi be the next factor of the factorisation. If wi is not empty then its
length (greater than 1) is LPF[|w0w1 . . . wi−1|]; thus LZ[i + 1] = LZ[i] +
LPF[LZ[i]]. If wi is empty then LZ[i + 1] = LZ[i] + 1. In both cases, the
instruction at line 3 correctly computes LZ[i + 1].

The algorithm stops when LZ[i] ≥ n; thus it computes all the values LZ[i]
for 0 ≤ i ≤ k.

All the instructions of the algorithm run in constant time except the while
loop that is iterated k + 1 times; thus the algorithm runs in O(k) time.

Notes
An alternative algorithm can be designed with the Suffix automaton (or
DAWG) of the word. See [76] for the algorithm of the second question and
for applications of the LPF array.

There is a large number of possible variations on the definition of the
factorisation. The above version is inspired by the LZ77 compression method
designed by Ziv and Lempel [243] (see [37]). Its study has been stimulated by
its high performance in real applications.

The factorisation is also useful to produce efficient algorithms for locating
repetitions in words (see [67, 167]), outperformed by the computation of runs
in [26] (see Problem 87). The factorisation can also deal with repetitions in
other applications, such as finding approximate repetitions in words [168] or
aligning genomic sequences [88], for example.

https://doi.org/10.1017/9781108835831.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.007


242 Text Compression

98 Lempel–Ziv–Welch Decoding

The Lempel–Ziv–Welch compression method is based on a type of Lempel–
Ziv factorisation. It consists in encoding repeating factors of the input text
by their code in a dictionary D of words. The dictionary, initialised with all
the letters of the alphabet A, is prefix-closed: every prefix of a word in the
dictionary is in it.

Here is the encoding algorithm in which codeD(w) is the index of the factor
w in the dictionary D.

LZW-encoder(input non-empty word)

1 D ← A

2 w ← first letter of input

3 while not end of input do
4 a ← next letter of input

5 if wa ∈ D then
6 w ← wa

7 else write(codeD(w))

8 D ← D ∪ {wa}
9 w ← a

10 write(codeD(w))

The decompression algorithm reads the sequence of codes produced by the
encoder and updates the dictionary similarly to the way the encoder does.

LZW-decoder(input non-empty word)

1 D ← A

2 while not end of input do
3 i ← next code of input

4 w ← factor of code i in D

5 write(w)

6 a ← first letter of next decoded factor

7 D ← D ∪ {wa}

Question. Show that during the decoding step Algorithm LZW-decoder
can read a code i that does not belong yet to the dictionary D if and only if
index i corresponds to the code of aua, where au is the previous decoded
factor, a ∈ A and u ∈ A∗.
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The question highlights the only critical situation encountered by the
decoder. The property provides the element to ensure it can correctly decode
its input.

Solution
We first prove that if just after it writes a code in the output the encoder reads
v = auaua, with a ∈ A, u ∈ A∗, au ∈ D and aua �∈ D, then the decoder will
read a code that does not belong to the dictionary.

The encoder starts reading au ∈ D. Then when reading the following a

in v the encoder writes the code of au and adds aua to the dictionary. Going
on, it reads the second occurrence of ua and writes the code of aua (since the
dictionary is prefix-closed aua cannot be extended).

During the decoding step when the decoder reads the code of au, it next
reads the code of aua before it is in the dictionary.

We now prove that if the decoder reads a code i that does not belong yet to
the dictionary then it corresponds to the factor aua to where au is the factor
corresponding to the code read just before i.

Let w be the factor corresponding to the code read just before i. The only
code that has not been inserted in the dictionary before reading i corresponds
to the factor wc, where c is the first letter of the factor having code i. Thus
c = w[0]. If w = au then code i corresponds to factor aua.

Example. Let the input be the word ACAGAATAGAGA over the 8-bit ASCII
alphabet.

The dictionary initially contains the ASCII symbols and their indices are
their ASCII codewords. It also contains an artificial end-of-word symbol of
index 256.

Coding

A C A G A A T A G A G A w written added to D
↑ A 65 AC, 257

↑ C 67 CA, 258
↑ A 65 AG, 259

↑ G 71 GA, 260
↑ A 65 AA, 261

↑ A 65 AT, 262
↑ T 84 TA, 263

↑ A
↑ AG 259 AGA, 264

↑ A
↑ AG

↑ AGA 264
256
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Decoding
The input sequence is 65, 67, 65, 71, 65, 65, 84, 259, 264, 256.

read written added
65 A
67 C AC, 257
65 A CA, 258
71 G AG, 259
65 A GA, 260
65 A AA, 261
84 T AT, 262

259 AG TA, 263
264 AGA AGA, 264
256

The critical situation occurs when reading the index 264 because, at that
moment, no word of the dictionary has this index. But since the previous
decoded factor is AG, index 264 can only correspond to AGA.

Notes
The Lempel–Ziv–Welch method has been designed by Welch [239]. It
improves on the initial method developed by Ziv and Lempel [243].

99 Cost of a Huffman Code

Huffman compression method applied to a text x ∈ A∗ assigns a binary
codeword to each letter of x in order to produce a shortest encoded text. Its
principle is that the most frequent letters are given the shortest codewords while
the least frequent symbols correspond to the longest codewords.

Codewords form a prefix code (prefix-free set) naturally associated with
a binary tree in which the links from a node to its left and right children
are labelled by 0 and 1 respectively. Leaves correspond to original letters
and labels of branches are their codewords. In the present method codes are
complete: internal nodes of the tree all have exactly two children.

The cost of a Huffman code is the sum
∑

a∈A freq(a) × |code(a)|, where
code(a) is the binary codeword of letter a. It is the smallest length of a binary
text compressed by the method from a word x in which freq(a) = |x|a for
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each letter a ∈ alph (x). Let us consider the following algorithm applied to
frequencies (weights).

HuffmanCost(S list of positive weights)

1 result ← 0

2 while |S| > 1 do
3 p ← MinDelete(S)

4 q ← MinDelete(S)

5 add p + q to S

6 result ← result + p + q

7 return result

Question. Prove that Algorithm HuffmanCost(S) computes the smallest
cost of a Huffman code from a list S of item weights.

[Hint: Consider the Huffman tree associated with the code.]

Example. Let S = {7,1,3,1}. Initially result = 0.
Step 1: p = 1, q = 1, p + q = 2, S = {7,3,2}, result = 2.
Step 2: p = 2, q = 3, p + q = 5, S = {7,5}, result = 7.
Step 3: p = 5, q = 7, p + q = 12, S = {12}, result = 19.

The Huffman forest underlying the algorithm, which ends up with a Huffman
tree, is shown in the picture. Nodes are labelled with weights.

1 1 3 7

c t g a

2

1 1

c t

3 7

g a

Initial state Step 1

5

32

1 1

c t

g

7

a

12

75

32

1 1

c t

g

a

Step 2 Step 3
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The final tree provides codewords associated with letters, summarised in the
table.

a c g t

freq 7 1 3 1
code 1 000 01 001
|code| 1 3 2 3

The cost of the tree is 7 × 1 + 1 × 3 + 3 × 2 + 1 × 3 = 19. It is the length
of the compressed word 000 1 01 1 001 1 1 01 1 01 1 1 corresponding
to cagataagagaa, whose letter frequencies fit with those of the example.
Encoded with 8-bit codewords, the length of the latter word is 96.

Question. Show how to implement algorithm HuffmanCost(S) so that it
runs in linear time when the list S is in increasing order.

[Hint: Use a queue for inserting the new values (corresponding to internal
nodes of the tree).]

