
CHAPTER 6

Statistics on Words with
Applications to Biological
Sequences

6.0. Introduction

Statistical and probabilistic properties of words in sequences have been of
considerable interest in many fields, such as coding theory and reliability
theory, and most recently in the analysis of biological sequences. The latter
will serve as the key example in this chapter. We only consider finite words.

Two main aspects of word occurrences in biological sequences are:
where do they occur and how many times do they occur? An important
problem, for instance, was to determine the statistical significance of a
word frequency in a DNA sequence. The naive idea is the following: a
word may be significantly rare in a DNA sequence because it disrupts repli-
cation or gene expression, (perhaps a negative selection factor), whereas a
significantly frequent word may have a fundamental activity with regard to
genome stability. Well-known examples of words with exceptional frequen-
cies in DNA sequences are certain biological palindromes corresponding
to restriction sites avoided, for instance in E. coli, and the Cross-over
Hotspot Instigator sites in several bacteria. Identifying over- and underrep-
resented words in a particular genome is a very common task in genome
analysis.

Statistical methods of studying the distribution of the word locations
along a sequence and word frequencies have also been an active field of
research; the goal of this chapter is to provide an overview of the state of
this research.
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6.0. Introduction 269

Because DNA sequences are long, asymptotic distributions were pro-
posed first. Exact distributions exist now, motivated by the analysis of genes
and protein sequences. Unfortunately, exact results are not adapted in prac-
tice for long sequences because of heavy numerical calculation, but they
allow the user to assess the quality of the stochastic approximations when
no approximation error can be provided. For example, BLAST is probably
the best-known algorithm for DNA matching, and it relies on a Poisson
approximation. Approximate p-values can be given; yet the applicability
of the Poisson approximation needs to be justified.

Statistical properties of words only make sense with respect to some
underlying probability model. DNA sequences are commonly modelled as
stationary random sequences. Typical models are homogeneous m-order
Markov chains (model Mm) in which the probability of occurrence of a
letter at a given position depends only on the m previous letters in the
sequence (and not on the position); the independent case is a particular
case with m = 0. Hidden Markov models (HMMs) reveal however that the
composition of a DNA sequence may vary over the sequence. However,
no statistical properties of words have yet been derived in such heteroge-
neous models. DNA sequences code for amino acid sequences (proteins)
by nonoverlapping triplets called codons. The three positions of the codons
have distinct statistical properties, so that for coding DNA we naturally
think of three sequences where the successive letters come from the three
codon positions, respectively. The three chains and their transition matrices
are denoted as Mm-3. In this chapter, we will focus on the homogeneous
models Mm and give existing results for Mm-3.

Because these probabilistic models have to be fitted to the observed
biological sequence, we will pay attention to the influence of the model
parameter estimation on the statistical results. Some asymptotic results
take care of this problem but the exact results require that the true model
driving the observed sequence is known.

The choice of the Markov model order depends on the sequence length,
because of the data requirements in estimation. One might be able to test hi-
erarchical models using chi-square tests to assign which order of Markovian
dependence is appropriate for the underlying sequence. From a practical
point of view, it also depends on the composition of the biological sequence
one wants to take into account. Indeed, if the sequence was generated from
an m-order Markov chain, then the model Mm provides a good prediction
for the (m + 1)-letter words.

In this chapter, we are concerned first with the occurrences of a sin-
gle pattern in a sequence. To begin, we discuss the underlying prob-
abilistic models (Section 6.1). The main complication for word occur-
rences arises from overlaps of words. One might be interested either in
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270 6. Statistics on Words with Applications to Biological Sequences

overlapping occurrences or in particular nonoverlapping ones (Section 6.2).
After presenting results for the statistical distribution of word locations
along the sequence (Section 6.3), we focus on the distribution of the num-
ber of overlapping occurrences (Section 6.4) and the number of renewals
(Section 6.5). In Section 6.6, we will study the occurrences of multiple
patterns. Section 6.7 gives two applications on how probabilistic and sta-
tistical considerations come into play for DNA sequence analysis. First, we
look for words with unexpected counts in some DNA sequences. The focus
will be on the importance of the order m of the Markov model used and
on the interest of using a model of the type Mm-3 (with three transition
matrices), when analysing a coding DNA sequence. We will also take the
opportunity to compare exact and asymptotic results on the word count dis-
tributions. Second, we describe how to analyse so-called SBH chips, a fast
and effective method for determining a DNA sequence. These chips provide
the �-tuple contents of a DNA sequence, where typically � = 8, 10, or 12.
A nontrivial combinatorial problem arises when determining the probabil-
ity that a randomly chosen DNA sequence can be uniquely reconstructed
from its �-tuple contents. Finally, Section 6.8, meant to be an appendix,
gives a compilation of more general techniques that are applied in this
chapter.

Due to the abundance of literature, the present chapter has no intention
of being a complete literature survey (indeed even just a list of references
would take up all the space designated to this chapter), but rather to introduce
the reader to the major aspects of this field, to provide some techniques and
to warn of major pitfalls associated with the analysis of words. For the same
reason we completely omit the algorithmic aspect.

6.1. Probabilistic models for biological sequences

In this chapter, a biological sequence is either a DNA sequence or a protein
sequence, that is, a finite sequence of letters either in the 4-letter DNA alpha-
bet {a, c, g, t} or the 20-letter amino-acid alphabet. To model a biological
sequence, we will consider models for random sequences of letters. Even
if we observed a finite biological sequence S = s1s2 · · · sn, we consider for
convenience in the whole chapter an infinite random sequence X = (Xi)i∈Z

on a finite alphabet A, where Z is the set of integers. We present below
two classes of Markov models widely used to analyse biological sequences
and how to estimate their parameters according to the observed sequence.
Then we give a classical chi-square test to choose the appropriate order of
the Markov model for a given sequence.
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6.1. Probabilistic models for biological sequences 271

However, we will see in Section 6.7.1 that the choice of the model
also has to take biological considerations of the sequence composition into
account.

6.1.1. Markovian models for random sequences of letters

The simplest model assumes that the letters Xi are independent and take
on the value a ∈ A with probability µ(a) = 1/ Card(A), where Card(A) =
|A| denotes the size of the alphabet. To refine this model, we can simply
assume independent letters taking values in A with probabilities (µ(a))a∈A
such that

∑
a∈A µ(a) = 1. This is called model M0. Typically for DNA

sequences, this model is not very accurate. Therefore, we consider a much
more general homogeneous model, the model Mm: an ergodic stationary
m-order Markov chain on a finite alphabet A with transition matrix � =
(π(a1 · · · am, am+1))a1,...,am+1∈A such that

π(a1 · · · am, am+1) = P(Xi = am+1 | Xi−1 = am, . . . , Xi−m = a1).

In general, a stationary distribution µ of an ergodic stationary Markov chain
with transition matrix � is defined as a solution of µ = µ�. This implies
that the above Markov chain has a unique stationary distribution µ on Am

defined by

µ(a1 · · · am) = P(Xi · · · Xi+m−1 = a1 · · · am), ∀i ∈ Z

such that the equation

µ(a1 · · · am) =
∑
b∈A

µ(ba1 · · · am−1)π(ba1 · · · am−1, am)

is satisfied for all (a1 · · · am) ∈ Am. The model where the letters {Xi}i∈Z

are chosen independently with probabilities p1, p2, . . . , p|A| corresponds
to the transition matrix � with identical rows (p1 p2 · · ·p|A|) and stationary
distribution µ = (p1, p2, . . . , p|A|).

A coding DNA sequence is naturally read as successive nonoverlapping
3-letter words called codons. These codons are then translated into amino
acids via the genetic code to produce a protein sequence. Several different
codons can code for the same amino acid, and often the first two letters of a
codon suffice to determine the corresponding amino acid. Therefore, letters
may have different importance depending on their position with respect to
the codon partition. To distinguish the letter probabilities according to their
position modulo 3 in the coding DNA sequence, we consider a stationary
Markov chain with three distinct transition matrices �1, �2, and �3 such
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272 6. Statistics on Words with Applications to Biological Sequences

that, for a1, . . . , am+1 ∈ A and k ∈ {1, 2, 3}
πk(a1 · · · am, am+1) = P(X3j+k = am+1|X3j+k−1 = am, . . . , X3j+k−m = a1).

This is model Mm-3. The index k ∈ {1, 2, 3} is called phase and represents
the position of a letter inside a codon. By convention, the phase of a word
is the phase of its last letter in the sequence; codons are then 3-letter words
in phase 3.

The stationary distribution µ on Am × {1, 2, 3} is given by

µ(a1 · · · am, k) = P(X3j+k−m+1 · · ·X3j+k = a1 · · · am), ∀j ∈ Z

such that the equation

µ(a1 · · · am, k) =
∑
b∈A

µ(ba1 · · · am−1, k − 1)πk(ba1 · · · am−1, am)

is satisfied for all (a1 · · · am, k) ∈ Am × {1, 2, 3}.
Some general results for Markov chains will be used in the exposition.

For simplicity we concentrate here on the case of a 1-order Markov chain.

The stationary distribution of a Markov chain can be obtained from its
transition matrix. For a 1-order Markov chain we diagonalize the transition
matrix as follows. Let (αt )t=1,...,|A| be the eigenvalues of � such that |α1| ≥
|α2| ≥ · · · ≥ |α|A||. The Perron–Frobenius Theorem ensures that α1 = 1
and |α2| < 1; we abbreviate

α := α2. (6.1.1)

Then (1, 1, . . . , 1)T is a right-eigenvector of � for the eigenvalue 1 whereas
the vector of stationary distribution (µ(a), a ∈ A) is a left-eigenvector of
� for the eigenvalue 1. Let D = Diag(1, α, α3, . . . , α|A|). We decompose
� = PDP −1 such that the first column of P is (1, 1, . . . , 1)T ; then the first
row of P −1 is the vector of stationary distribution (µ(a), a ∈ A). For all
t ∈ {1, . . . , |A|}, It denotes the |A| × |A| matrix such that all its entries are
equal to 0 except It (t, t) = 1, and we define

Qt := PItP
−1. (6.1.2)

We shall use the following decomposition of the h-step transition matrix
�h

�h = PDhP −1 =
|A|∑
t=1

αh
t Qt (6.1.3)

and that

Q1(a, b) = µ(b), ∀a, b ∈ A. (6.1.4)

https://doi.org/10.1017/CBO9781107341005.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.007


6.1. Probabilistic models for biological sequences 273

In the exposition, we shall also refer to the reversed Markov chain, for
a 1-order chain. Its h-step transition probabilities are given by

π
(h)
R (b, a) = µ(a)π (h)(a, b)

µ(b)
.

where the
(
π (h)(a, b)

)
s are the h-step transition probabilities for the chain

itself. Another useful quantity is

ρ = 1 − min

{∑
b∈A

min
a∈A

π(a, b),
∑
b∈A

min
a∈A

πR(a, b)

}
. (6.1.5)

These quantities can easily be generalized to m-order Markov chains, us-
ing the following embedding. Let us now assume that the sequence (Xi)i∈Z

is an m-order Markov chain on the alphabet A, with transition probabili-
ties π(a1 · · · am, am+1), a1, . . . , am+1 ∈ A. Rewrite the sequence over the
alphabet Am by defining

Xi = XiXi+1 · · · Xi+m−1, (6.1.6)

so that the sequence (Xi)i∈Z is a first-order Markov chain on Am with
transition probabilities, for A = a1 · · · am ∈ Am and B = b1 · · · bm ∈ Am,

�(A, B) =
{

π(a1 · · · am, bm) if a2 · · · am = b1 · · · bm−1

0 otherwise.

6.1.2. Estimation of the model parameters

Modelling a biological sequence consists of choosing a probabilistic
model (see previous paragraph) and then estimating the model parame-
ters according to the unique realization that is the biological sequence.
In the case of model Mm, it means to estimate the transition prob-
abilities π(a1 · · · am, am+1); their estimators are classically denoted by
π̂ (a1 · · · am, am+1).

We now derive the estimators that maximize the likelihood of the M1
model given the observed sequence; we will then give the maximum-
likelihood estimators in models Mm and Mm-3.

Assume X1 · · ·Xn is a stationary Markov chain on A with transition
matrix � = (π(a, b))a,b∈A and stationary distribution (µ(a))a∈A. The like-
lihood L of the model is

L(π(a, b), a, b ∈ A) = µ(X1)
∏

a,b∈A
(π(a, b))N(ab)

where N(ab) denotes the number of occurrences of the 2-letter word ab

in the random sequence X1 · · · Xn. To find the transition probabilities that
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274 6. Statistics on Words with Applications to Biological Sequences

maximize the likelihood, one maximizes the log likelihood

log L(π(a, b), a, b ∈ A) = log µ(X1) +
∑

a,b∈A
N(ab) log π(a, b).

One can separately maximize
∑

b∈A N(ab) log π(a, b) for a ∈ A, keeping
in mind that

∑
b∈A π(a, b) = 1. Let a ∈ A and choose c ∈ A; we have∑

b∈A
N (ab) log π(a, b) =

∑
b �=c

N(ab) log π(a, b)

+ N(ac) log

⎛
⎝1 −

∑
b �=c

π(a, b)

⎞
⎠

and for b �= c

∂

∂π(a, b)

(∑
b∈A

N(ab) log π(a, b)

)
= N(ab)

π(a, b)
− N(ac)

π(a, c)
.

All the partial derivatives equal to zero means that

N(ab)

π(a, b)
= N(ac)

π(a, c)
∀b ∈ A;

this implies in particular that

N(ab)

π(a, b)
=

∑
d∈A N(ad)∑
d∈A π(a, d)

=
∑
d∈A

N(ad) := N(a•) ∀b ∈ A.

It follows that

π̂(a, b) = N(ab)

N(a•)
∀b ∈ A.

Note that the second partial derivatives of the likelihood function are nega-
tive, assuring us that we have indeed determined a maximum.

Remark 6.1.1. For notational convenience, the estimators mainly used in
the remainder of the chapter will be π̂ (a, b) = N(ab)/N(a) since N(a•) =
N(a) except for the last letter of the sequence for which the counts differ
by 1.

It is important to note that the estimators π̂(a, b) are random variables.
Assuming that the biological sequence is a realization of the random se-
quence, one can calculate a numerical value for the estimator of π(a, b);
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6.1. Probabilistic models for biological sequences 275

that is

π̂obs(a, b) = Nobs(ab)

Nobs(a•)
,

where Nobs(·) denotes the observed count in the biological sequence. As
we will see, some results are obtained assuming that the true parameters
π(a, b) are known and equal, in practice, to Nobs(ab)/Nobs(a•), and do
not take care of the estimation. It is indeed a common practice to substi-
tute the estimator for the corresponding parameter in distributional results,
but sometimes it changes the distribution being studied, as we will see
later.

In the model Mm, the maximum-likelihood estimator of
π(a1 · · · am, am+1), a1, . . . , am+1 ∈ A, is

π̂ (a1 · · · am, am+1) = N(a1 · · · amam+1)

N(a1 · · · am•)
,

and in model Mm-3, we have ∀a1, . . . , am+1 ∈ A, ∀k ∈ {1, 2, 3},

π̂k(a1 · · · am, am+1) = N(a1 · · · amam+1, k)∑
b∈A

N(a1 · · · amb, k)
.

6.1.3. Test for the appropriate order of the Markov model

To test which Markov model would be appropriate for a given sequence
of length n, the most straightforward test is a chi-square test, which can
be viewed as a generalized likelihood ratio test. Most well known is the
chi-square test for independence.

Suppose we have a sample of size n cross-classified in a table with
U rows and V columns. For instance, we could have four rows labelled
a, c, g, t, and four columns labelled a, c, g, t, and we count how often a
letter from the row is followed by a letter from the column in the sequence.

First we test whether we may assume the sequence to consist of inde-
pendent letters. For this purpose, recall that N(ab) denotes the count in cell
(a, b), whereas N(a•) is the ath row count, and let N(•b) is the bth column
count. Thus N(ab) counts how often letter a is followed by letter b in the
sequence. Let π(a, b) be the probability of cell (a, b), let π(a, •) be the
ath row marginal probability, and let π(•, b) be the bth column marginal
probability. We test the null hypothesis of independence

H0 : π(a, b) = π(•, b)
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276 6. Statistics on Words with Applications to Biological Sequences

against the alternative that the π(a, b)s are free. Under H0, the maximum-
likelihood estimate of π(a, b) is

π̂(a, b) = π̂ (•, b) = N(•b)

n − 1
.

The Pearson chi-square statistic is the sum of the square difference between
observed and estimated expected counts, divided by the estimated expected
count, where expectations are taken assuming that the null hypothesis is
true. Thus, under H0, for the count N(ab) we expect (n − 1)µ(a)π(•, b),
estimated by N(a•)π̂ (•, b), and the chi-square statistic is

χ2 =
∑
a∈A

∑
b∈A

(N(ab) − N(a•)N(•b)/(n − 1))2

N(a•)N(•b)/(n − 1)
.

Under the null hypothesis, χ2 follows asymptotically a chi-square distribu-
tion with (Card(A) − 1)2 degrees of freedom. Thus we would reject the null
hypothesis when χ2 is too large, compared to the corresponding chi-square
distribution. As a rule of thumb, this test is applicable when the expected
count in each row and column is at least 5. Applying this test to DNA
counts, we thus would have to compare χ2 to a chi-square distribution with
(4 − 1)2 = 9 degrees of freedom. A typical cutoff level would be 5%, or,
if one would like to be conservative, 1%. The corresponding critical values
are 16.92 for 5%, and 21.67 for 1%. Thus, if χ2 > 16.92, we would reject
the null hypothesis of independence at the 5% level (meaning that, if we
repeated this experiment many times, in about 5% of the cases we would
reject the null hypothesis when it is true). If χ2 > 21.67, we could reject
the null-hypothesis at the 1% level (so in only about 1% of all trials would
we reject the null hypothesis when it is true). Otherwise we would not reject
the null hypothesis.

If the null hypothesis of independence cannot be rejected at an appro-
priate level (say, 5%), then one would fit an independent model. However,
if the null hypothesis is rejected, one would test for a higher-order depen-
dence. The next step would thus be to test for a first-order Markov chain.
We describe here the general case.

Suppose we know that our data come from a Markov chain of
order at most m. Let N(a1a2 . . . am+1) be the count of the vector
(a1, a2, . . . , am+1) in the sequence (X1, . . . , Xn), let N(a1a2 . . . am•) be
the count of the vector (a1, a2, . . . , am) in the sequence (X1, . . . , Xn−1), let
N(•am−r+1 . . . am•) be the count of the vector (am−r+1, . . . , am) in the se-
quence (Xr+1, . . . , Xn−1), r < m, and let N(•am−r+1 . . . am+1) be the count
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of the vector (am−r+1, . . . , am+1) in the sequence (Xr+1, . . . , Xn). Put

π̂ (a1 . . . am, am+1) = N(•am−r+1 . . . am+1)

N(•am−r+1 . . . am•)
.

Then under the null hypothesis of having a Markov chain of order r against
the alternative that it is a Markov chain of order higher than r , the test
statistic

χ2 =
∑

a1,...,am+1∈A

(
N(a1a2 . . . am+1) − N(a1a2 . . . am•)π̂ (a1 . . . am, am+1)

)2

N(a1a2 . . . am•)π̂ (a1 . . . am, am+1)

is asymptotically chi-square distributed; the degrees of freedom are given
by (Card(A)m+1 − Card(A)m) − (Card(A)r+1 − Card(A)r ).

Although this test can be carried out for arbitrary orders, caution is
advised: for higher orders, a longer sequence of observations is required.

6.2. Overlapping and nonoverlapping occurrences

Statistical inference is often based on independence assumptions. Even if
the sequence letters are independent and identically distributed, the dif-
ferent random indicators of word occurrences are not independent due to
overlaps. For example, if w = atat occurs at position i in the sequence,
then another occurrence of w is much more likely to occur at position i + 2
than if w did not occur at position i, and an occurrence of w at position
i + 1 is not possible. Many of the arguments needed for a probabilistic
and statistical analysis of word occurrences deal with disentangling this
overlapping structure.

Let w = w1 · · ·w� be a word of length � on a finite alphabet A. Two
occurrences of w may overlap in a sequence if and only if w is periodic,
meaning that there exists a period p ∈ {1, . . . , � − 1} such that wi = wi+p,
i = 1, . . . , � − p. A word may have several periods: for instance gtgtgtg
admits three periods, 2, 4, 6, and aacaa has the periods 3 and 4. The set
P(w) of the periods of w is defined by

P(w) := {p ∈ {1, . . . , � − 1} : wi = wi+p, ∀i = 1, . . . , � − p} .

A word w is not periodic if and only if P(w) is empty. As we will see later,
not all periods of a word will have the same importance; we distinguish the
multiples of the minimal period p0(w) of w from the so-called principal
periods of w, namely the periods that are not strictly multiples of the
minimal period. We denote by P ′(w) the set of the principal periods of w.
For instance, P ′(gtgtgtg) = {2} and P ′(aacaa) = {3, 4}.
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278 6. Statistics on Words with Applications to Biological Sequences

Occurrences of periodic words tend to overlap in a se-
quence. There are four occurrences of aacaa in the sequence
tgaacaaacaacaatagaacaaaa, starting respectively at positions 3, 7, 10,
and 18. The first three occurrences overlap and form a clump. A clump of
w in a sequence is a maximal set of overlapping occurrences of w in the
sequence. By definition two clumps of w in a sequence cannot overlap.
A clump composed of exactly k overlapping occurrences of w is called a
k-clump of w. There are two clumps of aacaa in the previous sequence,
the first one is a 3-clump starting at position 3 and the second one is a
1-clump starting at position 18. Let Ck(w) be the set of the concatenated
words composed of exactly k overlapping occurrences of w. For example,
C1(aacaa) = {aacaa} and C2(aacaa) = {aacaacaa, aacaaacaa}.

For a word w = w1 · · · w� we use the following prefix and suffix
notation:

w(p) = w1 · · · wp denotes the prefix of w of length p

w(q) = w�−q+1 · · · w� denotes the suffix of w of length q, (6.2.1)

and w(p)w = w1 · · ·wpw1 · · ·w� is the concatenated word obtained by
two overlapping occurrences starting p positions apart. If p ∈ P(w) then
w(p) is called a root of w; if p ∈ P ′(w), w(p) is called a principal root
of w.

Related to the set of periods is the autocorrelation polynomial Q(z)
associated with w defined by

Q(z) = 1 +
∑

p∈P(w)

µ(w)

µ(w(�−p))
zp. (6.2.2)

Renewals are another type of nonoverlapping occurrences of interest
that require the sequence to be scanned from one end to the other: the first
occurrence of w in the sequence is a renewal and a given occurrence of w

is a renewal if and only if it does not overlap a previous renewal. Renewals
of w do not overlap in a sequence. In the above example, there are three
renewals of aacaa starting at positions 3, 10, and 18.

Depending on the problem, one could be interested in studying the
overlapping occurrences of w in a sequence, or in restricting attention to
nonoverlapping occurrences: the beginnings of clumps, the beginnings of
k-clumps, or the renewals. We now introduce notation related to occurrences
of a word w = w1 · · · w�, of a clump of w, of a k-clump of w, of a renewal
of w in a sequence, and to the corresponding counts.

Occurrence and number of overlapping occurrences An occurrence
of w starts at position i in the sequence X = (Xi)i∈Z if and only if
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6.2. Overlapping and nonoverlapping occurrences 279

Xi · · · Xi+�−1 = w1 · · · w�. Let Yi(w) be the associated random indicator

Yi(w) := 1I{w starts at position i in X}. (6.2.3)

For convenience in some sections, Yi(w) will be the random indicator that
an occurrence of w ends at position i in X; it will be made precise in that
case.

In the stationary m-order Markovian model, the expectation of Yi(w),
that is, the probability that an occurrence of w occurs at a given position in
the sequence, is denoted by µm(w) and is given by

µm(w) = µ(w1 · · · wm)π(w1 · · ·wm, wm+1) · · ·π(w�−m · · · w�−1, w�).
(6.2.4)

When there is no ambiguity, the index m referring to the order of the model
will be omitted.

The number of overlapping occurrences of w in the sequence
(Xi)i=1,...,n, simply called count of w in this chapter, is defined by
N(w) = Nn(w) = ∑n−�+1

i=1 Yi(w) (or N(w) = ∑n
i=� Yi(w) if Yi(w) is as-

sociated with an occurrence of w ending at position i).

Clump and declumped count A clump of w starts at position i in the
infinite sequence X if and only if there is an occurrence of w starting at
position i that does not overlap a previous occurrence of w. It follows that

Ỹi(w) := 1I{a clump of w starts at position i in X}
= Yi(w)(1 − Yi−1(w)) · · · (1 − Yi−�+1(w)). (6.2.5)

Often Ỹi(w) is zero, depending on the overlapping structure of w. Using
the principal periods, it turns out that

Ỹi(w) = Yi(w) −
∑

p∈P ′(w)

Yi−p(w(p)w) (6.2.6)

with the notation from (6.2.1). Equation (6.2.6) is obtained from the two
following steps: (i) note that an occurrence of w starting at position i

overlaps a previous occurrence of w if and only if it is directly preceded
by an occurrence of a principal root of w, meaning that a principal root
w(p), p ∈ P ′(w), occurs at position i − p, (ii) note that the events Ep =
{Yi−p(w(p)) = 1}, p ∈ P ′(w), are disjoint. To prove (ii), we assume that
two different principal roots w(p) and w(q) occur simultaneously at position
i − p and i − q. If so, the minimal root w(p0) of w could be decomposed
into w(p0) = xy = yx where x and y are two nonempty words. Now, two
words commute if and only if they are powers of the same word. Thus, we
would obtain the contradiction that the minimal root is not minimal.

https://doi.org/10.1017/CBO9781107341005.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.007


280 6. Statistics on Words with Applications to Biological Sequences

It follows from Equation (6.2.6) that the probability µ̃(w) that a clump
of w starts at a given position in X is given by

µ̃(w) = µ(w) −
∑

p∈P ′(w)

µ(w(p)w)

= (1 − A(w))µ(w) (6.2.7)

where A(w) is the probability that an occurrence of w will be overlapped
from the left by a previous occurrence of w:

A(w) =
∑

p∈P ′(w)

µ(w(p)w)

µ(w)
. (6.2.8)

The number Ñ (w) of clumps of w in the finite sequence X1 · · ·Xn (or the
declumped count) may be different from the sum Ñinf(w) = ∑n−�+1

i=1 Ỹi(w)
because of a possible clump of w that would start in X before position 1 and
would stop after position � − 1. The difference Ñ (w) − Ñinf(w) is either
equal to 0 or equal to 1. In fact, it can be shown that P(Ñ(w) �= Ñinf(w)) ≤
(� − 1)(µ(w) − µ̃(w)).

k-clump and number of k-clumps A k-clump of w starts at position i in
X if and only if there is an occurrence of a concatenated word c ∈ Ck(w)
starting at position i that does not overlap any other occurrence of w in the
sequence X. As we proceeded for a clump occurrence, an occurrence of
c ∈ Ck(w) is a k-clump of w in X if and only if it is not directly preceded
by any principal root w(p) of w and it is not directly followed by any suffix
w(q) = w�−q+1 · · ·w� with q ∈ P ′(w). Some straightforward calculation
yields the expression

Ỹi,k(w) := 1I{a k-clump of w starts at position i in X} (6.2.9)

=
∑

c∈Ck(w)

⎛
⎝Yi(c) −

∑
p∈P ′(w)

Yi−p(w(p)c) −
∑

q∈P ′(w)

Yi(cw(q))

+
∑

p,q∈P ′(w)

Yi−p(w(p)cw(q))

⎞
⎠ ,

with the notation (6.2.1). It follows that the probability of a k-clump starting
at a given position is given by

µ̃k(w) =
∑

c∈Ck(w)

µ(c) − 2
∑

c′∈Ck+1(w)

µ(c′) +
∑

c′′∈Ck+2(w)

µ(c′′).

This formula can be simplified. Note that Ck+1(w) = {w(p)c, c ∈ Ck(w),
p ∈ P ′(w)} and µ(w(p)c) =µ(c)(µ(w(p)c)/µ(c)) =µ(c)(µ(w(p)w)/µ(w)).
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By using the overlap probability A(w) given in (6.2.8), we have that∑
c′∈Ck+1(w)

µ(c′) = A(w)
∑

c∈Ck(w)

µ(c)

and it follows that

µ̃k(w) = (1 − A(w))2
∑

c∈Ck(w)

µ(c)

= (1 − A(w))2A(w)
∑

c∈Ck−1(w)

µ(c)

...
= (1 − A(w))2A(w)k−1µ(w). (6.2.10)

As for the declumped count, the number of k-clumps of w in the finite
sequence may be different from the sum Ñ

(k)
inf (w) = ∑n−�+1

i=1 Ỹi,k(w) because
of possible end effects. The probability that these counts are not equal can be
explicitly bounded, see (6.4.10) and (6.4.11). Moreover, possible end effects
may lead to a difference between the count N(w) and

∑
k>0 kÑ

(k)
inf (w), but

this can also be controlled.

Renewal and renewal count A renewal of w starts at position i in X1 · · ·Xn

if and only if there is an occurrence of w starting at position i that either is
the first one or does not overlap a previous renewal of w. Let Ii(w) be the
associated random indicator:

Ii(w) = 1I{a renewal of w starts at position i in X1 · · ·Xn}

= Yi(w)
i−1∏

j=i−�+1

(1 − Ij (w)) (6.2.11)

with the convention that Ij (w) = 0 if j < 1. Thus, for i ≤ �, a renewal
occurrence of w at position i is exactly a clump occurrence of w at i in
the finite sequence. The renewal count makes extensive use of the linear
ordering in the sequence: it is defined by R(w) = Rn(w) = ∑n−�+1

i=1 Ii(w).

6.3. Word locations along a sequence

Here we are concerned with the length of the gaps between word occur-
rences. First we describe how to obtain the exact distribution of the distance
between successive occurrences of a word, and then we give asymptotic
results.
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6.3.1. Exact distribution of the distance between word occurrences

Let w = w1 · · · w� be a word of length � on a finite alphabet A. We assume
that X1 · · · Xn is a stationary first-order Markov chain on A with transition
matrix � = (π(a, b))a,b∈A and stationary distribution (µ(a))a∈A. Here we
are interested in the statistical distribution of the distance D between two
successive occurrences of w and more precisely in the probabilities

f (d) = P(D = d)
= P(w occurs at i + d and there is no occurrence of w

between i + 1 and i + d − 1 | w occurs at i), d ≥ 1.

In this section, we say that a word w occurs at position i if an occurrence
of w ends at position i; it happens with probability µ(w) given in (6.2.4).

The probability f (d) can be obtained via a recursive formula as follows.
It is clear that, if 1 ≤ d ≤ � − 1 and d ∈/ P(w), then f (d) = 0. If d ∈ P(w)
or if d ≥ � then we decompose the event

E = {w occurs at i + d}
into the disjoint events

E1 = {w occurs at i + d and there is no occurrence of w between i + 1
and i + d − 1}

and

E2 = {w occurs at i + d and there are some occurrences of w

between i + 1 and i + d − 1}.
Thus {E1 | w at i} has probability f (d). Moreover E2 is itself decomposed
as E2 = ∪d−1

h=1E2(h), where

E2(h) = {there is no occurrence of w between i + 1 and i + h − 1,

w occurs at i + h and i + d}
are again disjoint events.

If 1 ≤ d ≤ � − 1 and d ∈ P(w), then P(E | w at i) = µ(w)/µ(w(�−d)).
Moreover, if there are occurrences at positions i + h and i + d, for some
h < d, then the occurrences necessarily overlap, and this is only possible for
d − h ∈ P(w); in this case, P(E2(h) | w at i) = f (h)µ(w)/µ(w(�−d+h)).
Thus, we have

µ(w)

µ(w(�−d))
= f (d) +

∑
1≤h≤d−1
d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
.
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If d ≥ �, then P(E | w at i) = �d−�+1(w�, w1)µ(w)/µ(w1). If there is an
occurrence at positions i + h and i + d, for some h < d, then we distinguish
two cases depending on the possible overlap between the occurrences at
i + h and i + d: if d − � + 1 ≤ h ≤ d − 1, they overlap and we
use previous calculation; if 1 ≤ h ≤ d − �, they do not overlap and
P(E2(h) | w at i) = f (h)�d−�−h+1(w�, w1)µ(w)/µ(w1). Thus, from

P(E | w at i) = P(E1 | w at i) +
d−1∑
h=1

P(E2(h) | w at i)

we get

�d−�+1(w�, w1)
µ(w)

µ(w1)
= f (d) +

∑
1≤h≤d−�

f (h)�d−�−h+1(w�, w1)
µ(w)

µ(w1)

+
∑

d−�+1≤h≤d−1
d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
.

This is the proof of the next theorem.

Theorem 6.3.1. The distribution f (d) = P(D = d) of the distance D

between two successive occurrences of a word w in a Markov chain is
given by the following recursive formulae:

If 1 ≤ d ≤ � − 1 and d ∈/ P(w), then f (d) = 0.

If 1 ≤ d ≤ � − 1 and d ∈ P(w),

f (d) = µ(w)

µ(w(�−d))
−

∑
1≤h≤d−1
d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
.