Solution
Correctness of HuffmanCost. Let Si denote the value of S at step i of the
while loop of the algorithm, 0 ≤ i ≤ |S| − 1.

The loop invariant of the algorithm is: result is the sum of total cost of
Huffman codewords representing the weights stored in Si .

Before the first iteration, S0 is a forest composed of node trees each of
depth 0, which corresponds to the initialisation result = 0.

During iteration i, the algorithm selects and deletes the least two weights
p and q from Si−1 and adds p + q to Si−1 to produce Si . This mimics the
creation of a new tree whose root has weight p + q, thus creating two new
edges. Then one more bit is needed to account for all the codewords of letters
associated with the leaves of the new tree. Altogether this occurs p + q times
and implies that result should be incremented by p + q as done at line 6. As
a consequence, at the end of iteration i, result is the sum of the total cost of
Huffman codewords representing the weights stored in Si .

At the end of the (|S| − 1)th iteration only one weight is left in S and result
is the total cost of the corresponding Huffman code.

It is clear that, at any iteration of the while loop, choosing other values than
the two minimal values in S would produce a larger cost than result.

Implementation in linear time. To have HuffmanCost(S) running in linear
time it is enough to insert newly created weights in a queue Q. Since new
weights come in increasing order, Q is also sorted and each step runs in
constant time, giving the following solution.
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HuffmanCostLinear(S increasing list of positive weights)

1 result ← 0

2 Q ← ∅
3 while |S| + |Q| > 1 do
4 (p,q) ← extract the 2 smallest values among

the first 2 values of S and the first 2 values of Q

5 Enqueue(Q,p + q)

6 result ← result + p + q

7 return result

Example. Let S = (1,1,3,7). Initially result = 0 and Q = ∅
Step 1: p = 1, q = 1, p + q = 2, S = (3,7), Q = (2), result = 2
Step 2: p = 2, q = 3, p + q = 5, S = (7), Q = (5), result = 7
Step 3: p = 5, q = 7, p + q = 12, S = ∅, Q = (12), result = 19.

Notes
Huffman trees were introduced by Huffman [144]. The linear-time construc-
tion method, once the initial frequencies are already sorted, is due to Van
Leeuwen [235].
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100 Length-Limited Huffman Coding

Given the frequencies of alphabet letters, the Huffman algorithm builds an
optimal prefix code to encode the letters in such a way that encodings are as
short as possible. In the general case there is no constraint on the length of
the codewords. But sometimes one may want to bound the codeword length.
Building a code satisfying such a constraint is the subject of this problem.

The coin collector’s problem is an example of where the constraint is
used. Collectors have coins with two independent properties: denominations
(currency values) and numismatic values (collector values). Their goal is to
collect a sum N while minimising the total numismatic value.

Let denominations be integer powers of 2: 2−i with 1 ≤ i ≤ L. Coins are
organised as follows: there is a list for each denomination in which coins are
sorted in increasing order of their numismatic values.

The method consists in grouping adjacent coins two by two in the list of
smaller denominations, dropping the last coin if their number is odd. The
numismatic value of a package is the sum of numismatic values of the two
coins. Newly formed packages are associated with the coins of the next
smallest denomination (sorted in increasing numismatic value). The process
is repeated until the list of coins of denomination 2−1 is processed.

Question. Design an algorithm that computes for a list of n frequencies an
optimal length-limited Huffman code in which no codeword is longer than L

and that runs in time O(nL).

[Hint: Reduce the problem to the binary coin collector’s problem.]

Example. A coin collector has:

• 4 AC1/2 coins of numismatic values 4, 8, 13 and 15 respectively,

• 3 AC1/4 coins of numismatic values 3, 5 and 6 respectively,

• 5 AC1/8 coins of numismatic values 2, 2, 4, 6 and 11 respectively,

and wants to collect 2 euros.
First, AC1/8 coins are grouped two by two to form two packages of AC1/4

with respective numismatic values 4 and 10, dropping the coin of numismatic
value 11.

Then, these two packages are merged with the AC1/4 coins and sorted.
Coins and packages of AC1/4 are grouped, which produces 2 AC1/2 packages
of respective numismatic values 7 and 11, disregarding the package of
numismatic value 10.
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Going on, these two packages are merged with the AC1/2 coins and sorted.
Finally, coins and packages of AC1/2 are processed, which gives three packages
of respective numismatic values 11, 19 and 28. The picture illustrates the whole
process.

AC1/8: 2 2 4 6 11

AC1/4: 3 5 6

AC1/2: 4 8 13 15
package−→

AC1/8: 2 2 4 6

4 10

AC1/4: 3 5 6

AC1/2: 4 8 13 15

merge−→
2 2 4 6

AC1/4: 3 4 5 6 10

AC1/2: 4 8 13 15

package−→

2 2

AC1/4: 3 4 5 6

7 11

AC1/2: 4 8 13 15

merge−→

2 2

3 4 5 6

AC1/2: 4 7 8 11 13 15

package−→

2 2

3 4 5 6

AC1/2: 4 7 8 11 13 15

AC1: 11 19 28

The first two packages give the solution: 2 euros composed of 2 AC1/8 coins of
numismatic values 2 each; 3 AC1/4 coins of numismatic values 3, 5 and 6; and
2 AC1/2 coins of numismatic values 4 and 8 for a total numismatic value of 30.

Algorithm PackageMerge(S,L) implements the strategy for a set S of
coins with denominations between 2−L and 2−1. Package(S) groups two by
two consecutive items of S and Merge(S,P ) merges two sorted lists.

Eventually, the first N items of the list PackageMerge(S,L) have the
lowest numismatic values and are selected to form the solution.

PackageMerge(S set of coins,L)

1 for d ← 1 to L do
2 Sd ← list of coins of S with denomination 2−d

sorted by increasing numismatic value

3 for d ← L downto 1 do
4 P ← Package(Sd)

5 Sd−1 ← Merge(Sd−1,P )

6 return S0
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Both Package(S′) and Merge(S′,P ′) run in linear time according to
n = |S|. Thus, provided that the lists of coins are already sorted, the algorithm
PackageMerge(S,L) runs in time and space O(nL).

Solution
Given n letter frequencies wi for 1 ≤ i ≤ n, the previous algorithm can be
applied to collect a sum equal to n−1 by creating, for each 1 ≤ i ≤ n, L coins
of numismatic value wi and of denomination 2−j for each 1 ≤ j ≤ L to find
an Huffman optimal code, where no codeword is longer than L.

Example. Given the following six frequencies sorted in increasing order
w = (1,2,4,6,8,20) and L = 4, the PackageMerge algorithm operates as
illustrated.

package

merge

package

merge

package

merge

2−4:

2−3:

2−2:

2−1:

1

1

1

1

3

3

3

2

2

2

2

4

3

3

3

10

7

7

6

4

4

4

8

6

6

6

28

14

13

20

8

7

7

10

8

8

30

22

20

14

13

28

20

20

50

30

22 50

Lengths of codewords corresponding to each frequency are computed by
scanning in increasing order the first 2n − 2 = 10 items of the last level. This
is summarised in the table, where, for instance, the 6th item has weight 7 and
corresponds to frequencies 1, 2 and 4. The tree corresponds to these codeword
lengths.