If d ≥ �,

f (d) = �d−�+1(w�, w1)
µ(w)

µ(w1)
−

∑
1≤h≤d−�

f (h)�d−�−h+1(w�, w1)
µ(w)

µ(w1)

−
∑

d−�+1≤h≤d−1
d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
.

Since D is the distance between two successive occurrences of w, note
that, even if d ∈ P(w), f (d) can be null. For instance, by taking w = aaa,
we have P(aaa) = {1, 2}, and f (1) = µ(aaa)/µ(aa) = π(a, a), f (2) =
π2(a, a) − f (1)π(a, a) = 0.

Note that the recurrence formula on f (d) is not a “finite” recurrence
since calculating f (d) requires the calculation of f (d − 1), . . . , f (1),
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involving substantial numerical calculations for large d. One can approach
this computation problem by using the generating function defined by
�D(t) := E(tD) = ∑

d≥1 f (d)td . The key argument is that the �D(t) ex-
pression is a rational function of the form P (t)/Q(t), and hence the coeffi-
cient f (d) of td can be expressed by a recurrence formula whose order is
the degree of the polynomial Q(t) (see Section 6.8.4).

Theorem 6.3.2. The generating function of D is

�D(t) = 1 − µ−1(w)

⎛
⎜⎜⎝

�−1∑
u=0

u∈P(w)∪{0}

tu

µ(w(�−u))

+ 1

µ(w1)

∑
u≥1

�u(w�, w1)t�+u−1

⎞
⎟⎟⎠

−1

.

Remark 6.3.3. If the transition matrix � is diagonalizable, there exists δi ,
βi ∈ C, i = 2 · · · |A|, such that

1

µ(w1)

∑
u≥1

�u(w�, w1)t�+u−1 = t�

1 − t

(
1 + 1 − t

µ(w1)

|A|∑
i=2

δi

1 − tβi

)

implying that the above expression is a rational function with a pole at
t = 1.

Remark 6.3.4. Since �D(t) = ∑
d≥1 f (d)td , we have the following gen-

eral properties:

E(D) = �′
D(1) = µ−1(w)

Var(D) = �′′
D(1) + �′

D(1)(1 − �′
D(1)).

Successive derivatives of �D(t) are obtained using the decomposition stated
in the previous remark.

Proof. The proof of Theorem 6.3.2 is not complicated since one just has
to develop the sum

∑
d≥0 f (d)td with f (d) given by Theorem 6.3.1, but it

is very technical. We thus only give the main lines of the calculation. By
replacing f (d) given by Theorem 6.3.1 in

∑
d≥0 f (d)td , we obtain a sum

of five term

�D(t) = K1 − K2 + K3 − K4 − K5

https://doi.org/10.1017/CBO9781107341005.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.007


6.3. Word locations along a sequence 285

with

K1 =
�−1∑
d=1

d∈P(w)

µ(w)

µ(w(�−d))
td

K2 =
�−1∑
d=1

d∈P(w)

d−1∑
h=1

d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
td

=
�−2∑
h=1

f (h)
∑
u=1

u∈P(w)

µ(w)

µ(w(�−u))
th+u

K3 =
∑
d≥�

�d−�+1(w�, w1)
µ(w)

µ(w1)
td

= µ(w)

µ(w1)
t�−1

∑
u≥1

�u(w�, w1)tu

K4 =
∑
d≥�

d−�∑
h=1

f (h)�d−�−h+1(w�, w1)
µ(w)

µ(w1)
td

= µ(w)

µ(w1)
t�−1

∑
h≥1

f (h)th
∑
z≥h

�z−h+1(w�, w1)t z−h+1

= µ(w)

µ(w1)
t�−1�D(t)

∑
u≥1

�u(w�, w1)tu

and

K5 =
∑
d≥�

d−1∑
h=d−�+1
d−h∈P(w)

f (h)
µ(w)

µ(w(�−d+h))
td

=
�−1∑
h=1

f (h)
h∑

z=1
z+�−h−1∈P(w)

µ(w)

µ(w(h−z+1))
t z+�−1

+
∑
h≥�

f (h)th
h∑

z=h−�+2
z+�−h−1∈P(w)

µ(w)

µ(w(h−z+1))
t z−h+�−1

=
�−1∑
h=1

f (h)
�−1∑

u=�−h
u∈P(w)

µ(w)

µ(w(�−u))
th+u +

∑
h≥�

f (h)th
�−1∑
u=1

u∈P(w)

µ(w)

µ(w(�−u))
tu.
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Grouping K1 − K2 − K5 and K3 − K4 leads to

�D(t) = (1 −�D(t))

⎛
⎜⎜⎝

�−1∑
u=1

u∈P(w)

µ(w)

µ(w(�−u))
tu + µ(w)

µ(w1)
t�−1

∑
u≥1

�u(w�, w1)tu

⎞
⎟⎟⎠,

hence

�D(t) = 1 −

⎛
⎜⎜⎝1 +

�−1∑
u=1

u∈P(w)

µ(w)

µ(w(�−u))
tu + µ(w)

µ(w1)
t�−1

∑
u≥1

�u(w�, w1)tu

⎞
⎟⎟⎠

−1

Using µ(w)/µ(w(�)) = 1 establishes the theorem.

The distance D between two successive occurrences of w can be seen
as the distance between the j th and (j + 1)th occurrence of w in the
sequence, since we use a homogeneous model. It may be useful to study
the distance D(r) between the j th and (j + r)th occurrence of w, the so-
called r-scan. The distance D(r) is the sum of r independent and identically
distributed random variables with the same distribution as D. Hence we
have

�D(r) (t) = (
�D(t)

)r
.

We obtain the exact distribution of D(r) from the Taylor expansion of
�D(r) (t): the probability P(D(r) = d) is the coefficient of td in the series.

6.3.2. Asymptotic distribution of r-scans

In the preceding paragraph, we showed how to obtain the exact distribution
of an r-scan D(r), the distance between a word occurrence and the (r − 1)th
next one, in a stationary Markov chain of first order. Often one is interested
in the occurrence of any element of a subset of words; such a subset is called
a motif. When analysing a biological sequence, assume we observe (h + 1)
occurrences of a given motif, so that we observe h distances D1, . . . , Dh

between occurrences of the motif. Thus we observe (h − r + 1) so-called
r-scans D

(r)
i = ∑i+r−1

j=i Dj . To detect poor and rich regions with this motif,
one is interested in studying the significance of the smallest and the largest
r-scans, or more generally the kth smallest r-scan, denoted by mk , and the
kth largest r-scan, denoted by Mk . In this section, we present a Poisson
approximation for the statistical distribution of the extreme value mk using
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the Chen-Stein method. A similar result is available for Mk by following
an identical setup, so it will not be explained in detail here.

We begin by defining the Bernoulli variables that will be used in the
Chen-Stein method (see Section 6.8.2):

W−
i (d) := 1I{D(r)

i ≤ d}, d ≥ 0.

Denote by

W−(d) =
h−r+1∑

i=1

W−
i (d)

the number of r-scans less than or equal to d. Note the duality principle

{W−(d) < k} = {mk > d}, d ≥ 0.

We now use Theorem 6.8.2 to get a Poisson approximation for the distri-
bution of W−(d). To apply this theorem, we first need to choose a neigh-
bourhood of dependence for each indicator variable; ideally the indicator
variables with indices not from the neighbourhood of dependence are in-
dependent of that indicator variable. Second there are three quantities to
bound, called b1, b2, and b3, given in (6.8.1), (6.8.2), and (6.8.3). Piec-
ing this together gives a bound on the total variation distance between the
distributions. Here we proceed as follows.

For i ∈ {1, . . . , h − r + 1}, we choose the neighbourhood Bi =
{j | |i − j | < r}, so that D

(r)
i is independent of D

(r)
j if j ∈/ Bi (recall the

distances D1, . . . , Dh are independent). Let Zλ− be the Poisson variable
with expectation λ−, where

λ− = E(W−(d))
= (h − r + 1)E(W−

i (d))

= (h − r + 1)P(D(r) ≤ d).

Theorem 6.8.2 gives that

dTV

(
L(W−(d)),L(Zλ−)

) ≤ 1 − e−λ−

λ−

⎛
⎝h−r+1∑

i=1

∑
j∈Bi

E(W−
i (d))E(W−

j (d))

+
h−r+1∑

i=1

∑
j∈Bi\{i}

E(W−
i (d)W−

j (d))

⎞
⎠ .
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Indeed the neighbourhood Bi is chosen so that W−
i (d) is independent of

W−
j (d), ∀j ∈/ Bi , leading to b3 = 0. For j > i, we have

E(W−
i (d)W−

j (d)) = P(D(r)
i ≤ d, D

(r)
j ≤ d)

= P(D(r)
j ≤ d | D

(r)
i ≤ d)P(D(r)

i ≤ d)

= P(D(r)
j−i+1 ≤ d | D

(r)
1 ≤ d)P(D(r) ≤ d).

Therefore,

h−r+1∑
i=1

∑
j∈Bi\{i}

E(W−
i (d)W−

j (d))

≤ 2(h − r + 1)P(D(r) ≤ d)
r∑

s=2

P(D(r)
s ≤ d | D

(r)
1 ≤ d)

≤ 2λ−
r∑

s=2

P(D(r)
s ≤ d | D

(r)
1 ≤ d).

It can be shown that

P(D(r)
s ≤ d | D

(r)
1 ≤ d) ≤ P

(
s+r−1∑
i=r+1

Di ≤ d

)
= P(D(s−1) ≤ d).

We finally get

dTV

(
L(W−(d)),L(Zλ−)

) ≤
(

(2r − 1)P(D(r) ≤ d) + 2
r−1∑
s=1

P(D(s) ≤ d)

)

× (1 − e−λ−
).

From the duality principle,

|P(mk > d) − P(Zλ− < k)| ≤
(

(2r − 1)P(D(r) ≤ d) + 2
r−1∑
s=1

P(D(s) ≤ d)

)

× (1 − e−λ−
).

This approximation is very useful for the comparison between the ex-
pected distribution of the r-scans and the one observed in the biological
sequence.
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6.4. Word count distribution

Again let w = w1 · · · w� be a word of length � on a finite alphabet A and
X = (Xi)i∈Z be a random sequence on A. This section is devoted to the
statistical distribution of the count N(w) of w in the sequence X1 · · · Xn.
First we state how to compute the exact distribution in the model M1, using
recursion techniques. For long sequences, however, asymptotic results are
obtainable, and, in general, easier to handle. Here the appropriate asymp-
totic regime depends crucially on the length � of the target word relative
to the sequence length n. For very short words, the law of large numbers
can be applied to approximate the word count by the expected word count.
This being a very crude estimate, one can easily improve on it by employ-
ing the Central Limit Theorem, stating that the word count distribution is
asymptotically normal. This approximation will be satisfactory when the
words are not too long. For rare words, as a rule of thumb words of length
� � log n, a compound Poisson approximation will give better results. For
the latter, the error made in the approximation can be bounded in terms of
the sequence length, the word length, and word probabilities, so that it is
possible to assess when a compound Poisson approximation will be a good
choice. Moreover, the error bound can be incorporated to give conservative
confidence intervals, as will be explained below.

6.4.1. Exact distribution

If X is a stationary first-order Markov chain, the exact distribution of the
count N(w) can be easily obtained using the distribution of the successive
positions (Tj )j≥1 of the j th occurrence of w in X1 · · · Xn, using the duality
principle

{N(w) ≥ j} = {Tj ≤ n}.
The exact distribution of Tj can be obtained as in Section 6.3.1, by deriving
the Taylor expansion of the generating function �Tj

(t) of Tj . If j = 1, the
generating function �T1 (t) can be obtained as �D(t) (see Theorem 6.3.2).
We just state the result:

�T1 (t) = t�

1 − t

⎛
⎜⎜⎝

�−1∑
u=0

u∈P(W )∪{0}

tu

µ(w(�−u))
+ 1

µ(w1)

∑
u≥1

�u(w�, w1)t�+u−1

⎞
⎟⎟⎠

−1

.

As Tj − T1 is a sum of j − 1 independent and identically distributed
random variables with the same distribution as D, we have �Tj

(t) =
�T1 (t)

(
�D(t)

)j−1
. Now P(Tj = a) = gj (a) is equal to the coefficient
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of ta in the Taylor expansion of �Tj
(t). Using the duality principle, we

obtain

P(N(w) = j ) =
n∑

a=�

gj (a) − gj+1(a).

6.4.2. The weak law of large numbers

As a crude first approximation, the weak law of large numbers states that
the observed counts will indeed converge towards the expected counts.
Indeed we may use Chebyshev’s inequality to bound the expected deviation
of the observed counts from the expected number of occurrences. This
approximation is valid only for relatively short words, and in this case a
normal approximation gives more information. Such an approximation will
be derived in the following subsection.

6.4.3. Asymptotic distribution: the Gaussian regime

We assume that X = (Xi)i∈Z is a stationary m-order Markov chain on
A, 0 ≤ m ≤ � − 2, with transition probabilities π(a1 · · · am, am+1) and sta-
tionary distribution µ(a1 · · · am), a1, . . . , am+1 ∈ A. For convenience in this
particular subsection, we consider N(w) = ∑n

i=� Yi(w) and

Yi = Yi(w) = 1I{w ends at position i in X}.
If the model is known, the asymptotic normality of (N(w) −

E(N(w)))/
√

n directly follows from a Central Limit Theorem for Markov
chains. When m = 1, the expectation and variance of N(w) are

E(N(w)) = (n − � + 1)µ1(w)

Var(N(w)) = E(N(w)) + 2
∑

p∈P(w)

E(N(w(p)w)) − E(N(w))2

+ 2

µ(w1)
µ2

1(w)
n−2�+1∑

d=1

(n − 2� + 2 − d)�d (w�, w1) (6.4.1)

where µ1(w) is given in Equation (6.2.4).
In the problem of finding exceptional words in biological sequences,

the model is unknown and its parameters are estimated from the observed
sequence. The expected mean of N(w) is not available and is approximated
by an estimator N̂m(w). In this paragraph, we derive both the asymptotic
normality of (N(w) − N̂m(w))/

√
n and the asymptotic variance. This is

not a trivial problem since the estimation changes the variance expression
fundamentally.

https://doi.org/10.1017/CBO9781107341005.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.007
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The expected mean of N(w) is given by E(N(w)) = (n − � + 1)µ(w)
where µ(w) = µm(w) is the probability that an occurrence of w ends at
a given position in the sequence (see Equation (6.2.4)). Estimating each
parameter by its maximum likelihood estimator (with the simplification
from Remark 6.1.1) gives an estimator N̂m(w) of E(N(w)):

N̂m(w) = N(w1 · · ·wm+1) · · ·N(w�−m · · · w�)

N(w2 · · ·wm+1) · · ·N(w�−m · · ·w�−1)
. (6.4.2)

Maximal model Let us first consider the maximal model (m = � − 2),
which is mainly used to find exceptional words. To shorten the formulae,
we introduce the notation

w− := w1 · · · w�−1 first � − 1 letters of w
−w := w2 · · · w� last � − 1 letters of w
−w− := w2 · · · w�−1 � − 2 central letters of w.

Under the maximal model, the estimator of N(w) is

N̂�−2(w) = N(w1 · · · w�−1)N(w2 · · · w�)

N(w2 · · ·w�−1)
= N(w−)N(−w)

N(−w−)
;

moreover, the asymptotic normality of (N(w) − N̂�−2(w))/
√

n and the
asymptotic variance can be obtained in an elegant way using martingale
techniques. Indeed, N̂�−2(w) is a natural estimator of N(w−)π(−w−, w�),
and N(w) − N(w−)π(−w−, w�) is approximately a martingale as it is
shown below.

We introduce the martingale Mn = ∑n
i=� (Yi − E(Yi | Fi−1)) with Fi =

σ (X1, . . . , Xi); it is easy to verify that E(Mn | Fn−1) = Mn−1. Moreover,
we have

E(Yi | Fi−1) = P(w− ends at i − 1 and w� occurs at i | Fi−1)
= 1I{w− ends at i − 1}π(−w−, w�),

and
n∑

i=�

E(Yi | Fi−1) = (
N(w−) − 1I{w− ends at n})π(−w−, w�).

Therefore,

1√
n
Mn = 1√

n

(
N(w) − N(w−)π(−w−, w�)

)
− 1√

n
1I{w− ends at n}π(−w−, w�). (6.4.3)
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Note that n−1/21I{w− ends at n}π(−w−, w�) tends to zero as n → ∞. The
next proposition establishes the asymptotic normality of Mn/

√
n.

Proposition 6.4.1. Let V =µ(w−)π(−w−, w�)(1 − π(−w−, w�)). We
have

1√
n
Mn

D−→ N (0, V ) as n → ∞.

Proof. This is an application of Theorem 6.8.7 for the one-dimensional
random variable ξn,i = n−1/2(Yi − E(Yi | Fi−1)). Three conditions have to
be satisfied. Condition (i) holds from E(ξn,i | Fi−1) = 0. We then have to
check that

∑n
i=� Var(ξn,i | Fi−1) converges to V as n → ∞. Since Yi is a

0-1 random variable, we have

Var(Yi | Fi−1) = E(Yi | Fi−1) − (
E(Yi | Fi−1)

)2

= 1I{w− ends at i − 1}π(−w−, w�)
(
1 − π(−w−, w�)

)
.

We thus obtain
n∑

i=�

Var(ξn,i | Fi−1) = 1

n

n∑
i=�

Var(Yi | Fi−1)

= 1

n
N(w−)π(−w−, w�)(1 − π(−w−, w�))

− 1

n
1I{w− ends at i−1}π(−w−, w�)(1−π(−w−, w�))

−→ V as n → ∞;

where → denotes a.s. convergence; the convergence follows from the Law
of Large Numbers: N(w−)/n → µ(w−). Finally, |ξn,i | ≤ 2/

√
n, so that

∀ε > 0, ∀n > 4/ε2, P(|ξn,i | > ε) = 0, establishing condition (iii). Using
Theorem 6.8.7 proves the proposition.

Proposition 6.4.1 and Equation (6.4.3) also yield that

1√
n

(
N(w) − N(w−)π(−w−, w�)

) D−→ N (0, V ) as n → ∞.

We want to prove such convergence for

Tn = 1√
n

(
N(w) − N(w−)π̂ (−w−, w�)

)
,

where

π̂ (−w−, w�) = N(−w)

N(−w−)
.
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For this purpose, we decompose Tn as follows:

Tn = 1√
n

(
N(w) − N(w−)π(−w−, w�)

)
− 1√

n
N(w−)

(
π̂ (−w−, w�) − π(−w−, w�)

)
= 1√

n

(
N(w) − N(w−)π(−w−, w�)

)
− 1√

n

N(w−)

N(−w−)

(
N(−w) − N(−w−)π(−w−, w�)

)
= 1√

n
Mn − 1√

n

N(w−)

N(−w−)
M ′

n + o(1), (6.4.4)

where M ′
n is the martingale M ′

n = ∑n
i=�

(
Yi(−w) − E(Yi(−w) | Fi−1)

)
.

Now, using Theorem 6.8.7 gives

1√
n

(
Mn

M ′
n

)
−→ N

((
0
0

)
;

(
V V12

V21 V22

))
(6.4.5)

with

V21 = V12

= lim
n→∞

1

n

n∑
i=�

E
((

Yi − E(Yi | Fi−1)
)(

Yi(
−w) − E(Yi(

−w) | Fi−1)
))

and

V22 = lim
n→∞

1

n

n∑
i=�

Var(Yi(
−w) | Fi−1).

With the same technique as for the derivation of V , as YiYi(−w) = Yi ,
we get V21 = V12 = V and V22 = µ(−w−)π(−w−, w�)(1 − π(−w−, w�)).
Note that the Law of Large Numbers guarantees, almost surely, that

N(w−)

N(−w−)
→ µ(w−)

µ(−w−)
as n → ∞. (6.4.6)

From (6.4.4)–(6.4.6), we are now able to deduce that Tn converges in
distribution to N (0, σ 2

�−2(w)) with

σ 2
�−2(w) = V11 − 2

µ(w−)

µ(−w−)
V12 +

(
µ(w−)

µ(−w−)

)2

V22

= µ(w−)

(
1 − µ(w−)

µ(−w−)

)
π(−w−, w�)(1 − π(−w−, w�))
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= µ(w)

µ(−w−)

(
µ(−w−) − µ(w−)

)
(1 − π(−w−, w�))

= µ(w)

µ(−w−)

(
µ(−w−) − µ(w−) − µ(−w) + µ(w)

)
= µ(w)

µ(−w−)2

(
µ(−w−) − µ(−w)

)(
µ(−w−) − µ(w−)

)
.

We have just proved the following theorem.

Theorem 6.4.2. As n → ∞, we have

1√
n

(
N(w) − N̂�−2(w)

) D−→ N (0, σ 2
�−2(w))

with

σ 2
�−2(w) = µ(w)

µ(−w−)2
(µ(−w−) − µ(−w))(µ(−w−) − µ(w−))

and

N(w) − N̂�−2(w)√
nσ̂ 2

�−2(w)

D−→ N (0, 1)

where nσ̂ 2
�−2(w) is the plug-in estimator of nσ 2

�−2(w):

nσ̂ 2
�−2(w) = N̂�−2(w)

N(−w−)2

(
N(−w−) − N(−w)

)(
N(−w−) − N(w−)

)
.

Nonmaximal model In the nonmaximal models (m < � − 2), it is
straightforward to extend the previous martingale approach to prove the
asymptotic normality of (N(w) − N̂m(w))/

√
n and to derive the asymptotic

variance. Indeed, for each value of � − m, the difference N(w) − N̂m(w)
can be decomposed as a linear combination of martingales, exactly as for
Tn. For instance, if w = abcde and m = 1, write

N(abcde) − N̂1(abcde) = N(abcde) − N(ab)N(bc)N(cd)N(de)

N(b)N(c)N(d)

= N(abcde) − N(abcd)
N(de)

N(d)

+ N(de)

N(d)

(
N(abcd) − N(abc)

N(cd)

N(c)

)

+ N(de)N(cd)

N(d)N(c)

(
N(abc) − N(ab)

N(bc)

N(b)

)
.
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Another approach uses the δ-method. The idea is to consider N(w) −
N̂m(w) as f (N), where N is the count vector

N = (N(w), N(w1 · · · wm+1), . . . , N(w�−m · · · w�),
N(w2 · · · wm+1), . . . , N(w�−m · · ·w�−1))

(see Equation (6.4.2)). There exists a covariance matrix � such that

1√
n

(N − E(N ))
D−→ N (0, �).

The next step is to use the δ-method (Theorem 6.8.5) to transfer this con-
vergence to f (N):

1√
n

(f (N) − f (E(N)))
D−→ N (0, ∇�∇ t ),

where ∇ = (
(∂f (x1, . . . , x2(�−m))/∂xj ) |E(N)

)
j=1,...,2(�−m)

is the partial
derivative vector of f . Since f (E(N)) = 0, we finally obtain

1√
n

(
N(w) − N̂m(w)

) D−→ N (0, ∇�∇ t ).

However, this method does not easily provide an explicit formula for the
asymptotic variance since the function f and its derivative depend on � − m.

An alternative method is given by the conditional approach. The prin-
ciple is to work conditionally on the sufficient statistic Sm of the model
Mm, namely the collection of counts {N(a1 · · · am+1), a1, . . . , am+1 ∈ A}
and the first m letters of the sequence. One can derive both the condi-
tional expectation E(N(w) | Sm) and the conditional variance of N(w).
The key arguments are first that the conditional expectation is asymp-
totically equivalent to N̂m(w), leading to the asymptotic normality of
(N(w) − E(N(w) | Sm))/

√
n, and second, that n−1Var(N(w) | Sm) has the

limiting value σ 2
m(w) with

σ 2
m(w) = µ(w) + 2

∑
p∈P(w), p≤�−m−1

µ(w(p)w)

+ µ(w)2

( ∑
a1,...,am

n(a1 · · · am•)2

µ(a1 · · · am)
−

∑
a1,...,am+1

n(a1 · · · am+1)2

µ(a1 · · · am+1)

+ 1 − 2n(w1 · · ·wm•)

µ(w1 · · · wm)

)
, (6.4.7)

where n(·) denotes the number of occurrences inside w, and n(a1 · · · am•)
stands for

∑
b∈A n(a1 · · · amb). Since the conditional moment of order 4 of
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N(w)/
√

n is bounded, it follows that

1√
n

(
N(w) − N̂m(w)

) D−→ N (0, σ 2
m(w)).

The overlapping structure of w clearly appears in the limiting variance. It
is an exercise to verify that the limiting variances given by Theorem 6.4.2
and Equation (6.4.7) with m = � − 2 are identical.

Taking the phase into account Both the martingale approach and the
conditional approach can be extended to the Mm-3 model (see Section 6.1
for definition and notation). When one wants to distinguish the occurrences
of w in a coding DNA sequence according to a particular phase k ∈ {1, 2, 3}
(k represents the position of the word with respect to the codons), one is
interested in the count N(w, k) of w in phase k in X1 · · · Xn; recall that
the word phase is the phase of its last letter. Here we state the result in the
maximal model.

Theorem 6.4.3. Assume X = (Xi)i∈Z is a stationary (� − 2)-order
Markov chain on A with transition probabilities πk(a1 · · · a�−2, b) and sta-
tionary distribution µ(a1 · · · a�−2, k), a1, . . . , a�−2, b ∈ A, k ∈ {1, 2, 3}. As
n → ∞, we have

1√
n

(
N(w, k) − N(w−, k − 1)N(−w, k)

N(−w−, k − 1)

)
D−→ N (0, σ 2

�−2(w, k))

with

σ 2
�−2(w, k) = µ(w, k)

µ(−w−, k − 1)2

(
µ(−w−, k − 1) − µ(−w, k)

)

×
(

µ(−w−, k − 1) − µ(w−, k − 1)

)
and

µ(w−, k − 1) = µ(w1 · · ·w�−2, k − 2)πk−1(w1 · · ·w�−2, w�−1)
µ(−w, k) = µ(−w−, k − 1)πk(−w−, w�)
µ(w, k) = µ(w−, k − 1)πk(−w−, w�).

Error bound for the approximation An application of Stein’s method
for normal approximations, namely Theorem 6.8.1, provides a bound on the
distance to the normal distribution; however, it does not take the estimation
of parameters into account.

Recall v2 = Var(N(w)) from (6.4.1), and α given in (6.1.1). One has
the following result.
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Theorem 6.4.4. Assume X = (Xi)i∈Z is a stationary 1-order Markov
chain. Let w be a word of length � and Z ∼ N ((n − � + 1)µ(w), v2).
There are constants c and C1, C2, C3 such that

|P(N(w) ≤ x) − P(Z ≤ x)| ≤ c min
�≤s≤n/2

Bs,

where

Bs = 2(4s − 3)v−1 + 2n(2s − 1)(4s − 3)v−3(| log v−1| + log n)
+ C1nv−1µ(w)|α|s−�+1

+ C2(| log v−1| + log n)(2s − 1)|α|s−�+1

+ C3(| log v−1| + log n)(n − 2s + 1)nµ2(w)v−2|α|s−�+1.

The multivariate generalization will be presented in Theorem 6.6.1,
where the explicit forms of the constants C1, C2, and C3 will be given.

6.4.4. Asymptotic distribution: the Poisson regime

In the previous section, we showed that the count N(w) of a word w

in a random sequence of length n can be approximated by a Gaussian
distribution for large n. This Gaussian approximation is in fact not good
when the expected count (n − � + 1)µ(w) is very small, meaning that w

is a rare word. Poisson approximations are appropriate for counts of rare
events. As an illustration, it is well known that a sum of independent
Bernoulli variables can be approximated by either a Gaussian distribution
or a Poisson distribution, depending on the asymptotic behaviour of the
expected value.

When the sequence letters are independent, Poisson and compound
Poisson approximations for N(w) have been widely studied in the litera-
ture. As we will see, a Poisson distribution is not satisfactory for periodic
words because of possible overlaps; a compound Poisson distribution is
proposed. Two classes of tools can be used: generating functions, which do
not provide any approximation error, and the Chen–Stein method, which
gives a bound for the total variation distance between the two distribu-
tions (see Section 6.8.2 for details). In this section, we chose to present
the Chen–Stein approach under a first-order Markovian model with known
parameters; generalizations to higher order and to estimated parameters
are presented at the end of the section. No assumption is made on the
overlapping structure of the word w.

We assume that X = (Xi)i∈Z is a stationary first-order Markov
chain on A, with transition probabilities π(a, b) and stationary distri-
bution µ(a), a, b ∈ A. Let w = w1 · · ·w� be a word of length � on A.
Here, Yi = Yi(w) = 1I{w starts at position i in X} and µ(w) = E(Yi(w)).
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Moreover, we make the rare word assumption nµ(w) = O(1). Note that
nµ(w) = O(1) also means � = O(log n).

Applying Theorem 6.8.2 to the Bernoulli variables Yi , we obtain a
bound b1 + b2 + b3 for the total variation distance between the distribution
of N(w) and the Poisson distribution with mean (n − � + 1)µ(w) that does
not converge to 0 under the rare word assumption. The problem comes from
the b2 term and the possible overlaps of periodic words. Indeed, let w be a
periodic word; its set of periods P(w) is not empty. Take Bi = {i − 2� +
1, . . . , i + 2� − 1} for the neighbourhood of i ∈ I = {1, . . . , n − � + 1};
then b1 and b3 tend to 0 as n → +∞. We obtain

b2 :=
∑
i∈I

∑
j∈Bi\{i}

E(YiYj ) = 2(n − � + 1)
∑

p∈P(w)

µ(w(p)w) + O(n�µ2(w));

this quantity can be of order O(1) if P(w) contains small periods p. The
Poisson approximation is however valid for the count of nonperiodic words
because the set of periods is empty. For periodic words, the crucial argu-
ment is to consider clumps, as by definition they cannot overlap. We first
prove that the declumped count Ñ(w) can be approximated by a Poisson
distribution with mean (n − � + 1)µ̃(w) (see Equation (6.2.7)) by applying
Theorem 6.8.2 to the Bernoulli variables Ỹi(w) defined in (6.2.5). For sim-
plicity, the variables Ỹi(w) are denoted by Ỹi . In the next section we prove
a compound Poisson approximation for N(w).

Poisson approximation for the declumped count Our aim is to ap-
proximate the vector Ỹ = (Ỹi(w))i∈I of Bernoulli variables by a vec-
tor Z = (Zi)i∈I with independent Poisson coordinates of mean E(Zi) =
E(Ỹi(w)) = µ̃(w), where µ̃(·) is defined in (6.2.7). To apply Theorem 6.8.2,
we choose the following neighbourhood of i ∈ I :

Bi := {j ∈ I : |j − i| ≤ 3� − 3}.
The neighbourhood is such that, for j not in Bi , there are no letters Xh

common to Ỹi and Ỹj , and moreover, the Xhs defining Ỹi and those defining
Ỹj are separated by at least � positions. It is important to consider a lag
converging to infinity with n since it leads to the exponential decay of the
b3 term given by Theorem 6.8.2 as we will see. Deriving a bound for the
total variation distance between Ỹ and Z consists of bounding the quantities
b1, b2, and b3 given in (6.8.1), (6.8.2), and (6.8.3). Bounding b1 presents no
difficulty:

b1 :=
∑
i∈I

∑
j∈Bi

E(Ỹi)E(Ỹj ) ≤ (n − � + 1)(6� − 5)µ̃2(w) = O

(
log n

n

)
.
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Since clumps of w do not overlap in the sequence, Ỹi Ỹj = 0 for |j − i| < �.
Therefore, we get

b2 :=
∑
i∈I

∑
j∈Bi\{i}

E(Ỹi Ỹj ) ≤ 2
∑
i∈I

i+3�−3∑
j=i+�

E(Ỹi Ỹj )

using the symmetry of Bi . Now we have

E(Ỹi Ỹj ) ≤ E(ỸiYj ) = µ̃(w)�j−i−�+1(w�, w1)
µ(w)

µ(w1)

and

b2 ≤ 2

µ(w1)
(n − � + 1)µ̃(w)µ(w)

2�−2∑
s=1

�s(w�, w1) = O

(
log n

n

)
.

Bounding b3 is a little more involved but we give all the steps because the
same technique is used for the compound Poisson approximation of the
count and will not be described in detail there. By definition we have

b3 :=
∑
i∈I

E|E(Ỹi − E(Ỹi) | σ (Ỹj , j ∈/ Bi))| .

Since σ (Ỹj , j ∈/ Bi) ⊂ σ (X1, . . . , Xi−2�+1, Xi+2�−1, . . . , Xn), properties
of conditional expectation and the Markov property give

b3 ≤
∑
i∈I

E|E(Ỹi − E(Ỹi) | Xi−2�+1, Xi+2�−1)|

≤
∑
i∈I

∑
x,y∈A

|E(Ỹi − E(Ỹi) | Xi−2�+1 = x, Xi+2�−1 = y)|

× P(Xi−2�+1 = x, Xi+2�−1 = y).