Item weight 1 2 4 6 8 20
1 1 1 0 0 0 0 0
2 2 1 1 0 0 0 0
3 3 2 2 0 0 0 0
4 4 2 2 1 0 0 0
5 6 2 2 1 1 0 0
6 7 3 3 2 1 0 0
7 8 3 3 2 1 1 0
8 13 4 4 3 2 1 0
9 20 4 4 3 2 1 1

10 22 4 4 3 3 3 1

20

8 6 4

2 1
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More precisely, L lists of coins are considered, one for each denomination.
These lists are sorted in increasing order of numismatic values. Actually, since
in this case L = O(log n), sorting can be done within the given complexity
and a solution can be produced in O(nL) time and space complexities.

At the end, the first 2n − 2 items of the list corresponding to 2−1 are
processed. In these items, each occurrence of an original frequency accounts
for one unit to the length of the associated codeword.

Let (i,�) ∈ [1,n]× [1,L] be a node of weight wi and width 2−�. The weight
(resp. width) of a set of nodes is the sum of the weights (resp. widths) of its
nodes. We define nodeset(T ) for a binary tree T with n leaves as follows:
nodeset(T ) = {(i,�) : 1 ≤ i ≤ n,1 ≤ � ≤ �i} where �i is the depth of the ith
leaf of T .

Thus the weight of nodeset(T ) is weight(T ) = ∑n
i=1 wi�i and its width is

width(T ) = n − 1 (proof by induction).

Lemma 10 The first 2n − 2 items of the last list computed by Algorithm
PackageMerge applied to L list of n coins sorted in increasing numismatic
values wi , 1 ≤ i ≤ n correspond to a minimum weight nodeset of width n− 1.

Proof Let C = (k1,k2, . . . ,kn) be the codeword lengths produced by
Algorithm PackageMerge. Let K = ∑n

i=1 2−ki . Initially C = (0,0, . . . ,0)

and K = n. It can be easily checked that every item among the first 2n−2 items
produced by the algorithm decreases K by 2−1. Thus the produced nodeset
has width n − 1. It can also easily be checked that the algorithm at each step
greedily chooses the minimal weight so that the produced nodeset is of total
minimum weight.

A nodeset Z is monotone if the following two conditions hold:

• (i,�) ∈ Z %⇒ (i + 1,�) ∈ Z, for 1 ≤ i < n,

• (i,�) ∈ Z %⇒ (i,� − 1) ∈ Z, for � > 1.

The following lemmas can be easily proved.

Lemma 11 For an integer X < n, the minimum weight nodeset of width X is
monotone.

Lemma 12 If (�1,�2, . . . ,�n) is a list of integers for which 1 ≤ �i ≤ L and Z

is the nodeset {(i,�) : 1 ≤ i ≤ n,1 ≤ � ≤ �i} then width(Z) = n−∑n
i=1 2−�i .

Lemma 13 If y = (�1,�2, . . . ,�n) is a monotone increasing list of non-negative
integers whose width is equal to 1 then y is the list of depth of leaves of a
binary tree.
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We can now state the main theorem.

Theorem 14 If a nodeset Z has minimum weight among all nodesets of width
n−1 then Z is the nodeset of a tree T that is an optimal solution to the length-
limited Huffman coding problem.

Proof Let Z be the minimum weight nodeset of width n − 1. Let �i be the
largest level such that (i,�i) ∈ A for each 1 ≤ i ≤ n. By Lemma 11, Z is
monotone. Thus �i ≤ �i+1 for 1 ≤ i < n. Since Z is monotone and has
width n − 1, Lemma 12 implies that

∑n
i=1 2−�i = 1. Then by Lemma 13,

(�1,�2, . . . ,�n) is the list of leaf depths of a binary tree T , and hence Z =
nodeset(T ).

Since Z has minimum weight among all nodesets of width n − 1 it implies
that T is optimal.

Notes
The coin collector’s problem and the PackageMerge algorithm have been
introduced by Larmore and Hirschberg in [172]. They also show that finding
an optimal length-limited Huffman code can be reduced to the coin collector’s
problem and solved it in O(nL) time and space. They further show how the
space complexity can be lowered to O(n). Other improvements can be found
in [156] and in [220].
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101 Online Huffman Coding

The two main drawbacks of the static Huffman compression method are that
first, if the frequencies of letters in the source text are not known a priori, the
source text has to be scanned twice and second, the Huffman coding tree must
be included in the compressed file. The problem shows a solution that avoids
these drawbacks.

The solution is based on a dynamic method in which the coding tree is
updated each time a symbol is read from the source text. The current Huffman
tree relates to the part of the text that has already been processed and evolves
exactly in the same way during the decoding process.

Question. Design a Huffman compression method that reads only once the
source text and does not need to store the coding tree in the compressed text.

[Hint: Huffman trees are characterised by the siblings property.]

Siblings property. Let T be a Huffman tree with n leaves (a complete binary
weighted tree in which all leaves have positive weights). Nodes of T can be
arranged in a list (t0,t1, . . . ,t2n−2) that satisfies

• Nodes are in decreasing order of their weights:
weight(t0) ≥ weight(t1) ≥ · · · ≥ weight(t2n−2).

• For any i, 0 ≤ i ≤ n − 2, the consecutive nodes t2i and t2i+1 are siblings
(they have the same parent).

Solution
The encoding and decoding processes initialise the dynamic Huffman tree as a
tree consisting of one node associated with an artificial symbol ART and whose
weight is 1.

Encoding phase. During the encoding process, each time a symbol a is read
from the source text, its codeword from the tree is appended to the output.
However, this happens only if a appeared previously. Otherwise the code
of ART followed by the original codeword of a is appended to the output.
Afterwards, the tree is modified in the following way: first, if a is a not leaf of
the tree a new node is inserted as the parent of leaf ART with a new leaf child
labelled by a; second, the tree is updated (see below) to get a Huffman tree for
the new prefix of the text.

Decoding phase. At decoding time the compressed text is parsed with the
coding tree. The current node is initialised with the root corresponding to ART
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as in the encoding algorithm, and then the tree evolves symmetrically. Each
time a 0 is read from the compressed file the walk down the tree follows the
left link, and it follows the right link if a 1 is read. When the current node is
a leaf, its associated symbol is appended to the output and the tree is updated
exactly as is done during the encoding phase.

Update. During the encoding (resp. decoding) phase, when a symbol (resp. the
code of) a is read, the current tree has to be updated to take into account the
correct frequency of symbols. When the next symbol of the input is considered
the weight of its associated leaf is incremented by 1, and the weights of
ancestors have to be modified correspondingly.

First, the weight of the leaf tq corresponding to a is incremented by 1.
Then, if the first point of the siblings property is no longer satisfied, node
tq is exchanged with the closest node tp (p < q) in the list for which
weight(tp) < weight(tq). This consists in exchanging the subtrees rooted at
nodes tp and tq . Doing so, the nodes remain in decreasing order according to
their weights. Afterwards, the same operation is repeated on the parent of tp

until the root of the tree is reached.
The following algorithm implements this strategy.

Update(a)

1 tq ← leaf(a)

2 while tq �= root do
3 weight(tq) ← weight(tq) + 1

4 p ← q

5 while weight(tp−1) < weight(tq) do
6 p ← p − 1

7 swap nodes tp and tq

8 tq ← parent(tp)

9 weight(root) ← weight(root) + 1

Sketch of the proof. Assume that the siblings property holds for a Huffman
tree with a list (t0,t1, . . . ,tq, . . . ,t2n−2) of nodes in decreasing order of their
weights and assume that the weight of leaf tq is incremented by 1. Then both
inequalities weight(tp) ≥ weight(tq) and weight(tp) < weight(tq) + 1 imply
weight(tp) = weight(tq). Node tp has the same weight as node tq and thus
cannot be a parent or an ancestor of tq , since the weight of a parent is the
sum of the weights of its two children and that leaves have positive weights.
Then swapping tq with the smallest node tp such that weight(tp) = weight(tq),
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incrementing weight(tq) by 1 and applying the same process to the parent of
tp up to the root restore the siblings property for the whole tree, which ensures
that the tree is a Huffman tree.

The picture illustrates how the tree is updated during the first five steps of
processing the input text cagataagagaa.

1

ART

0

2

1 1

c ART

0

1 2

2

1 2

1 1

c

a ART

0

1 2

3 4

→

3

2 1

1 1

c

a ART

0

1 2

3 4

Initial state Step 1: c Step 2: a

3

2 1

1 2

1 1

c

a

g ART

0

1 2

3 4

5 6

→

4

2 2

1 1 1 1

a c g ART

0

1 2

3 4 5 6

5

3 2

2 1 1 1

a c g ART

0

1 2

3 4 5 6

Step 3: g Step 4: a

5

3 2

2 1 1 2

1 1

a c g

t ART

0

1 2

3 4 5 6

7 8

→

6

4 2

2 2 1 1

1 1

a cg

t ART

0

1 2

3 4 5 6

7 8

Step 5: t

Notes
The dynamic version of the Huffman compression method presented here was
discovered independently by Faller [108] and by Gallager [125]. Practical
versions were given by Cormack and Horspool [62] and by Knuth [161].
A precise analysis leading to an improvement on the length of the encoding
was presented by Vitter [236].

There exist myriad variants of Huffman coding; see, for example, [121].
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102 Run-Length Encoding

The binary representation (expansion) of a positive integer x is denoted by
r(x) ∈ {0,1}∗. The run-length encoding of a word w ∈ 1{0,1}∗ is of the
form 1p00p1 · · ·1ps−20ps−1 , where s − 2 ≥ 0, pis are positive integers for
i = 0, . . . ,s − 2 and ps−1 ≥ 0. Value s is called the run length of w.

In the problem we examine the run length of the binary representation of
the sum, the difference and the product of two integers.

Question. Let x and y be two integers, x ≥ y > 0, and let n be the total run
length of r(x) and r(y). Show that the run lengths of r(x + y), r(x − y) and
r(x × y) are polynomial with respect to n.

Solution
Let r(x) = 1p00p1 · · ·1ps−20ps−1 and r(y) = 1q00q1 · · ·1qt−20qt−1 .

Run length of r(x + y). Let us prove by induction on n that the run length of
r(x + y) is polynomial w.r.t. n.

It is straightforward the induction hypothesis holds when n = 2, when s = 1
or when t = 1. Assume it holds when the total run length of r(x) and r(y) is
k < n. Now consider the induction case when the total run length of r(x) and
r(y) is n.

• Case ps−1 �= 0 and qt−1 �= 0.

Assume w.l.o.g. that ps−1 ≥ qt−1. Then
r(x + y) = (1p00p1 · · ·1ps−20ps−1−qt−1 + 1q00q1 · · ·1qt−2) · 0qt−1 .

Since 1p00p1 · · ·1ps−20ps−1−qt−1 and 1q00q1 · · ·1qt−2 have total run
length no more than n − 1 by hypothesis, their sum has a run length
polynomial w.r.t. n.

Example. r(x) = 13021203 and r(y) = 11031302. Then
r(x + y) = (13021201 + 110313) · 02 = 1102110112011102.

1 1 1 0 0 1 1 0 0 0
+ 1 0 0 0 1 1 1 0 0

1 0 0 1 0 1 1 0 1 0 0

=
1 1 1 0 0 1 1 0

+ 1 0 0 0 1 1 1

1 0 0 1 0 1 1 0 1 · 0 0

• Case ps−1 = 0 and qt−1 �= 0.

If ps−2 ≥ qt−1 then

r(x + y) = (1p00p1 · · ·1ps−2−qt−1 + 1q00q1 · · ·1qt−2) · 1qt−1 .
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Since 1p00p1 · · ·1ps−2−qt−1 and 1q00q1 · · ·1qt−2 have total run length no
more than n−1 by hypothesis, their sum has run length polynomial w.r.t. n.

Example. r(x) = 13021500 and r(y) = 11031302. Then
r(x + y) = (130213 + 110313) · 12 = 11021101130112.

1 1 1 0 0 1 1 1 1 1
+ 1 0 0 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0 1 1

=
1 1 1 0 0 1 1 1

+ 1 0 0 0 1 1 1

1 0 0 1 0 1 1 1 0 · 1 1

If ps−2 < qt−1 then

r(x + y) = (1p00p1 · · ·0ps−3 + 1q00q1 · · ·1qt−20qt−1−ps−2) · 1ps−2 .

Since 1p00p1 · · ·0ps−3 and 1q00q1 · · ·1qt−20qt−1−ps−2 have total run
length no more than n − 1 by hypothesis, their sum has run length
polynomial w.r.t. n.

Example. r(x) = 130213011100 and r(y) = 11031302. Then
r(x + y) = (13021301 + 11031301) · 11 = 11021101130211.

1 1 1 0 0 1 1 1 0 1
+ 1 0 0 0 1 1 1 0 0

1 0 0 1 0 1 1 1 0 0 1

=
1 1 1 0 0 1 1 1 0

+ 1 0 0 0 1 1 1 0

1 0 0 1 0 1 1 1 0 0 · 1
• The case where ps−1 �= 0 and qt−1 = 0 can be dealt with similarly.

• Case ps−1 = 0 and qt−1 = 0.

Then assume w.l.o.g. that ps−2 ≥ qt−2. Then
r(x + y) = (1p00p1 · · ·1ps−2−qt−2 + 1q00q1 · · ·0qt−3 + 1) · 1qt−2−10.

Since 1p00p1 · · ·1ps−2−qt−2 and 1q00q1 · · ·0qt−3 have total run length no
more than n−1 by hypothesis, their sum has run length polynomial w.r.t. n.

Example. r(x) = 13021500 and r(y) = 11051300. Then
r(x + y) = (130212 + 1105 + 1) · 1201 = 1102110111021201.

1 1 1 0 0 1 1 1 1 1
+ 1 0 0 0 0 0 1 1 1

1 0 0 1 0 1 0 0 1 1 0

=
1 1 1 0 0 1 1

+ 1 0 0 0 0 0
+ 1

1 0 0 1 0 1 0 0 · 1 1 0

The conclusion of all cases answers the question for r(x + y).

Run length of r(x−y). We prove by induction on n that the run length r(x−y)

is polynomial w.r.t. n.
The induction hypothesis obviously holds when n = 2. Assume it holds

when the total run length of r(x) and r(y) is equal to k < n. Consider x and y

whose total run length of r(x) and r(y) is n.
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• Case ps−1 �= 0 and qt−1 �= 0.

Assume w.l.o.g. that ps−1 ≥ qt−1. Then
r(x − y) = (1p00p1 · · ·1ps−20ps−1−qt−1 + 1q00q1 · · ·1qt−2) · 0qt−1 .

Since 1p00p1 · · ·1ps−20ps−1−qt−1 and 1q00q1 · · ·1qt−2 have total run
length no more than n − 1 by hypothesis, their difference has run length
polynomial w.r.t. n.

Example. r(x) = 13021203 and r(y) = 11031302. Then
r(x − y) = (13021201 − 110313) · 02 = 11021502.

1 1 1 0 0 1 1 0 0 0
− 1 0 0 0 1 1 1 0 0

1 0 0 1 1 1 1 1 0 0

=
1 1 1 0 0 1 1 0

− 1 0 0 0 1 1 1

1 0 0 1 1 1 1 1 · 0 0

• Case ps−1 = 0 and qt−1 �= 0.