To evaluate the right-hand term, we introduce the set of possible words of
length � − 1 preceding a clump of w:

G(w) = {g = g1 · · · g�−1 : for all p ∈ P(w), g�−p · · · g�−1 �= w(p)}.
(6.4.8)

Thus a clump of w starts at position i in (Xi)i∈Z if and only if one of the
words gw, g ∈ G(w), starts at position i − � + 1. Therefore, we can write

Ỹi(w) =
∑

g∈G(w)

Yi−�+1(gw). (6.4.9)
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This gives

b3 ≤
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

|E(Yi−�+1(gw)

− E(Yi−�+1(gw)) | Xi−2�+1 = x, Xi+2�−1 = y)|
× P(Xi−2�+1 = x, Xi+2�−1 = y)

=
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

|P(Xi−2�+1 = x, Yi−�+1(gw) = 1, Xi+2�−1 = y)

− µ(gw)P(Xi−2�+1 = x, Xi+2�−1 = y)|
=
∑
i∈I

∑
x,y∈A

∑
g∈G(w)

∣∣∣∣µ(x)��(x, g1)
µ(gw)

µ(g1)
��(w�, y)

− µ(gw)µ(x)�4�−2(x, y)

∣∣∣∣ .
We now use the diagonalization (6.1.3) and (6.1.4), with α given in (6.1.1),
yielding

b3 ≤ (n−�+1)|α|�
∑

g∈G(w)

µ(gw)
∑

x,y∈A
µ(x)

∣∣∣∣∣∣
1

µ(g1)

∑
(t,t ′)

α�
t α

�
t ′

α�
Qt (x, g1)Qt ′(w�, y)

−
|A|∑
t=1

α4�−2
t

α�
Qt (x, y)

∣∣∣∣∣
= (n−�+1)|α|�

∑
g∈G(w)

µ(gw)
∑

x,y∈A
µ(x)

∣∣∣∣∣∣
1

µ(g1)

∑
(t,t ′) �=(1,1)

α�
t α

�
t ′

α�
Qt (x,g1)Qt ′(w�,y)

−
|A|∑
t=2

α4�−2
t

α�
Qt (x, y)

∣∣∣∣∣
≤ (n − � + 1)|α|�

∑
g∈G(w)

µ(gw)γ (�, w�),

where

γ (�, a) =max
b∈A

∑
x,y∈A

µ(x)

∣∣∣∣∣∣
1

µ(b)

∑
(t,t ′) �=(1,1)

α�
t α

�
t ′

α�
Qt (x, b)Qt ′(a, y)

−
|A|∑
t=2

α4�−2
t

α�
Qt (x, y)

∣∣∣∣∣ .
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Note that γ (�, w�) = O(1). From (6.4.8) we have
∑

g∈G(w) µ(gw) = µ̃(w)
and

b3 ≤ (n − � + 1)µ̃(w)γ (�, w�)|α|� = O(|α|�).

We have proved the next theorem.

Theorem 6.4.5. Let Z = (Zi)i∈I be independent Poisson variables with
expectation E(Zi) = E(Ỹi(w)) = µ̃(w). We have

dTV

(
L(Ỹ ),L(Z)

) ≤ (n − � + 1)µ̃(w)

{
(6� − 5)µ̃(w) + γ (�, w�)|α|�

+ 2

µ(w1)
µ(w)

2�−2∑
s=1

�s(w�, w1)

}
.

The declumped count Ñ (w) can be approximated by Ñinf(w) :=∑
i∈I Ỹi(w) since

dTV

(
L(Ñ(w)),L(Ñinf(w))

) ≤ P(Ñ (w) �= Ñinf(w))
≤ (� − 1)(µ(w) − µ̃(w)). (6.4.10)

Using the triangle inequality leads to the following corollary.

Corollary 6.4.6. Let Z be a Poisson variable with expectation E(Z) =
(n − � + 1)µ̃(w). We have

dTV

(
L(Ñ(w)),L(Z)

) ≤ (n − � + 1)µ̃(w)

{
(6� − 5)µ̃(w) + γ (�, w�)|α|�

+ 2

µ(w1)
µ(w)

2�−2∑
s=1

�s(w�, w1)

}

+ (� − 1)(µ(w) − µ̃(w)).

Estimation of the parameters When the transition probabilities are un-
known and can only be estimated from the observed sequence, we need
to evaluate the total variation distance between the word count distribu-
tion and the distribution of

∑
k≥1 kZ′

k , the Z′
ks being independent Poisson

variables with expectation (n − � + 1)̂̃µk(w), where ̂̃µk(w) is the observed
value of the plug-in maximum likelihood estimator of µ̃k(w). Similarly, we
want to know the total variation distance between the declumped count,
Ñ (w), and the Poisson variable with expectation (n − � + 1)̂̃µ(w). For
this we use the triangle inequality and the fact that the total variation
distance between two Poisson variables with expectation λ and λ′ is less
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than |λ − λ′|:
dTV

(
L(Ñ(w)),Po((n − � + 1)̂̃µ(w))

)
≤ dTV

(
L(Ñ(w)),Po((n − � + 1)µ̃(w))

) + (n − � + 1)|̂̃µ(w) − µ̃(w)|.
Using the Law of Iterated Logarithm for Markov chains and Equation
(6.2.4), one can show that

µ̂(w) = µ(w)

(
1 + O

(
�
√

log log n√
n

))
almost surely (a.s.)

Under the rare word condition nµ(w) = O(1), we get

nµ̂(w) − nµ(w) = O

(
�
√

log log n√
n

)
a.s.

Now, using Equation (6.2.7), we obtain

n̂̃µ(w) − n̂̃µ(w) = O

(
�2√log log n√

n

)
a.s.

This quantity converges to zero as n→ ∞, because the rare word condition
implies that � = O(log n). Thus,

dTV

(
L(Ñ(w)),Po

(
(n − � + 1)̂̃µ(w)

))
≤ dTV

(
L(Ñ(w)),Po

(
(n − � + 1)µ̃(w)

)) + O

(
�2√log log n√

n

)
.

The approximation follows from Corollary 6.4.8.
We do not have an explicit bound for this additional error term. However,

for long sequences the error term due to the maximum-likelihood estimation
will be small compared to the bound on the Poisson approximation error.

6.4.5. Asymptotic distribution: the Compound Poisson regime

Here we present two approaches for a compound Poisson approximation
for the count. First, such an approximation can be derived using a Poisson
process approximation for the Bernoulli variables Ỹi,k(w) defined in (6.2.9)
and by using that N(w) is asymptotically equivalent to

∑
i∈I

∑
k≥1 kỸi,k(w)

in probability. For simplicity, the variables Ỹi,k(w) are denoted by Ỹi,k .
Second, a direct approximation for N(w) can be obtained using Stein’s
method for compound Poisson approximation. The second method yields
better bounds on the approximation, whereas the first method is easier to
generalize to multivariate results, as will be shown in Section 6.6.
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Compound Poisson approximation via Poisson process To approxi-
mate the distribution of the count N(w), we first use that N(w) is asymp-
totically equivalent to Ninf(w) := ∑n−�+1

i=1

∑
k≥1 kỸi,k in probability:

dTV (L(N(w)),L(Ninf(w))) ≤ P(N(w) �= Ninf(w))
≤ 2(� − 1)(µ(w) − µ̃(w)). (6.4.11)

Our goal is now to approximate the vector (Ỹi,k)(i,k)∈I , I = {1, . . . , n −
� + 1} × {1, 2, . . .}, of Bernoulli variables by a vector (Zi,k)(i,k)∈I with
independent Poisson coordinates of expectation E(Zi,k) = E(Ỹi,k) = µ̃k(w)
where µ̃k(·) is given in Equation (6.2.10). The neighbourhood Bi,k of (i, k)
is such that, for (j, k′) not in Bi,k , the letters Xhs defining Ỹi,k and those
defining Ỹj,k are separated by at least � positions. Since Ỹi,k can be described
by at most Xi−�+1, . . . , Xi+(k+1)(�−1), we consider

Bi,k := {(j, k′) ∈ I : −(k′ + 3)(� − 1) ≤ j − i ≤ (k + 3)(� − 1)}.
We bound successively the quantities given in (6.8.1), (6.8.2), and (6.8.3).
By definition

b1 :=
∑

(i,k)∈I

∑
(j,k′)∈Bi,k

E(Ỹi,k)E(Ỹj,k′)

≤
n−�+1∑

i=1

∑
k≥1

∑
k′≥1

i+(k+3)(�−1)∑
j=i−(k′+3)(�−1)

µ̃k(w)µ̃k′(w)

≤ (n − � + 1)
∑
k≥1

∑
k′≥1

(
(k + k′ + 6)(� − 1) + 1

)
µ̃k(w)µ̃k′(w).

From (6.2.7) and (6.2.10), we use that∑
k≥1

µ̃k(w) = µ̃(w), (6.4.12)

∑
k≥1

kµ̃k(w) = µ(w), (6.4.13)

to obtain

b1 ≤ (n − � + 1)

(
2(� − 1)µ̃(w)µ(w) + (6� − 5)µ̃(w)2

)
.

The b2 term involves products such as Ỹi,kỸj,k′ with (j, k′) ∈ Bi,k . Since
a k-clump of w at position i cannot overlap a k′-clump of w, many of these
products are zero. To identify them, we need to describe in more detail the
compound words c ∈ Ck(w) and c′ ∈ Ck′(w) that may occur at positions i

and j . For this purpose, we introduce the set of words of length � − 1 that
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can follow a clump of w:

D(w) = {d = d1 · · · d�−1 : ∀p ∈ P(w), d1 · · · dp �= w�−p+1 · · · w�}.
Therefore, we can write

Ỹi,k(w) =
∑

g∈G(w),c∈Ck(w),d∈D(w)

Yi−�+1(gCd). (6.4.14)

For convenience, we write
∑

gcd for the sum over g ∈ G(w), c ∈ Ck(w),
d ∈ D(w), and, similarly,

∑
g′c′d ′ for the sum over g′ ∈ G(w), c′ ∈ Ck′(w),

and d ′ ∈ D(w). This gives

b2 :=
∑

(i,k)∈I

∑
(j,k′)∈I\{(i,k)}

E(Ỹi,kỸj,k′)

=
n−�+1∑

i=1

∑
k≥1

∑
k′≥1

∑
gcd

∑
g′c′d ′

i+(k+3)(�−1)∑
j=i−(k′+3)(�−1)

E(Yi−�+1(gcd)Yj−�+1(g′c′d ′)).

For i − |c′| < j < i + |c|, we have that Yi−�+1(gcd)Yj−�+1(g′c′d ′) = 0
because clumps do not overlap. We distinguish two cases:

1. g′c′d ′ at position j − � + 1 overlaps gcd at position i − � + 1 (this
is only possible over at most 2(� − 1) letters); that is, for

j ∈ {i − |c′| − 2� + 3, . . . , i − |c′|} ∪ {i + |c|, . . . , i + |c| + 2� − 3};
let b21 denote the associated term.

2. g′c′d ′ at position j − � + 1 does not overlap gcd at position i − � + 1;
that is, for

j ∈ {i − (k′ + 3)(� − 1), . . . , i − |c′| − 2� + 2}
∪ {i + |c| + 2� − 2, . . . , i + (k + 3)(� − 1)};

let b22 denote the associated term.
By symmetry, we have

b21 ≤ 2
n−�+1∑

i=1

∑
k≥1

∑
k′≥1

∑
gcd

∑
g′c′d ′

i+|c|+2�−3∑
j=i+|c|

E(Yi−�+1(gCd)Yj−�+1(g′C ′d ′)) .

Summing over k′, g′, c′, and d ′ gives

b21 ≤ 2
n−�+1∑

i=1

∑
k≥1

∑
gcd

i+|c|+2�−3∑
j=i+|c|

E(Yi−�+1(gcd)Ỹj (w));
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now, summing over d and using that Ỹj (w) ≤ Yj (w) leads to

b21 ≤ 2
n−�+1∑

i=1

∑
k≥1

∑
gc

i+|c|+2�−3∑
j=i+|c|

E(Yi−�+1(gc)Yj (w)) .

An occurrence of gc at position i − � + 1 does not overlap an occurrence
of w at position j ≥ i + |c|; thus it follows that

E(Yi−�+1(gc)Yj (w)) = µ(gc)�j−i−|c|+1(w�, w1)
µ(w)

µ(w1)
,

and

b21 ≤ 2(n − � + 1)
µ(w)

µ(w1)

2�−2∑
s=1

�s(w�, w1)
∑
k≥1

∑
gc

µ(gc).

Finally, note that∑
k≥1

∑
gc

µ(gc) =
∑
k≥1

∑
k∗≥k

µ̃k∗(w) =
∑
k∗≥1

k∗µ̃k∗(w) = µ(w),

which leads to

b21 ≤ 2(n − � + 1)
µ2(w)

µ(w1)

2�−2∑
s=1

�s(w�, w1) = O

(
log n

n

)
.

The b22 term is easier to bound and we get

b22 ≤ 2(n − � + 1)
µ̃(w)

µmin
((� − 2)µ(w) + µ̃(w)) = O

(
log n

n

)
,

where µmin is the smallest value of {µ(a), a ∈ A}.
Combining these bounds, we have

b2 ≤ 2(n − � + 1)
µ2(w)

µ(w1)

2�−2∑
s=1

�s(w�, w1)

+ 2(n − � + 1)
µ̃(w)

µmin
((� − 2)µ(w) + µ̃(w)).

Bounding b3 consists of following the different steps previously detailed
for the declumped count and using the decomposition (6.4.14) instead of
(6.4.9). Since there is no interest in repeating this technical part, we just
give the bound of b3 and state the theorem:

b3 ≤ (n − � + 1)µ̃(w)γ2(�)|α|�
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with

γ2(�) =
∑

x,y∈A
µ(x) max

a,b∈A

⎛
⎝ 1

µ(b)

∑
(t,t ′) �=(1,1)

∣∣∣∣α�
t α

�
t ′

α�
Qt (x, b)Qt ′(a, y)

∣∣∣∣
+

|A|∑
t=2

∣∣∣∣α5�−3
t

α�
Qt (x, y)

∣∣∣∣
)

.

Theorem 6.4.7. Let (Zi,k)(i,k)∈I be independent Poisson variables with
expectation E(Zi,k) = E(Ỹi,k(w)) = µ̃k(w). With the previous notation, we
have

dTV

(
L
(
(Ỹi,k(w))(i,k)∈I

)
,L

(
(Zi,k)(i,k)∈I

))
≤ (n − � + 1)µ̃(w)

(
2(� − 1)µ(w) + (6� − 5)µ̃(w) + γ2(�)|α|�

)

+ 2(n − � + 1)

{
µ2(w)

µ(w1)

2�−2∑
s=1

�s(w�, w1)

+ µ̃(w)

µmin

(
(� − 2)µ(w) + µ̃(w)

)}
.

From the total variation distance properties, we have

dTV

(
L
(∑
(i,k)∈I

kỸi,k

)
,L

(∑
(i,k)∈I

kZi,k

))≤ dTV

(
L
(
(Ỹi,k(w))(i,k)∈I

)
,L

(
(Zi,k)(i,k)∈I

))
.

Since the Zi,ks are independent Poisson variables,
∑

(i,k)∈I kZi,k has the
same distribution as

∑
k≥1 kZk , where the Zks are independent Pois-

son variables with expectation (n − � + 1)µ̃k(w). Note that the latter
has a compound Poisson distribution with parameters

(
(n − � + 1)µ̃(w),

(µ̃k(w)/µ̃(w))k
)
. Because of the expressions of µ̃(w) and µ̃k(w) given

by (6.2.7) and (6.2.10), this compound Poisson distribution reduces to a
Polýa-Aeppli distribution. Using the triangle inequality leads to the follow-
ing corollary.

Corollary 6.4.8. Let (Zk)k≥1 be independent Poisson variables with
expectation E(Zk) = (n − � + 1)µ̃k(w). Let

CP = CP
(

(n − � + 1)µ(w)(1 − A(w)),
(
(1 − A(w))Ak−1(w)

)
k≥1

)
(6.4.15)
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denote the compound Poisson distribution of
∑

k≥1 kZk . With the previous
notation, we have

dTV (L(N(w)), CP) ≤ (n − � + 1)µ̃(w)

(
2(� − 1)µ(w) + (6� − 5)µ̃(w)

+ γ2(�)|α|�
)

+ 2(n − � + 1)

{
µ2(w)

µ(w1)

2�−2∑
s=1

�s(w�, w1)

+ µ̃(w)

µmin

(
(� − 2)µ(w) + µ̃(w)

)}
+ 2(� − 1)(µ(w) − µ̃(w))

= O

(
log n

n

)
.

Such a bound on the total variation distance between, for instance,
the word count distribution and the associated compound Poisson dis-
tribution has the great advantage of providing confidence intervals (see
Section 6.8.2). Indeed, using notation from Corollary 6.4.8, for all t ∈ R,
we have∣∣∣∣∣P(N(w) ≥ t) − P

(∑
k≥1

kZk ≥ t

)∣∣∣∣∣ ≤ dTV

(
L(N(w)),L

(∑
k≥1

kZk

))
.