If ps−2 ≥ qt−1 then

r(x − y) = (1p00p1 · · ·1ps−2−qt−1 + 1q00q1 · · ·1qt−2) · 1qt−1 .

Since 1p00p1 · · ·1ps−2−qt−1 and 1q00q1 · · ·1qt−2 have total run length no
more than n − 1 by hypothesis, their difference has run length polynomial
w.r.t. n.

Example. r(x) = 13021500 and r(y) = 11031302. Then
r(x − y) = (130213 − 110313) · 12 = 1101110512.

1 1 1 0 0 1 1 1 1 1
− 1 0 0 0 1 1 1 0 0

1 0 1 0 0 0 0 0 1 1

=
1 1 1 0 0 1 1 1

− 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 · 1 1

If ps−2 < qt−1 then

r(x − y) = (1p00p1 · · ·0ps−3 − 1q00q1 · · ·1qt−20qt−1−ps−2) · 1qt−1 .

Since 1p00p1 · · ·0pt−3 and 1q00q1 · · ·1qt−20qt−1−pd−2 have total run
length no more than n − 1 by hypothesis, their difference has run length
polynomial w.r.t. n.

Example. r(x) = 130212011200 and r(y) = 11031203. Then
r(x − y) = (13021201 − 11031201) · 12 = 1101110512.

1 1 1 0 0 1 1 0 1 1
− 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0 1 1

=
1 1 1 0 0 1 1 0

− 1 0 0 0 1 1 0

1 0 1 0 0 0 0 0 · 1 1

• The case where ps−1 �= 0 and qt−1 = 0 can be dealt with similarly.

• Case ps−1 = 0 and qt−1 = 0.
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If ps−2 ≥ qt−2. Then
r(x − y) = (1p00p1 · · ·1ps−2−qt−2 − 1q00q1 · · ·0qt−3) · 0qt−2 .

Since 1p00p1 · · ·1ps−2−qt−2 and 1q00q1 · · ·0qt−3 have total run length no
more than n − 1 by hypothesis, their difference has run length polynomial
w.r.t. n.

Example. r(x) = 13021500 and r(y) = 110312011200. Then
r(x − y) = (130213 − 11031201) · 02 = 1101110512.

1 1 1 0 0 1 1 1 1 1
− 1 0 0 0 1 1 0 1 1

1 0 1 0 0 0 0 1 0 0

=
1 1 1 0 0 1 1 1

− 1 0 0 0 1 1 0

1 0 1 0 0 0 0 1 · 0 0

If ps−2 < qt−2. Then
r(x − y) = (1p00p1 · · ·0ps−3 − 1q00q1 · · ·1qt−2−ps−2) · 0qt−2 .

Since r(x − y) = (1p00p1 · · ·0ps−3 and 1q00q1 · · ·1qt−2−ps−2 have total
run length no more than n−1 by hypothesis, their difference has run length
polynomial w.r.t. n.

Example. r(x) = 130211011300 and r(y) = 11031500. Then
r(x − y) = (13021101 − 110312) · 03 = 11021403.

1 1 1 0 0 1 0 1 1 1
− 1 0 0 0 1 1 1 1 1

1 0 0 1 1 1 1 0 0 0

=
1 1 1 0 0 1 0 1

− 1 0 0 0 1 1 1

1 0 0 1 1 1 1 0 · 0 0

The conclusion of all cases answers the question for r(x − y).

Run length of r(x × y). Let us prove by induction on n that the run length of
r(x × y) is polynomial w.r.t. n.

The conclusion readily comes when n = 2. Let us assume that the induction
hypothesis holds when r(x) and r(y) have total run length k < n. Consider
r(x) and r(y) whose total run length is n.

• Case ps−1 �= 0. Then
r(x × y) = (1p00p1 · · ·1ps−2 × 1q00q1 · · ·1qt−20qt−1) · 0ps−1 .

Since 1p00p1 · · ·1ps−2 and 1q00q1 · · ·1qt−20qt−1 have total run length
no more than n − 1 by hypothesis, their product has run length polynomial
w.r.t. n.

Example. r(x) = 13021203 and r(y) = 11031500. Then
r(x × y) = (130212 × 110315) · 03.
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1 1 1 0 0 1 1 0 0 0
× 1 0 0 0 1 1 1 1 1 =

1 1 1 0 0 1 1
× 1 0 0 0 1 1 1 1 1

· 0 0 0

• The case when qt−1 �= 0 can be dealt with similarly.

• Case ps−1 = 0 and qt−1 = 0. Then r(x × y) is
(1p00p1 · · ·1ps−2 × 1q00q1 · · ·0qt−3+qt−2) + (1p00p1 · · ·1ps−2 × 1qt−2).

Since 1p00p1 · · ·1ps−2 and 1q00q1 · · ·0qt−3+qt−2 have total run length
no more than n − 1 by hypothesis, their product has run length polynomial
w.r.t. n. And since 1p00p1 · · ·1ps−2 and 1qt−2 have total run length less than
n by hypothesis, their product has run length polynomial w.r.t. n.

Example. r(x) = 13021200 and r(y) = 11021300. Then
r(x × y) = (130212 × 1105) + (130212 × 13).

1 1 1 0 0 1 1
× 1 0 0 1 1 1 = 1 1 1 0 0 1 1

× 1 0 0 0 0 0 + 1 1 1 0 0 1 1
× 1 1 1

The conclusion of all cases answers the question for r(x × y).

Notes
We can also consider arithmetic operations on succinct representations on
numbers in the decimal numeration system. For example,

15n / 41 = 271 (00271)n−1.

However, it is not a run-length encoding but rather its extension.
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103 A Compact Factor Automaton

A Factor automaton is a minimal (deterministic) automaton accepting all the
factors of a word. It is also called a directed acyclic word graph (DAWG). All
its states are terminal and its edges are labelled by single letters. For certain
well-structured words the automaton can be highly compressed by removing
nodes having exactly one parent and one child and labelling edges by factors
of the word accordingly. The resulting DAWG is called a compact DAWG
(CDAWG) or compact Suffix automaton (CSA) if nodes corresponding to
suffixes are marked as terminal.

The problem considers words whose CDAWGs are extremely small, namely
Fibonacci words fibn and their shortened version gn. The word gn is fibn with
the last two letters deleted, that is, gn = fibn{a,b}−2.

Question. Describe the structure of CDAWGs of Fibonacci words fibn and
of their trimmed versions gn. Using this structure compute the number of
distinct factors occurring in the words.

Solution
The solution is based on the lazy Fibonacci numeration system that uses the
fact that each integer x ∈ [1 . . Fn − 2], n ≥ 4, is uniquely represented as
x = Fi0 + Fi1 + · · · + Fik , where (Fit : 2 ≤ it ≤ n − 2) is an increasing
sequence of Fibonacci numbers satisfying

(∗) i0 ∈ {0,1} and it ∈ {it−1 + 1,it−1 + 2} for t > 0.

For the example of n = 8 the sequence of indices (3,4,6) corresponds to 13
because F3 + F4 + F6 = 2 + 3 + 8 = 13.

The set of sequences (Fit : 2 ≤ it ≤ n − 2) satisfying (∗) is accepted
by a simple deterministic acyclic automaton whose edge labels are Fibonacci
numbers and all states are terminal. The picture displays the case n = 10 for
integers in [1 . . 53].