Direct compound Poisson approximation Empirically, often a com-
pound Poisson approximation also gives good results when the underlying
words are not so rare, indicating that the theoretical bounds are not sharp.
Using the direct compound Poisson approximation Theorem 6.8.4, it is
possible to obtain improved bounds for N(w). For this, choose as neigh-
bourhoods in Theorem 6.8.4

B(i, k) = {(j, k′) : −(k′ − 2)(� − 1) − r + 1
≤ j − i ≤ (k + 2)(� − 1) + r − 1},

where r ≥ 1 can be chosen. In Theorem 6.4.5 we had r = �. Recall (6.2.10),
ρ from (6.1.5), � from (6.5.5), and CP from (6.4.15). One obtains the
following result.

Theorem 6.4.9. If A(w) ≤ 1

5
, then

dTV (L(N(w)), CP) ≤ 1 − A(w)

1 − 5A(w)

(
�1 +

√
(n − � + 1)µ(w)�0

)
+ 2(� − 1)µ(w),
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where

�0 = 2ρr
(
2 + 3ρ3(�−1)+r + 2ρr

)
,

�1 = 2µ(w)

{
3(� − 1) + r + 2(� − 1)

A(w)

1 − A(w)

+ �

(
2A(w)(� − 1 − p0)

(1 − A(w))3
+ 2(� − 1) + r − 1

(1 − A(w))2

)}
,

and p0 is the shortest period of w. The value r can be chosen to minimize
the estimates.

Estimation of the parameters When estimating the parameters, as in
Section 6.4.4, the total variation distance between the two compound
Poisson distributions is bounded by

dTV

(
L
(∑

k≥1

kZk

)
,L

(∑
k≥1

kZ′
k

))
≤
∑
k≥1

|n̂̃µk(w) − nµ̃k(w)|.

Using Equation (6.2.10), this quantity tends to zero as n → ∞ when
nµ(w) = O(1).

Again, for long sequences the error term due to the maximum-likelihood
estimation will be small compared to the bound on the compound Poisson
approximation error.

Generalization to Mm Let us now assume that the sequence (Xi)i∈Z is
an m-order Markov chain on the alphabet A, with transition probabili-
ties π(a1 · · · am, am+1), a1, . . . , am+1 ∈ A. The basic idea is to rewrite the
sequence over the alphabet Am using the embedding (6.1.6),

Xi = XiXi+1 · · ·Xi+m−1,

so that the sequence (Xi)i∈Z is a first-order Markov chain on Am with
transition probabilities (A = a1 · · · am ∈ Am, B = b1 · · · bm ∈ Am)

�(A, B) =
{

π(a1 · · · am, bm) if a2 · · · am = b1 · · · bm−1

0 otherwise.

Denote by W = W1 · · · W�−m+1 the word w = w1 · · ·w� written using the
alphabet Am, so that Wj = wj · · · wj+m−1. The results presented below
are valid for the number N(W) of overlapping occurrences and the number
Ñ (W) of clumps of W in X1 · · · Xn−m+1. Since an occurrence of w at
position i in X1 · · · Xn corresponds to an occurrence of W at position
i − m + 1 in X1 · · · Xn−m+1, we simply have N(w) = N(W). In contrast,
clumps of W in X1 · · · Xn−m+1 are different from clumps of w in X1 · · ·Xn

because W is less periodic than w, leading to Ñ(W) �= Ñ (w). Let us take a
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simple example: w = ata and m = 2. Put A = at ∈ A2 and B = ta ∈ A2;
we then have W = AB. The sequence tatatatat contains a unique clump
of ata whereas the associated sequence BABABABA contains 3 clumps
of AB. Indeed, AB has no period and ata has one period. In fact, the
periods of W are those periods of w that are strictly less than � − m + 1.
Therefore, the Poisson approximation for the declumped count in an m-
order Markov chain does not follow immediately from the case m = 1;
a rigorous proof would require applying the Chen–Stein theorem with an
adapted neighbourhood and to bound the new quantities b1, b2, and b3 in
Mm, but this has not yet been carried out.

Since N(w) = N(W), Corollary 6.4.8 ensures that N(w) can be ap-
proximated by a sum

∑
k≥1 kZk , where Zk is a Poisson variable whose

expectation is (n − � + 1) times the probability that a k-clump of W starts
at a given position in X1 · · · Xn−m+1. From Equation (6.2.10), we obtain

E(Zk) = (n − � + 1)(1 − A′(w))2A′(w)k−1µ(w)

with

A′(w) =
∑

p∈P ′(w)∪{1,...,�−m}

µ(w(p)w)

µ(w)
.

An important consequence is that, in Mm, the compound Poisson ap-
proximation for words that cannot overlap on more than m − 1 letters
becomes a single Poisson approximation.

6.4.6. Large deviation approximations

For long sequences, the probability that a given word occurs more than
a certain number of times can be approximated using a Gaussian or a
compound Poisson distribution (Sections 6.4.3 and 6.4.5). The aim of this
section is to show that large deviation techniques can also be used to ap-
proximate the probability that a given word frequency deviates from its
expected value by more than a certain amount. Let w = w1 · · · w� be a
word of length �; recall that µ(w) denotes the probability that w occurs at
a given position in X1 · · ·Xn. We aim to provide good approximations
for P((1/(n − � + 1))N(w) ≥ µ(w) + b) and P((1/(n − � + 1))N(w) ≤
µ(w) − b) with 0 < b < 1.

We assume that X1 · · · Xn is a stationary first-order Markov chain on a
finite alphabet A with transition probabilities π(a, b) > 0, a, b ∈ A. (Gen-
eralization to Mm follows the same setup as in Section 6.4.5, using (6.1.6).)
To use Theorem 6.8.6 for (1/(n − � + 1))N(w), we need to consider the ir-
reducible Markov chain X1, . . . , Xn−�+1 on A� where Xi = Xi · · ·Xi+�−1,
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with transition matrix I� = (�(u, v))u,v∈A� such that

�(u1 · · · u�, v1 · · · v�) =
{

π(u�, v�) if uj+1 = vj , j = 1 · · · � − 1,

0 otherwise.

The count N(w) can then be written as

N(w) =
n−�+1∑

i=1

1I{Xi · · ·Xi+�−1 = w1 · · ·w�}

=
n−�+1∑

i=1

1I{Xi = w}

Let I be the function

I (x) = sup
θ∈R

(θx − log λ(θ)),

x ∈ R, where λ(θ) is the largest eigenvalue of the matrix I�θ =
(�θ (u, v))u,v∈A� defined by

�θ (u, v) =
{

eθ�(u, v) if v = w,

�(u, v) otherwise.

Let 0 < b < 1; applying Theorem 6.8.6 with the function f (u) = 1I{u = w}
to the closed subset [µ(w) + b, +∞] and the open subset (µ(w) + b, +∞),
we obtain

lim
n→+∞

1

n − � + 1
log P

(
1

n − � + 1
N(w) ≥ µ(w) + b

)
= −I (µ(w) + b);

indeed, the rate function I is convex and minimal at E(f (Xi)) = µ(w).
Similarly we have

lim
n→+∞

1

n − � + 1
log P

(
1

n − � + 1
N(w) ≤ µ(w) − b

)
= −I (µ(w) − b).

Denoting the observed count of w in the biological sequence by Nobs(w),
as a consequence we have for large n:

if Nobs(w) > (n− � + 1)µ(w) and b := (Nobs(w)/(n − � + 1)) −µ(w),
then

P(N(w) ≥ Nobs(w)) � exp

(
−(n − � + 1)I

(
Nobs(w)

n − � + 1

))
,
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if Nobs(w) < (n− � + 1)µ(w) and b : =µ(w) − (Nobs(w)/(n− � + 1)),
then

P(N(w) ≤ Nobs(w)) � exp

(
−(n − � + 1)I

(
Nobs(w)

n − � + 1

))
.

Note that this approximation is obtained assuming the transition probabili-
ties π(a, b), a, b ∈ A are known. Moreover, since λ(θ) is an eigenvalue of a
|A|� × |A|� matrix, the word length � is a limiting factor for the numerical
calculation, even if |A| = 4.

6.5. Renewal count distribution

As a particular case of nonoverlapping occurrence counts, in this section we
count renewals of a word w = w1w2 . . . w� in a random sequence X1 · · ·Xn

as defined in Section 6.2. We then consider the renewal count Rn(w) =∑n−�+1
i=1 Ii(w), where Ii(w) is the random indicator that a renewal of w

starts at position i in X1 · · · Xn (see (6.2.11)).
Exact results for the distribution of Rn have been proposed using a

combinatorial approach and language decompositions. Because those tools
are very different from the ones used in this chapter, we only present
asymptotic results. First we derive the expected renewal count.

Expected renewal count If the random indicators Ii(w) had the same
expectation, say µR(w), then E(Rn(w)) = (n − � + 1)µR(w). This is the
commonly used expectation, but it ignores the end effect. For i > �, the
Ii(w)s are effectively identically distributed by stationarity of the Markov
process, but it is not the case for 1 ≤ i ≤ �.

We start with the calculation of µR(w). Recall that P(w) is the set of
periods of w and that w(p) = w1w2 · · · wp denotes the word composed of
the first p letters of w. When the Markov process is in stationarity, we have
from renewal theory that

µR(w) = µ(w)

Q(1)
(6.5.1)

with Q given in (6.2.2). To understand this formula, note that we can
decompose the event {there is an occurrence of w starting at position i}, i >

�, as the disjoint union of {there is a renewal of w starting at position i} and
{there is a renewal of w starting at position j directly followed by the letters
w�−i+j+1 · · ·w� and j − i is a period of w}, for j ∈ {i − � + 1, . . . , i − 1}.
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This can be written as follows

Yi(w) =
i∑

j=i−�+1

Ij (w)Yj+�(w�−i+j+1 · · ·w�)1I{i − j ∈ P(w) ∪ {0}}

=
∑

p∈P(w)∪{0}
Ii−p(w)Yi+�−p(w�−p+1 · · · w�).

Taking expectations on both sides thus gives

µ(w) =
∑

p∈P(w)∪{0}
µR(w)µ(w�−p · · · w�)

1

µ(w�−p)
.

Hence

µR(w) = µ(w)

1 + ∑
p∈P(w) π(w�−p, w�−p+1) · · ·π(w�−1, w�)

,

which gives the result (6.5.1).
As previously noted, the first variables I1(w), . . . , I�(w) are not identi-

cally distributed because of boundary effects. For the asymptotic results in
which we are interested in this section, this end effect may be ignored.

6.5.1. Gaussian approximation

Once the asymptotic variance is established, the normal approximation
follows from the Markov Renewal Central Limit Theorem. Calculating the
asymptotic variance is a little more involved than calculating the mean,
relying on the autocorrelation polynomial. To this purpose, we define 1
as the Card(A) × Card(A) matrix where all the entries equal 1. With �

denoting the Markovian transition matrix, put

Z =
∞∑

k=1

(� − µ1)k. (6.5.2)

Put

σ 2 = µ2
R(w)

(
(1 − 2�) + 2

Q′(1)

Q(1)
+ 2Z(w�, w1)

µ(w1)

)
.

We then have the following Central Limit Theorem.

Theorem 6.5.1. We have that, as n → ∞,

Rn(w) − nµR(w)√
n

D−→ N (0, σ 2).
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The main technique used to prove this theorem being the generation of
functions, no bound on the rate of convergence is obtained. Note also that
we do not have a corresponding result when mean and standard deviation
are estimated.

6.5.2. Poisson approximation

Similarly to the derivation of declumped counts, we can also derive a
Poisson approximation for the renewal count under the rare word condition
nµ(w) = O(1). Indeed this is very simple. Recall (6.2.3)

Yi(w) := 1I{w starts at position i in X}.

We can write, for i > �,

Ii(w) = Yi(w)
i−1∏

j=i−�+1

(1 − Ij (w))

= Yi(w)
i−1∏

j=i−�+1

(1 − Yj (w))

+ Yi(w)

⎛
⎝ i−1∏

j=i−�+1

(1 − Ij (w)) −
i−1∏

j=i−�+1

(1 − Yj (w))

⎞
⎠

= Ỹi(w) + Yi(w)

⎛
⎝ i−1∏

j=i−�+1

(1 − Ij (w)) −
i−1∏

j=i−�+1

(1 − Yj (w))

⎞
⎠

(6.5.3)

whereas Ii(w) = Yi(w)
∏i−1

j=1(1 − Yj (w)) if 1 ≤ i ≤ �. Note that a renewal
occurrence in the first � positions is a clump occurrence observed in the
finite sequence, and conversely. Thus we have

Rn(w) =
n−�+1∑

i=1

Ii(w)

= Ñ(w)+
n−�+1∑
i=�+1

Yi(w)

⎛
⎝ i−1∏

j=i−�+1

(1 − Ij (w)) −
i−1∏

j=i−�+1

(1 −Yj (w))

⎞
⎠.
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We have already derived a Poisson approximation for the number of clumps
Ñ (w) (see Section 6.4.5). Let us consider the difference

Rn(w) − Ñ (w) =
n−�+1∑
i=�+1

Yi(w)

⎛
⎝ i−1∏

j=i−�+1

(1 − Ij (w)) −
i−1∏

j=i−�+1

(1 −Yj (w))

⎞
⎠.

For a summand to be nonzero, first we need that Yi(w) = 1. Note that a
renewal always implies an occurrence, so that

i−1∏
j=i−�+1

(1 − Ij (w)) ≥
i−1∏

j=i−�+1

(1 − Yj (w)).

The product always being 0 or 1, the two products are different if and only
if
∏i−1

j=i−�+1(1 − Ij (w)) = 1 and
∏i−1

j=i−�+1(1 − Yj (w)) = 0. This implies
that there is no renewal between the positions i − � + 1 and i − 1, but that
there must be an occurrence not only at position i but also at some position
j between i − � + 1 and i − 1. This occurrence again cannot be a renewal,
so that it must be part of a larger clump; repeating this argument we see
that the occurrence at i must be part of a clump that started before position
i − � + 1. This implies that there had to be an occurrence of w somewhere
between i − 2� + 2 and i − �, and this occurrence is in the same clump as
the occurrence at i. Thus

P(Rn(w) �= Ñ(w)) ≤
n−�+1∑
i=�+1

i−�∑
j=i−2�+2

E(Yi(w)Yj (w))

≤ (n − 2� + 1)(� − 1)µ(w)2 1

µ(w1)
. (6.5.4)

This quantity will be small under the asymptotic framework nµ(w) = O(1).
Thus we may use the Poisson bound for the number of clumps just derived,
and only add an error term of order log n/n.

A different type of bound is also available. Put

� = �(w) = sup
t≥1

π (t)(w�, w1)

µ(w1)
. (6.5.5)

Recall ρ given in (6.1.5), and E(Rn(w)) is given in (6.5.1). Using the
Chen–Stein method, it is possible to prove the following theorem (see the
Notes).
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Theorem 6.5.2. We have that

dTV (L(Rn(w)),Po(E(Rn(w))) ≤
(

1 − e−E(Ñ(w))
)

D1

+ min

{
1,

√
2

eE(Ñ(w))

}
D2 + D3,

where

D1 = (2� − 5)(µ̃(w) + �µ(w)) − �(2� − 1)µ(w),
D2 = 2E(Rn(w))ρ�

(
2 + 2ρ� + ρ3�−2

)
,

D3 = (
1 + min

{
1, (E(Rn(w)))−1/2

})
(E(Rn(w)) − E(Ñ(w))).

It is also of interest to consider the case where n → ∞, for a sequence
of words w(n) of length �(n), where �(n) may grow with n. Indeed, under the
conditions

(i) limn→∞ E(Rn(w(n))) = λ < ∞
(ii) limn→∞ �(n)/n = 0,

the bound in Theorem 6.5.2 is of order O(�(n)/n), which converges to zero
for n → ∞. Thus Rn(w(n)) converges in distribution to a Poisson variable
with mean λ.

6.6. Occurrences and counts of multiple patterns

In biological sequence analysis often the distribution of the joint occur-
rences of multiple patterns rather than that of single words is of rele-
vance, for example when characterizing protein families via short motifs,
or when assessing the statistical significance of the count of degener-
ated words such as a(c or g)g(a or t), describing the family of words
{acga, agga, acgt, aggt}.

Since the exact distribution of the counts of multiple words is not easily
calculated in practice, we will focus in this section on the asymptotic point
of view.

Indeed, asymptotic results, similar to the above approximations, are
available for the distribution of joint occurrences and joint counts of multiple
patterns and we will present them in this section. As we will see, the main
new feature one has to consider is the possible overlaps between different
words from the target family.

Consider the family of q words {w1, . . . , wq}, where wr =
wr

1w
r
2 · · · wr

�r
. For two words w1 = w1

1w
1
2 · · · w1

�1
and w2 = w2

1w
2
2 · · ·w2

�2
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on A, we describe the possible overlaps between w1 and w2 by defining

P(w1, w2) := {p ∈ {1, . . . , �1 − 1} : w2
i = w1

i+p,

∀i = 1, . . . , (�1 − p) ∧ �2}.
Thus P(w1, w2) �= ∅ means that an occurrence of w2 can overlap an oc-
currence of w1 from the right, and P(w2, w1) �= ∅ means that w2 can
overlap w1 from the left. Note the lack of symmetry; for example, if
w1 = aaagaagaa and w2 = aagaatca, we have P(w1, w2) = {4, 7, 8}
and P(w2, w1) = {7}. To avoid trivialities, we make the following assump-
tion.

(A1) ∀r �= r ′, wr is not a substring of wr ′
.

Thus {w1, . . . , wq} is a reduced set of words. Again we model the sequence
{Xi}i∈Z as a stationary ergodic Markov chain.

We introduce the notation

� = max
1≤r≤q

�r (6.6.1)

�min = min
1≤r≤q

�r .

6.6.1. Gaussian approximation for the joint distribution of
multiple word counts

We assume the general model Mm, m ≤ �min − 2. We will show the asymp-
totic normality of the vector n−1/2(N(wr ) − N̂m(wr ))r=1,...,q :

1√
n

(
N(wr ) − N̂m(wr )

)
r=1,...,q

D−→ N (0, �m).

To prove this result, we use a multivariate martingale central limit
theorem. The estimated count N̂m(wr ) is given by (6.4.2). The nov-
elty consists here of deriving the asymptotic covariance matrix �m =
(�m(wr, wr ′

))r,r ′=1,...,q .
Suppose all the words wr have the same length � and m = � − 2 (the

maximal model) then the martingale technique (see Section 6.4.3) leads
to

��−2(wr, wr ′
) = µ(wr )µ(wr ′

)

(
1I{wr = wr ′ }

µ(wr )
− 1I{(wr )− = (wr ′

)−}
µ((wr )−)

− 1I{−(wr ) =− (wr ′
)}

µ(−(wr ))
+ 1I{−(wr )− =− (wr ′

)−}
µ(−(wr )−)

)
.
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Note that when r = r ′, this formula reduces to the asymptotic variance
σ 2

�−2(wr ) of Section 6.4.3.
More generally, for r �= r ′, the conditional approach (see Section 6.4.3)

leads to

�m(wr, wr ′
) =

∑
p∈P(wr,wr′ )
p≤�r−m−1

µ

(
(wr )(p)wr ′

)
+

∑
p∈P(wr′ ,wr )
p≤�r′−m−1

µ

(
(wr ′

)(p)wr

)

+ µ(wr )µ(wr ′
)

( ∑
a1,...,am

n(a1 · · · am•)n′(a1 · · · am•)

µ(a1 · · · am)

−
∑

a1,...,am+1

n(a1 · · · am+1)n′(a1 · · · am+1)

µ(a1 · · · am+1)
− n(wr ′

1 · · ·wr ′
m•)

µ(wr ′
1 · · · wr ′

m)

+ 1I{wr
1 · · ·wr

m = wr ′
1 · · ·wr ′

m} − n′(wr
1 · · ·wr

m•)

µ(wr
1 · · ·wr

m)

)
,

where n(·) denotes the number of occurrences inside wr and n′(·) denotes
the number of occurrences inside wr ′

. (When r = r ′, the formula reduces
to Equation (6.4.7).)

Note that, if one wants to study the total number of occurrences of a
word family {wr, r = 1, . . . , q}, we have

1√
n

(
q∑

r=1

N(wr ) −
q∑

r=1

N̂m(wr )

)
D−→ N

(
0,
∑
r,r ′

�m(wr, wr ′
)

)
.

Error bound for the normal approximation Similarly to Theorem
6.4.4, There is a bound on the approximation available when the parameters
do not have to be estimated. Let w = {w1, . . . , wq} be the word set and

N(w) = (N(w1), . . . , N(wq))

be the vector of word counts. Denote its covariance matrix by

Ln = Ln(w) = Cov(N(w)) = (
Cov(N(wi), N (wj )

)
i,j=1,...,q

.

A calculation similar to (6.4.1) shows that, for two different words u and v

of length �u and �v such that u is not a substring of v and v is not a substring
of u:

Cov(N(u), N(v))

=
∑

p∈P(u,v)

E(N(u(p)v)) +
∑

p∈P(v,u)

E(N(v(p)u)) − E(N(u))E(N(v))
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+ µ1(u)µ1(v)
n−�u−�v+1∑

d=1

(n − �u − �v + 2 − d)

×
[
�d (u�u

, v1)

µ1(v1)
+ �d (v�v

, u1)

µ1(u1)

]
.

In particular, Ln is invertible.
Some more notation is needed. Let H denote the collection of convex

sets in Rq , and let

β = β(w) = max
1≤r≤q

µ(wr ).

Recall, from the transition matrix diagonalization, α given in (6.1.1) and Qt

given in (6.1.2). Using Theorem 6.8.1, it is possible to derive the following
result.

Theorem 6.6.1. Assume the Markov model M1. Let Z ∼ N (E(N(w),Ln).
There are constants c and C1, C2, C3 such that, for any set w of q words
with maximal length �,

sup
A∈H

|P(N(w) ∈ A) − P(Z ∈ A)| ≤ c min
�≤s≤n/2

Bs,

where

Bs = 2q3/2(4s − 3)
∣∣L−1

n

∣∣1/2

+ 2q1/2n(2s − 1)(4s − 3)

(
q2
√∣∣L−1

n

∣∣)3 (
| log(q2

√∣∣L−1
n

∣∣)| + log n

)
+ C1n

∣∣L−1
n

∣∣1/2
β|α|s−�+1

+ C2

(
| log(q2

√∣∣L−1
n

∣∣)| + log n

)
(2s − 1)|α|s−�+1

+ C3

(
| log(q2

√∣∣L−1
n

∣∣)| + log n

)
(n − 2s + 1)nq4β2

∣∣L−1
n

∣∣ |α|s−�+1.

Here,

C1 = max

⎧⎨
⎩
∑

a,b∈A
µ(a)C1,1(a, b),

∑
a∈A

C1,2(a),
∑
a∈A

C1,3(a)

⎫⎬
⎭

C2 = n
∣∣L−1

n

∣∣ q4β(2β + 1)C1

C3 = max
a,b∈A

{∑
t≥2

|Qt (a, b)|
µ(a)

}
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and

C1,1(a, b) = max
x,y∈A

{ ∑
t≥2 or t ′≥2

|Qt (a, x)Qt ′(b, y)|
µ(x)

}
+
∑
t≥2

|Qt (a, b)|

C1,2(a) = max
b∈A

{∑
t≥2

|Qt (b, a)|
}

C1,3(a) = max
b∈A

{∑
t≥2

|Qt (a, b)|
µ(b)

}
.

The constant c is not easy to describe. Note that convergence on the class
of convex sets is not as strong as convergence in total variation. Indeed,
approximating discrete counts by a continuous multivariate variable might
not be expected to be very good in total variation distance.

6.6.2. Poisson and compound Poisson approximations for the joint
distribution of declumped counts and multiple word counts

We consider the model M1 since generalization to Mm follows the single
pattern case. To give a bound on the error for a Poisson process approxi-
mation for overlapping counts, define the following quantities for all r and
r ′ in {1, . . . , q}, and for all a ∈ A:

�r =
3�−�r−2∑

s=1

�s,

�r,r ′ =
�r+�r′−2∑

s=1

�s,

M(wr, wr ′
) =

⎧⎪⎨
⎪⎩

∑
p∈P(wr ,wr′ )

1

µ((wr ′)(�r−p))
if r �= r ′ ,

0 if r = r ′ ,
T1(wr, wr ′

) = (2n − �r − �r ′ + 2)µ(wr )µ̃(wr ′
)

×
(

�r ′(wr ′
�r′

, wr
1)

µ(wr
1)

+ M(wr ′
, wr )

)
,

T2(wr, wr ′
) = (n − �r + 1)

(
(� − 1)(µ̃(wr )µ(wr ′

) + µ(wr )µ̃(wr ′
))

+ (6� − 5)µ̃(wr )µ̃(wr ′
)

)
,
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T3(wr, wr ′
) = (n− �r + 1)µ(wr )µ(wr ′

)

(
�r,r ′(wr

�r
, wr ′

1 )

µ(wr ′
1 )

+ �r,r ′(wr ′
�r′

, wr
1)

µ(wr
1)

)

+ (n − �r + 1)(6� − 3�r − 3�r ′ + 2)

µmin
µ̃(wr )µ̃(wr ′

) (6.6.2)

+ (n − �r + 1)(� − 2)

µmin

(
µ(wr )µ̃(wr ′

) + µ(wr ′
)µ̃(wr )

)
+ (n − �r + 1)µ(wr )µ(wr ′

)
(
M(wr, wr ′

) + M(wr ′
, wr )

)
,

γ1(�r, �, a) =
∑

x,y∈A
µ(x) max

b∈A

∣∣∣∣∣∣
1

µ(b)

∑
(t,t ′) �=(1,1)

α
2�−�r

t α
2�−�r

t ′

α�
Qt (x, b)Qt ′(a, y)

−
|A|∑
t=2

α4�−2
t

α�
Qt (x, y)

∣∣∣∣∣ ,
γ2(�r, �) =

∑
x,y∈A

µ(x) max
a,b∈A

⎛
⎝ 1

µ(b)

∑
(t,t ′) �=(1,1)

∣∣∣∣∣α
2�−�r

t α
2�−�r

t ′

α�
Qt (x, b)Qt ′(a, y)

∣∣∣∣∣
+

|A|∑
t=2

∣∣∣∣α5�−3
t

α�
Qt (x, y)

∣∣∣∣
)

.

Here we choose as index set I = {1, 2, . . . , q(n + 1) − ∑q

s=1 �s}; it can
be written as the disjoint union I = ⋃q

r=1 Ir with

Ir =
{

(r − 1)(n + 1) −
r−1∑
s=1

�s + 1, . . . , r(n + 1) −
r∑

s=1

�s

}
. (6.6.3)

We define [i] by

[i] := i − (r − 1)(n + 1) +
r−1∑
s=1

�s with r = r(i) such that i ∈ Ir .

(6.6.4)

Joint distribution of declumped counts To apply Theorem 6.8.2, the
Bernoulli process Ỹ = (Ỹi)i∈I and the Poisson process Z = (Zi)i∈I are
given by

Ỹi = Ỹ[i](w
r ),

Zi ∼ Po(µ̃(wr )), (6.6.5)
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where r is such that i ∈ Ir . For i ∈ I , we choose the neighbourhood
Bi := {j ∈ I : |[j ] − [i]| ≤ 3� − 3}.

Then the following results can be proven. Recall the notations (6.6.2),
(6.6.5), and (6.6.1).

Theorem 6.6.2. Under Assumption (A1) we have

dTV

(
L(Ỹ ),L(Z)

) ≤ (n − �min + 1)(6� − 5)

(
q∑

r=1

µ̃(wr )

)2

+
∑

1≤r,r ′≤q

T1(wr, wr ′
)

+ |α|�
q∑

r=1

γ1(�r, �, w
r
�r

)(n − �r + 1)µ̃(wr ).

Corollary 6.6.3. Let (Zr )r=1,...,m be independent Poisson variables with
E(Zr ) = (n − �r + 1)µ̃(wr ). With the previous notation and under Assump-
tion (A1), we have

dTV

(
L
(
(Ñ(wr ))r=1,...,q

)
,L

(
(Zr )r=1,...,q

))
≤ (n − �min + 1)(6� − 5)

(
q∑

r=1

µ̃(wr )

)2

+
∑

1≤r,r ′≤q

T1(wr, wr ′
)

+ |α|�
q∑

r=1

γ1(�r, �, w
r
�r

)(n − �r + 1)µ̃(wr )

+
q∑

r=1

(�r − 1)
(
µ(wr ) − µ̃(wr )

)
.

The proof is a direct application of Theorem 6.8.2, similar to that in
Section 6.4.

Distribution of multiple word counts In a similar way a compound
Poisson approximation for the numbers of occurrences can be obtained.
Choose as index set

I =
{

1, 2, . . . , q(n + 1) −
q∑

s=1

�s

}
× {1, 2, . . .}.

To apply Theorem 6.8.2, the Bernoulli process Ỹ = (Ỹi,k)(i,k)∈I and the
Poisson process Z = (Zi,k)(i,k)∈I are now defined as

Ỹi,k = Ỹ[i],k(wr ),
Zi,k ∼ Po(µ̃k(wr )),
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where r = r(i) is such that i ∈ Ir ; Ir and [i] are given by (6.6.3) and
(6.6.4). For (i, k) ∈ I , the neighbourhood is still Bi,k := {(j, k′) ∈ I :
−(k′ + 3)(� − 1) ≤ [j ] − [i] ≤ (k + 3)(� − 1)}.

We make the following weak assumption on the overlap structure.

(A2) ∀r �= r ′ , wr is not a substring of any composed word in
C2(wr ′

).

Theorem 6.6.4. Under Assumptions (A1) and (A2), and with the notation
(6.6.2), we have

dTV

(
L(Ỹ),L(Z)

)
≤

∑
1≤r,r ′≤q

T2(wr, wr ′
) +

∑
1≤r,r ′≤q

T3(wr, wr ′
)

+ |α|�
q∑

r=1

γ2(�r, �)(n − �r + 1)µ̃(wr ).

The following corollary is easily obtained.

Corollary 6.6.5. Let (Zk)k≥1 be independent Poisson variables with ex-
pectation E(Zk) = ∑q

r=1(n − �r + 1)µ̃k(wr ); CP denotes the (compound
Poisson) distribution of

∑
k≥1 kZk . With the notation (6.6.2) and under

Assumptions (A1), (A2), we have

dTV

(
L
(

q∑
r=1

N(wr )

)
, CP

)
≤

∑
1≤r,r ′≤q

T2(wr, wr ′
) +

∑
1≤r,r ′≤q

T3(wr, wr ′
)

+ |α|�
q∑

r=1

γ2(�r, �)(n − �r + 1)µ̃(wr )

+ 2
q∑

r=1

(�r − 1)
(
µ̃(wr ) − µ(wr )

)
.

Again, empirically, the compound Poisson approximation may perform
better than the bound suggests, in the case of not so rare words.

Expected count of mixed clumps For the family w = (w1, . . . , wq) of
words it is also interesting to consider the number of mixed clumps of
occurrences. Let

Y c
i (w) =

q∑
r=1

Yi(w
r )

i−1∏
j=i−�r+1

{
1 −

q∑
r ′=1

Yj (wr ′
)

}
,

that is, Y c
i (w) = 1 if there is an occurrence of a word from the family w

at i, and if there is no previous occurrence of any word in w that overlaps
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position i. Thus the mixed clumps can be composed of any words from w,
whereas for Ỹi the clumps are composed of the same word. Note that, for
q = 1, Y c

i (w) = Ỹi(w1). Let

Nc(w) =
n−�min+1∑

i=1

Y c
i (w).

be the number of mixed clumps in the sequence. To calculate E(Nc(w)),
introduce the quantities

er,s =
∑

p∈P(wr ,ws )

µ
(
ws

(�s−�r+p+1)

)
µ(wr

�r
)

,

where the summands are the probabilities of observing the last (�s − �r + p)
letters of ws successively given that the last letter of wr has just occurred.
It can be shown that

E(Nc) = (n − � + 1)
q∑

r=1

yr, (6.6.6)

where (y1, . . . , yq) is the solution of the q × q linear system of equations
q∑

r=1

yrer,s = µ(ws), s = 1, . . . , q.

6.6.3. Competing renewal counts

Results related to the above for renewal counts are available. We consider
nonoverlapping occurrences in competition with each other. For example,
in the sequence cgtatattaaaaatattaga, the set of words tat, tta, and
aa has renewal occurrences of tat at position 3 and 14, of tta at position
7, and of aa at positions 10 and 12. The occurrences of tat at position 5, of
tta at position 16, and of aa at positions 9 and 11 are not counted because
they overlap with some already counted words.

Let

I
c
i (wr ) = 1I{a competing renewal of wr starts at position i in X1 · · · Xn},

and let

Rc
n(wr ) =

n−�r+1∑
i=1

I
c
i (wr )

be the number of competing renewals of wr in the sequence X1X2 · · · Xn.
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For the mean µc
R(wr ) = E(Rc

n(wr )), some more notation is needed. For
a matrix A denote its transposed matrix by AT , and, if A is a square matrix,
Diag(A) represents the vector of the diagonal elements of A. Define the
probabilities of ending a word for 1 ≤ j ≤ �r − 1 as

Pr (j ) = P(collect final j letters of wr |start with correct �r − j initial
letters of wr )

= µ(wr )

µ((wr )(�r−j ))
.