1

2

2

3

3

5

5

8

8

13

13

21

21

CDAWG of trimmed Fibonacci words. The previous automaton can be easily
transformed into the CDAWG of gn using the following property (introduced
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in Problem 56). Let Ri denote the reverse of fibi and let suf (k,n) be the kth
suffix gn[k . . |gn| − 1] of gn.

Property. For n > 2, suf (k,n) uniquely factorises as Ri0Ri1 · · ·Rim , where
i0 ∈ {0,1} and it ∈ {it−1 + 1,it−1 + 2} for t > 0.

With the help of the property the previous automaton is changed into
CDAWG(gn) by substituting Ri for each Fibonacci number Fi . The next
picture shows CDAWG(g10) after the above picture.

R0

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

R6

R6

Counting factors in trimmed Fibonacci words. A CDAWG is useful to com-
pute the number of (distinct) non-empty factors occurring in the corresponding
word. Indeed, it is the sum of edge lengths multiplied by the number of paths
that contain these edges. The number is in fact of Fn−1Fn−2 − 1 factors in gn,
that we get using the formula, for n > 2: F 2

2 +F 2
3 +· · ·+F 2

n−2 = Fn−1Fn−2−1.
For the example of CDAWG(g10) in the above picture we obtain 12 + 22 +

32 + 52 + 82 + 132 + 212 = 21 × 34 − 1 = 713 non-empty factors.

CDAWG of Fibonacci words. The compacted DAWG of Fibonacci word fibn

differs only slightly from that of the trimmed Fibonacci word gn. We just need
to append the last two trimmed letters, which lead to a simple modification
of CDAWG(gn), as done in the next picture to get CDAWG(fib10). The
compacted structure represents all the 781 factors of fib10.

R0

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

R6

R6

ba

ba

The number of factors in the Fibonacci word fibn is slightly larger than their
number in gn since we have to consider two additional letters on the two edges
reaching the last node. For n > 2, fibn contains Fn−1Fn−2 + 2Fn−1 − 1 non-
empty factors.

In the example n = 10, the additional word is ba. It is on 34 paths ending
in the last node, so we have to add 2 · 34 = 68 factors. Hence fib10 contains
713 + 68 = 781 non-empty factors.
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Notes
The structure of CDAWGs of Fibonacci words is described in [213]. Other
very compressed and useful DAWGs appear in the more general context of
Sturmian words; see [27]. The number of nodes in the structures reflects the
amount of memory space to store them because labels can be represented by
pairs of indices on the underlying word.

The Suffix or Factor automaton of a word of length � has at least �+1 states.
In fact on the binary alphabet the lower bound is achieved only when the word
is a prefix of a Sturmian word, which a Fibonacci word is [221].

As mentioned at the beginning the simplest strategy to compact a DAWG
is to delete nodes with unique predecessor and successor (see [38, 101, 150]).
The above method for Fibonacci factors not only gives a smaller CDAWG but
also provides a more useful structure.

Below are the Suffix automaton of g7 of length 11 with 12 states, its
ordinary compact version with 7 nodes and the compact version from the above
technique with only 5 nodes.

a

b

b a

a

a b a

b

b a a b a

a

b

b a

a

a

b

bab aaba

a

ba

ba

aba

aba

baaba

baaba

Finite Thue–Morse words have similarly a very short description, see [204],
from which one can easily derive that the number of factors in the Thue–Morse
word of length n ≥ 16 is 73

192n2 + 8
3 .
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104 Compressed Matching in a Fibonacci Word

Compressed matching refers to the following problem: given compact rep-
resentations of a pattern and of a text, locate the pattern in the text in a
fast manner according to their compressed representations. The representation
sizes can be logarithmic with respect to the real input sizes, as it takes place in
this problem example.

The input depends on the type of compressed representation. Here we
consider a very simple case where the pattern is specified as a concatenation
of Fibonacci words and its representation is the sequence of their indices.
The searched text is the infinite Fibonacci word f = φ∞(a), where φ is the
morphism defined by φ(a) = ab and φ(b) = a.

The word b is added with index −1 to the list of Fibonacci words: fib−1 =
b, fib0 = a, fib1 = ab, fib2 = aba, fib3 = abaab, . . .

Question. Given a sequence of integers k1,k2, . . . ,kn (ki ≥ −1) show how
to check in time O(n + k1 + k2 + · · · + kn) if fibk1

fibk2
· · · fibkn

occurs in the
infinite Fibonacci word f.

Solution
The algorithm input is the sequence w = (k1,k2, . . . ,kn) of indices of
Fibonacci words. Let first(w) and last(w) denote the first and last elements
of w respectively.

CompressedMatch(w sequence of indices ≥ −1)

1 while |w| > 1 do
2 if w contains a factor (i, − 1),i /∈ {0,2} then
3 return false

4 if first(w) = −1 then
5 first(w) ← 1

6 if last(w) = 2 then
7 last(w) ← 1

8 if last(w) = 0 then
9 remove the last element

10 change all factors (0, − 1) of w to 1

11 change all factors (2, − 1) of w to (1,1)

12 decrease all elements of w by 1

13 return true
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Example. With the input sequence w = (0,1,3,0,1,4) the algorithm makes
five iterations and returns true:
(0,1,3,0,1,4) → (−1,0,2, − 1,0,3) → (0, − 1,0,0, − 1,2)

→ (0, − 1,0,0) → (0, − 1) → (0).

Algorithm CompressedMatch simply implements the following observa-
tions on the sequence w = (k1,k2, . . . ,kn).

Case (i): fibifib−1 is a factor of f if and only if i = 0 or i = 2. Indeed, if
i = 0, fibifib−1 = ab, if i = 2, fibifib−1 = abab, and both words appear
in f. Otherwise fibifib−1 has a suffix bb or ababab = φ(aaa) that does not
appear in f.

Case (ii): If k1 = −1 it can be changed to 1 because the first letter b should
be preceded by a in f and fib1 = ab.

Case (iii): Similarly, if kn = 2 it can be changed to 1 because in f each
occurrence of b is also followed by a, so the suffix aba can be reduced to ab
without changing the final output.

Case (iv): Factor (0, − 1) can be replaced by 1 since fib0fib−1 = ab = fib1
and factor (2, − 1) by (1,1) since fib2fib−1 = abab = fib1fib1.

Case (v): The only problematic case is when kn = 0. This corresponds
to a match with an occurrence of a in f. The correctness proof of this case
follows again from the fact that the letter a occurs after each occurrence of
b in f. There are two subcases depending on the last letter of the penultimate
Fibonacci factor.

Case fibkn−1
ends with b: Then fibk1

fibk2
· · · fibkn

occurs in f if and only if
fibk1

fibk2
· · · fibkn−1

does occur in f, since each occurrence of b is followed by
a. Hence the last a is redundant and can be removed.

Case fibkn−1
ends with a: After 0 is removed and line 12 is executed the

algorithm checks if fibk1−1fibk2−1 · · · fibkn−1−1 occurs in f. However, fibkn−1−1
now ends with b and fibk1−1fibk2−1 · · · fibkn−1−1 occurs in f if and only if
v = fibk1−1fibk2−1 · · · fibkn−1−1a does. Hence if v occurs in f the word
fibk1

fibk2
· · · fibkn

occurs in φ(v). This shows that the last element kn = 0 can
be removed without spoiling the correctness.

Note that when the algorithm executes the instruction at line 12 all indices
of w are non-negative. Thus the argument just considered also applies after
execution. This ends the proof of correctness.

As for the complexity, observe that each pair of consecutive iterations
decreases the sum of indices by at least 1. Consequently the algorithm achieves
the required running time of O(n + k1 + k2 + · · · + kn).
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Notes
The present algorithm has been proposed by Rytter as a problem for the Polish
Competition in Informatics. An alternative and completely different algorithm
can be found in [238]. Yet another algorithm can be obtained using compressed
factor graphs of Fibonacci words.

105 Prediction by Partial Matching

Prediction by Partial Matching (PPM) is a lossless compression technique
where the encoder maintains a statistical model of the text. The goal is to
predict letters following a given factor of the input. In the problem we examine
the data structure used to store the model.

Let y be the text to be compressed and assume y[0 . . i] has already been
encoded. PPM assigns a probability p(a) to each letter a ∈ A depending
on the number of occurrences of y[i + 1 − d . . i] · a in y[0 . . i], where d

is the context length. Then PPM sends p(y[i + 1]) to an adaptive arithmetic
encoder taking into account letter probabilities. When there is no occurrence
of y[i + 1 − d . . i + 1] in y[0 . . i] the encoder decrements the value of d until
either an occurrence of y[i + 1 − d . . i + 1] is found or d = −1. In the last
case, y[i + 1] is a letter not met before. Each time the encoder decrements the
value of d it sends a so-called ‘escape’ probability to the adaptive arithmetic
encoder.

PPM* is a variant of PPM which does not consider a maximum context
length but stores all contexts. The initial context at each step is the shortest
deterministic context, one that corresponds to the shortest repeated suffix that
is always followed by the same letter or it is the longest context if such a suffix
does not exist.

Question. Design a data structure able to maintain online the number of
occurrences of each context and that can be managed in linear time on a
constant-size alphabet.
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Solution
The solution is based on a Prefix tree. The Prefix tree for y[0 . . i] is constructed
from the Prefix tree of y[0 . . i − 1] and essentially consists of the Suffix tree
of y[0 . . i]R.

Let Ti denote the Prefix tree of y[0 . . i]. Its nodes are factors of y[0 . . i]. The
initial tree T−1 is defined to be a single node. Prefix links are defined for every
node of Ti except for its root and its most recent leaf. A prefix link labelled by
letter a from node w points to node wa or to node uwa if every occurrences
of wa are preceded by u.

Assume that the Prefix tree for y[0 . . i−1] is build. Let head(w) denote the
longest suffix of w that has an internal occurrence in w.

The Prefix tree is updated as follows. The insertion of y[i] starts at the head
of w = y[0 . . i − 1] and ends at the head of w′ = y[0 . . i]. If y[i] already
occurred after w then the node w has a prefix link labelled by y[i] that points
to the head of w′. If w does not have a prefix link labelled by y[i], the search
proceeds with the parent of w until either a prefix link labelled by y[i] is found
or the root of the tree is reached. If the reached node p is w′ then only a new
leaf q is added to the tree. If the reached node p is uw′ for some u ∈ A+ then
a new internal node r and a new leaf q are added to the tree.

All the nodes visited during the process now have a prefix link labelled by
y[i] pointing to the new leaf q. When a new internal node r is created some
prefix links pointing to p may need to be updated to point to r .

Example. The pictures show the transformation of the Prefix tree when
processing y = gatata.

T−1 (ε) T0 (g) T1 (ag) T2 (tag)

ε

ε

g

g

ε

g

g

ag

ag

a

ε

g

g

ag

ag

tag

tag

at

T3 (atag) T4 (tatag)
ε

g

g

a

a

tag

tag

atag

tag

ag

g
a

t

t

a

ε

g

g

a

a

ta

ta

ag

g

atag

tag

tag

g

tatag

tag
a

t
a

tt

a
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T5 (atatag)
ε

g

g

a

a

ta

ta

ag

g

ata

ta

tag

g

tatag

tag

atag

g

atatag

tag

a

t
a

t

t
a

a

Theorem 15 The above procedure correctly computes the Prefix tree Ti from
the Prefix tree Ti−1.

Proof Ti−1 contains paths labelled by all the prefixes of w = y[0 . . i−1] and
only these paths. It then only misses a path labelled by w′ = y[0 . . i]. Starting
from the leaf s corresponding to w in Ti−1 and going up to find the first node
having a prefix link labelled by a = y[i] identifies the node t corresponding to
the longest suffix v of w such that va is a factor of w.

• If the prefix link from t labelled by a points to a node p corresponding to
va then a new leaf q corresponding to w′ must be added to the tree and
the branch from p to q is labelled by u, where w′ = uva. All the nodes
scanned from s to t (except t itself) must now have a prefix link labelled by
a pointing to q.

• If the prefix link from t labelled by a points to a node p corresponding to
v′va then a new internal node r corresponding to va is created having two
successors: p and a new leaf q corresponding to w′. The branch from r to
p must be labelled by v′ and the branch from r to q must be labelled by u,
where w′ = uva. All the nodes scanned from s to t (except t itself) must
now have a prefix link labelled by a pointing to q. Then prefix links going
from nodes v′, v′ suffix of v, to p should now point to the new internal
node r .

In both cases the tree now contains all the path contained in Ti−1 and a path
corresponding to w′. It is thus Ti .
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Theorem 16 The construction of Tn−1 can be done in O(n) time.

Proof The running time of the construction is dominated by the number
of nodes visited during each phase when computing head(y[0 . . i]) for 0 ≤
i ≤ n − 1. Let ki denote the number of nodes visited while searching for
head(y[0 . . i]). We have |head(y[0 . . i])| ≤ |head(y[0 . . i − 1])y[i]| − ki .
Finally

∑n−1
0 ki = n−|head(y)| ≤ n. Thus at most n nodes are visited during

the whole construction of Tn−1, which proves the statement.

Notes
Prediction by Partial Matching was designed by Cleary and Witten [56]
(see also [190]). PPM* was first introduced in [55]. The present Prefix tree
construction is by Effros [107].

106 Compressing Suffix Arrays

Suffix arrays constitute a simple and space-economical data structure for
indexing texts. In addition, there are many compressed versions of suffix
arrays. The problem discusses one of them for compressing the array that stores
the sorted (partial) list of suffixes (more precisely the partial rank array) of the
concerned text. This shows an application of simple number theory.

Number-theoretic tools. A set D ⊆ [0 . . t − 1] is called a t-difference-cover
if all elements of the interval are differences modulo t of elements in D:

[0 . . t − 1] = {(x − y) mod t : x,y ∈ D}.

For example, the set D = {2,3,5} is a 6-difference-cover for the interval [0 . . 6]
since 1 = 3 − 2, 2 = 5 − 3, 3 = 5 − 2, 4 = 3 − 5 (mod 6) and 5 = 2 − 3
(mod 6).

It is known that for every positive integer t there is a t-difference-cover of
size O(

√
t) and that the set can be constructed in time O(

√
t).
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A set S(t) ⊆ [1 . . n] is called a t-cover of the interval [1 . . n] if both
|S(t)| = O

(
n√
t

)
and there is a constant-time computable function

h : [1 . . n − t] × [1 . . n − t] → [0 . . t]

that satisfies

0 ≤ h(i,j) ≤ t and i + h(i,j),j + h(i,j) ∈ S(t).

A t-cover can be obtained from a t-difference-cover D (of the interval [0 . . t −
1]) by setting S(t) = {i ∈ [1 . . n] : i mod t ∈ D}. The following fact is
known.

Fact. For each t ≤ n a t-cover S(t) can be constructed in time O( n√
t
).

Question. Show that the sorted partial list of suffixes of a text of length n

can be represented in only O(n3/4) amount of memory space and can still
allow comparison of any two suffixes in O(

√
n) time.

[Hint: Use the notion of t-covers on intervals of integers.]

Solution
The answer to the question relies on t-covers. Instead of the array SA that
stores the sorted list of suffixes of the text w, we use equivalently the array
Rank, inverse of SA, that gives the ranks of suffixes indexed by their starting
positions. With the whole array, comparing two suffixes starting at positions i

and j amounts to comparing their ranks and takes constant time. However, the
goal here is to retain only a small part of the table Rank.

Let S denote a fixed
√

n-cover {i1,i2, . . . ,ik} of [1 . . n], where integers are
sorted: i1 < i2 < · · · < ik . Its size is then O(n3/4). Let L be the list of pairs

((i1,Rank[i1]),(i2,Rank[i2]), . . . ,(ik,Rank[ik])).

Since the list is sorted with respect to the first component of pairs, checking if
a position i belongs to S and finding its rank in L can be done in logarithmic
time.

Assume we want to compare lexicographically suffixes starting at positions
i and j on w of length n. Let � = h(i,j).

The words x[i . . i + � − 1] and x[j . . j + � − 1] are first compared in a
naive way (letter by letter), which takes O(�) time. If they match it remains
to compare the suffixes starting at positions i + � and j + �. The latter
comparison takes logarithmic time because positions i +� and j +� are in S
and we can recover their associated ranks from the list L in logarithmic time.

Altogether the comparison spends O(
√

n) time since � = O(
√

n).
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Example. The set S(6) = {2,3,5,8,9,11,14,15,17,20,21,23} is a 6-cover of
[1 . . 23] built from the 6-difference-cover D = {2,3,5}. In particular, we have
h(3,10) = 5, since 3 + 5, 10 + 5 ∈ S(6).

If we are to compare suffixes starting at positions 3 and 10 on the word w

we have only to compare their prefixes of length 5 and possibly check whether
Rank[3 + 5] < Rank[10 + 5] or not.

Notes
By choosing t = n2/3 instead of

√
n in the proof the data structure is reduced

to O(t) memory space but then the time to compare two suffixes increases to
O(t).

The construction of difference-covers can be found in [178]. It is used to
construct t-covers as done, for example, in [47], where the above fact is proved.

A similar method for compressed indexing is the notion of FM-index based
on both Burrows–Wheeler transform and Suffix arrays. It has been designed
by Ferragina and Manzini (see [112] and references therein). Its applications
in Bioinformatics are described in the book by Ohlebusch [196].

107 Compression Ratio of Greedy Superstrings

The problem considers Algorithm GreedySCS (presented under different
forms in Problem 61) that computes a superstring Greedy(X) for a set X of
words of total length n. The superstring can be viewed as a compressed text
representing all words in X and from this point of view it is interesting to
quantify the gain of representing X by a superstring.

Let GrCompr(X) = n − |Greedy(X)| denote the compression achieved by
the greedy algorithm. Similarly define OptCompr(X) = n − |OPT(X)| where
OPT is an optimal (unknown) superstring for X.

The fraction GrCompr(X)
OptCompr(X)

is called the compression ratio of Algorithm
GreedySCS.
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Question. Show the compression ratio of Algorithm GreedySCS is at least
1/2.

[Hint: Consider the overlap graph of the input set.]

Solution
It is more convenient to deal with the iterative version of Algorithm
GreedySCS from Problem 61.

IterativeGreedySCS(X non-empty set of words)

1 while |X| > 1 do
2 let x,y ∈ X,x �= y, with |Overlap(x,y)| maximal

3 X ← X \ {x,y} ∪ {x ⊗ y}
4 return x ∈ X

Let us start with an abstract problem for directed graphs. Assume G is a
complete directed graph whose edges are weighted by non-negative integers.
If u → v is an edge the operation contract(u,v) identifies u,v and removes the
edges out-going from u and in-going to v.

Let OptHam(G) be the maximum weight of a Hamiltonian path in G and
GreedyHam(G) be the weight of the Hamiltonian path implicitly produced by
the greedy algorithm. In each step the greedy algorithm for graphs chooses
an edge u → v of maximum weight and applies contract(u,v). It stops
when G becomes a single node. The chosen edges compose the resulting
Hamiltonian path.

Relation between greedy superstring and greedy Hamiltonian path. We
introduce the overlap graph G of a set X of words. The set of nodes is X

and the weight of xi → xj is the maximal overlap between words xi and
xj . Observe that the statement in line 3 of Algorithm IterativeGreedySCS
corresponds to the operation contract(x,y). This implies the following fact.

Observation. The greedy Hamiltonian path for the overlap graph of X

corresponds to the greedy superstring of X.

a v
x

u
z

d

t

y
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We say that a weighted graph G satisfies condition (∗) if in each configura-
tion of the type shown on the above picture we have

z ≥ x,y %⇒ z + t ≥ x + y.

Moreover, we require that it holds for each graph obtained from G by applying
any number of contractions.

We leave the following technical but easy proof of the following fact about
overlap graphs to the reader (see Notes).

Lemma 17 The overlap graph satisfies condition (∗).

Lemma 18 Assume G satisfies condition (∗), e is an edge of maximal weight
z and G′ is obtained from G by applying contract (e). Then OptHam(G′) ≥
OptHam(G) − 2z.

Proof Let e = u → v. Let π be an optimal Hamiltonian path in G. Denote
by |π | the total weight of π . It is enough to show that any Hamiltonian path in
G′ is of weight at least |π |−2z or (equivalently) to show that any Hamiltonian
path π ′ in G containing the edge u → v is of total weight at least |π | − z.

Case v is after u on π . We remove two edges (u,b) and (c,v) of weights at
most z and insert edges (u,v) and (c,s) to get a new Hamiltonian path π ′ (see
picture below). Contracting (u,v) decreases the total weight of the path by the
sum of weights of (u,b) and (c,v), that is by at most 2z. We get a Hamiltonian
path in G′ of total weight at least |π |−2z; see the picture below. Consequently
OptHam(G′) ≥ OptHam(G) − 2z.

π s a u b c v d t

π ′ s a u b c v d t

Case v is before u on π . We use condition (∗) with x = weight (a,v), y =
weight (u,d), z = weight (u,v) and t = weight (a,d). Let q = weight (v,b).
Let π ′ derived from π as in the picture below.

https://doi.org/10.1017/9781108835831.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.007


274 Text Compression

π s a v b c u d t

π ′ s a v b c u d t

Due to condition (∗) and inequality q ≤ z we have

|π ′| ≥ |π | − x − y + z + t − q ≥ |π | − z.

Consequently |π ′| ≥ |π | − 2z and OptHam(G′) ≥ OptHam(G) − 2 z. This
completes the proof of Lemma 8.

Lemma 19 If G satisfies condition (∗) then GreedyHam(G) ≥ 1
2 OptHam(G).

Proof The proof is by induction on the number of nodes of G. Let z be the
maximum weight of an edge in G whose contraction gives G′.

On the one hand, G′ is a graph smaller than G, so applying the induc-
tive assumption we have GreedyHam(G′) ≥ 1

2 OptHam(G′). On the other
hand, we have OptHam(G′) ≥ OptHam(G′) − 2z and GreedyHam(G) =
GreedyHam(G′) + z.
Thus: GreedyHam(G) ≥ 1

2 OptHam(G′) + z ≥ 1
2 (OptHam(G) − 2z) + z

≥ 1
2 OptHam(G), which proves the statement.

The above observation and Lemmas 17, 18 and 19 imply directly that the
greedy algorithm for superstrings achieves a 1/2 compression ratio.

Notes
The present proof of the problem is a version of the proof given by Tarhio and
Ukkonen in [230].
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