Then, in analogy to (6.2.2), the correlation polynomials are defined as

Qr,r ′(z) = 1 +
∑

p∈P(wr,wr′ )

zpPr ′(p).

Define the q × q matrix

�(z) = (Qr,r ′(z))r,r ′=1,...,q

and

�(z) = (�−1)(z)T

� = �(1).

Moreover put Kr = µ(wr
1)Pr (�r − 1) and define the vector

K = (K1, . . . , Kq)T .

Then the means µc
R(wr ), r = 1, . . . , q, are given by

(µc
R(w1), . . . , µc

R(wq))T = �K.

Gaussian approximation for the joint distribution of competing re-
newal counts The main problem in the multivariate normal approxima-
tion is to specify the covariance structure. To state the result, quite a bit of
notation is needed. Define

K̃r (z) = z�r−1Pr (�r − 1)

and the vector

K̃(z) = (K̃1(z), . . . , K̃q(z))T .

Denote by

Diag(K̃(z))
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the q × q diagonal matrix with the components of K̃(z) as diagonal
elements. Put

K̃ = K̃(1)

H (z) = d

dz
�(z)

H = H (1).

Define the vector

L = (�1K1, . . . , �qKq),

and the matrix

Z̃ = Z[ψ],

where Z is defined in (6.5.2), and for a matrix A the matrix A[ψ] is the q × q

matrix whose (r, r ′) entry is the element of A at the row corresponding to
the last letter wr

�r
of the word wr , and at the columns corresponding to the

first letter wr ′
1 of wr ′

. Define the variance–covariance matrix

C = 1

2

(
�K(�K − 2HK − 2�L)T + (�K − 2HK − 2�L)(�K)T

)
+ Diag(�K)Z̃Diag(K̃)�T +�Diag(K̃)Z̃T Diag(�K) + Diag(�K).

Now we have all the ingredients to state the normal approximation.

Theorem 6.6.6. Under Assumption (A1) we have(
Rc

n(wr ) − nµc
R(wr )√

n

)
r=1,...,q

D−→ N (0, C).

In the case of a single pattern, this theorem reduces to Theorem 6.5.1.

Poisson approximation for the renewal count distribution For a Pois-
son approximation, the problem can be reduced to declumped counts, as
in the case of a single word. For a Poisson process approximation (and,
following from that, a Poisson approximation for the counts), we want to
assess P(Ic

i (wr ) �= Ỹi(wr )). First consider P(Ic
i (wr ) = 1, Ỹi(wr ) = 0). Note

that, from (6.5.3), for i > �r , to have I
c
i (wr ) = 1, Ỹi(wr ) = 0, there must

be an occurrence of wr at position i, and this occurrence cannot be the start
of a clump of wr , so that there must be an overlapping occurrence of wr at
some position j = i − �r + 1, . . . , i − 1. Moreover, this occurrence cannot
be a competing renewal, so there must be another word wr ′

overlapping
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this occurrence. Hence we may bound

P(Ic
i (wr ) = 1, Ỹi(w

r ) = 0)

≤ µ2(wr )
∑

p∈P(wr )

1

µ((wr )(�r−p))

q∑
r ′=1

µ(wr ′
)M(wr ′

, wr ),

with M given in (6.6.2). For i ≤ �r the above bound is still valid (the
probability is even smaller since there is not always enough space for
these clumps to occur). Second, consider P(Ic

i (wr ) = 0, Ỹi(wr ) = 1). For
I
c
i (wr ) = 0, Ỹi(wr ) = 1 to occur, there must be an occurrence of wr at

position i, overlapped by an occurrence of a different word wr ′
, so that we

may bound

P(Ic
i (wr ) = 0, Ỹi(w

r ) = 1) ≤ µ(wr )
q∑

r ′=1

µ(wr ′
)M(wr ′

, wr ).

Again, for i ≤ �r the above bound remains valid. Thus we have

P(Ic(wr ) �= Ỹ (wr )) ≤ (n − �r + 1)µ(wr )
q∑

r ′=1

µ(wr ′
)M(wr ′

, wr )

×
⎛
⎝1 + µ(wr )

∑
p∈P(wr )

1

µ((wr )(�r−p))

⎞
⎠ .

Hence

P(Ic �= Ỹ ) ≤
q∑

r=1

(n − �r + 1)µ(wr )
q∑

r ′=1

µ(wr ′
)M(wr ′

, wr )

×
⎛
⎝1 + µ(wr )

∑
p∈P(wr )

1

µ((wr )(�r−p))

⎞
⎠ .

Thus we obtain as a corollary of Theorem 6.6.2

Corollary 6.6.7. Under Assumption (A1) and with the notation (6.6.2)
and (6.6.5), we have

dTV

(
L(Ic),L(Z)

)≤ (n−�min+1)(6� − 5)

(
q∑

r=1

µ̃(wr )

)2

+
∑

1≤r,r ′≤q

T1(wr, wr ′
)

+ |α|�
q∑

r=1

γ1(�r, �, w
r
�r

)(n − �r + 1)µ̃(wr )
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+
q∑

r=1

(n − �r + 1)µ(wr )
q∑

r ′=1

µ(wr ′
)M(wr ′

, wr )

×
⎛
⎝1 + µ(wr )

∑
p∈P(wr )

1

µ((wr )(�r−p))

⎞
⎠ .

Note that the order of the approximation is the same as in Theorem 6.6.2; the
additional error terms are comparable to T1 and T2, respectively. A Poisson
approximation for the competing renewal counts follows immediately.

Poisson approximation for competing renewal counts Alternatively to
the above approach, a Poisson approximation similar to Theorem 6.5.2 for
the number of competing renewals can be derived. Recall E(Nc(w)) from
(6.6.6), and � from (6.5.5).

Theorem 6.6.8. We have that

dTV

(
L(

q∑
r=1

Rc
n(wr )),Po

(
q∑

r=1

E(Rc
n(wr ))

))

≤ (
1 − e−E(Nc(w))

)
D1 + min

{
1,

√
2

eE(Nc(w))

}
D2 + D3,

where

D1 = (2� − 5)

(
E(Y c

i (w)) + �

q∑
r=1

µ(wr )

)
− �(2�min − 1)

q∑
r=1

µ(wr ),

D2 = 2E(Nc(w))ρ�
(
2 + 2ρ� + ρ3�−2

)
,

D3 = (
1 + min

{
1, (E(Nc(w)))−1/2

})( q∑
r=1

E(Rc
n(wr )) − E(Nc(w))

)
.

It is again interesting to consider the case for which n → ∞, for a
sequence of words w(n) = (w1,n, . . . , wq,n) of maximal length �(n), where
�(n) may grow with n. It is possible to show that under the conditions

(i) limn→∞
∑q

r=1 E(Rc
n(wr,n)) = λ <∞

(ii) limn→∞ �(n)/n = 0,
the bound in Theorem 6.5.2 is of order O

(
�(n)/n

)
, so that

∑q

r=1 Rc
n(wr,n)

converges in distribution to a Poisson variable with mean λ.
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6.7. Some applications to DNA sequences

6.7.1. Detecting exceptional words in DNA sequences

We call an exceptional word a word w that appears in an observed sequence
with a significantly high or low frequency. This significance is measured
under a given probabilistic model by the p-value P(N(w) ≥ Nobs(w)) using
the distribution of the count N(w). Depending on the sequence length and
on the expected count of the word it is often not realistic to use the exact
distribution of the count since it is time consuming to calculate. In this sec-
tion, we will first give some elements of comparison between the p-values
obtained using the exact distribution (Section 6.4.1) and the ones obtained
using the Gaussian approximation (Section 6.4.3) or the compound Pois-
son approximation (Section 6.4.5) or using the large deviation techniques
(Section 6.4.6). For convenience, we will manipulate scores from R of
the form φ−1(p-value) rather than the p-values, where φ is the cumulative
distribution function of the standard Gaussian distribution (probit normal-
ization). Exceptionally frequent words would then have high positive scores
whereas exceptionally rare words would have high negative scores.

Quality of the approximate p-values For each word of length 3, 6,
and 9 of the complete genome of the Lambda phage (� = 48 502), we
can compare the exact scores under the Bernoulli model M0 with the
approximate ones using either the Gaussian approximation or the compound
Poisson distribution (the parameters are assumed to be known). The results
are presented on Figure 6.1 together with the approximate scores obtained
with the large deviation approach: the x-axis of each plot is for the exact
scores of 3-words (first row), 6-words (second row), and 9-words (last row).
The y-axis is for the scores approximated with the Gaussian approximation
(first column), the compound Poisson distribution (second column), and
the large deviation approach (last column). Due to numerical errors the
exact score of 5 words of length 3 has not been calculated successfully.
We observe that the accuracy of the Gaussian approximation decreases as
the length of the words increases (rare words). The compound Poisson
approximation is surprisingly satisfactory even for short (frequent) words.
This agrees with the evolution of the total variation distance between the
exact distribution of the count and both approximate distributions; when
the expected count of the word is close to 100 or greater then the accuracy
of the Gaussian approximation is very good. The large deviation approach
also seems to provide a good approximation for the exceptional words.
However, it cannot manage with words having an estimated expected count
too close to the observed one. The p-value is then set to 1/2 in this case
and the flatness of the curves is an artefact. An important feature is that
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� = 3

� = 6

� = 9

G CP LD

Figure 6.1. Normalized p-values of the counts of all the words of length
3, 6, and 9 in the genome of the Lambda phage (� = 48 502). Comparison
of the Gaussian, the compound Poisson, and the large deviation approxi-
mations (y-axis) with the exact scores (x-axis).

every method to calculate or to approximate the p-values seems to classify
the words in the same way; the ranking of the scores is almost the same.
Moreover, in this example, the three methods agree on the fact that there
are no exceptionally rare words of length 9.

Influence of the model Whatever the word count distribution used to
calculate the normalized p-value, the choice of the model, in particular the
order m of the Markov chain, is important to interpreting the exceptionality
of a given word. Using the model Mm means taking into account the 1-
to (m + 1)-letter word composition of the sequence. Therefore, the greater
the order m of the model, the closer the random sequences will be to
the observed sequence, and fewer unexpected words will be found. As an
example, Figure 6.2 shows the discrepancy of the scores for the 8-letter
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Figure 6.2. Boxplots of the 8-letter word scores in the complete genome
of E. coli under models M0 to M7.

words in the complete genome of E. coli (� = 4 638 858) under models
M0 to M6. For each model, the box contains half of the 65 536 scores,
the horizontal line is drawn through the box at the median of the data, the
upper and lower ends of the box are at upper and lower quartiles (25% and
75%), and vertical lines go up and down from the box to the extremes of
the data, except for the outliers, which are plotted by themselves. Here the
outliers are the scores that are separated from the box by at least three times
the inter-quartile range (height of the box). In models M7 and higher, all
the 8-letter words have a null score since their counts are included in these
models: they are expected as they occur. Model M6 is then the maximal
model for words of length 8.

To analyse the frequency of an �-letter word, the maximal model is
of order m = � − 2; in this model the exceptionality of a word of length
� cannot be explained by an unexpected subword, since all the subword
frequencies are included into the maximal model. On the contrary, in small
models such contamination by exceptional subwords may occur. As an il-
lustration let us consider the following example: Figure 6.3 compares the
scores (using the Gaussian approximation) of all the 256 4-letter words
in the complete Lambda genome under the models M1 (x-axis) and M2
(y-axis). The most overrepresented 4-letter word under M1 is ccgg, and it
remains significantly overrepresented under M2 while taking into account
the counts of ccg and cgg. However, many words lose their exceptionality
when the order of the model increases. For example, gctg loses its excep-
tionality as soon as one takes into account the fact that ctg occurs 1169
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Figure 6.3. Scores of the 4-letter words in the Lambda genome under M1
(x-axis) and M2 (y-axis).

times and is thus a significantly frequent 3-letter word (see Table 6.2). The
model M2 says that the 406 occurrences of gctg are expected according to
the 3-letter word composition of the sequence: gctg is expected 394 times
under M2 (see Table 6.1). Its exceptionality under M1 (expected only 255
times) is an artefact due to the important overrepresentation of its subword
ctg. The number of times that we see gctg is not surprising given the num-
ber of occurrences of ctg. This is what we call a contamination. Another
such example is ctag: it is exceptionally rare under M1 but not under M2.
On the other hand, some exceptionality may be hidden in small models and
be revealed in higher models, leading to very interesting interpretations.
As an example, ccat is not exceptional under M1 and becomes one of the
most overrepresented words under M2. If we look at its two subwords of
length 3, cca and cat are slightly underrepresented (see Table 6.2). Given
their low frequency, ccat is expected only 191 times under M2, which is
is significantly less than the 218 observed occurrences. So, cca and cat
are slightly avoided in the sequence but they are preferentially overlapping
in the sequence. This is more pronounced for tagt which is composed of
the most avoided 3-word tag and is declared underrepresented under M1
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Table 6.1. Statistics of some 4-letter words in the Lambda genome under
the models M1 and M2. The ranks of the scores are obtained while sorting
the 256 scores by increasing order.

Model M1 Model M2

w N (w) N̂1(w) σ1(w) score rank N̂2(w) σ2(w) score rank

ctag 14 101.8 9.5 −9.21 2 28.7 4.7 −3.10 27
tagt 71 104.0 9.6 −3.42 57 47.3 5.8 4.07 246
ccat 218 191.1 12.6 2.12 180 168.6 10.0 4.94 253
gctg 406 255.2 14.3 10.52 254 394.6 11.9 0.96 170
ccgg 328 169.7 12.0 13.16 256 273.5 11.6 4.68 252

Table 6.2. Statistics of some 3-letter words in the
Lambda genome under model M1. The ranks of the
scores are obtained while sorting the 64 scores by
increasing order.

w N (w) N̂1(w) σ1(w) score rank

tag 217 481.2 17.6 −15.04 1
cat 803 869.4 21.6 −3.07 18
cca 675 706.5 19.9 −1.58 25
agt 595 590.2 19.1 0.25 34
gct 856 806.6 20.7 2.39 46
cgg 963 772.1 21.0 9.10 60
ccg 884 684.3 19.7 10.15 61
ctg 1169 802.4 20.8 17.63 63

(contamination in fact), but it seems that there is an important constraint
for these occurrences of tag to be followed by a t.

Utility of models Mm 3 Coding DNA sequences are composed of suc-
cessive trinucleotides called codons. Each base in the sequence is associated
to a phase k in {1, 2, 3} depending on its position in the associated codon. In
the general model Mm 3, the transition probabilities of a letter depend on
its phase and word occurrences can be analysed separately for each phase or
for all phases together (see p. 296); note that N(w) = ∑

k N(w, k). Recall
that the phase of an occurrence is by convention in this chapter the phase
of its last letter. It is well known to biologists that there exists a bias in
the codon usage: codons that code for the same amino acid are not used
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Figure 6.4. Scores of the 3-letter words in 36 genes of E. coli under the
models M1 (x-axis) and M1 3 (y-axis).
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Figure 6.5. Boxplots of the scores of the 3-letter words for each phase
and for all phases in 36 genes of E. coli under the model M1 3.

uniformly. The following analysis illustrates the importance of taking the
3-letter word composition on each phase into account, in particular the
codon composition (3-words on phase 3). Let us consider 36 genes of E.
coli (� = 44 856) and analyse the trinucleotide frequency. Figure 6.4 shows
that the majority of the trinucleotides have the same behaviour under M1 or
M1 3; however, some trinucleotides are less exceptional when one takes the
phase into account. If we now calculate the scores of the trinucleotides on
phase 1, on phase 2, and on phase 3 under M1 3, we see that the main excep-
tional trinucleotides are the ones on phase 3: the codons. Figure 6.5 presents
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Figure 6.6. Scores of the 4-letter words on phase 1 in 36 genes of E. coli
under the models M1 3 (x-axis) and M2 3 (y-axis).

the discrepancy of theses scores: codons are much more exceptional than
the trinucleotides on phases 1 and 2.

Figure 6.6 compares the scores of the 4-words on phase 1 under M1 3
(the codon composition is not taken into account) and M2 3 (the codon
composition is taken into account). Note that a 4-word on phase 1 starts
with a codon. The three most overrepresented codons are ctg, cag, and
tgg. This overrepresentation is responsible of the exceptionality of ctgg,
tggt, tggc, and cagc. The overrepresentation of cagg seems to be a
strong constraint since it is still exceptional given the high frequency of
cag. When analysing coding sequences, to be sure that exceptional words
that are not contaminated by the codon usage will be found, the minimal
model to use is the model M2 3.

6.7.2. Sequencing by hybridization

As a slightly more involved example of how statistics and probability
on words are applied in DNA sequence analysis, we describe a problem
related to sequencing by hybridization. Sequencing by hybridization is an
approach to determine a DNA sequence from the unordered list of all �-
tuples contained in this sequence; typical numbers for � are � = 8, 10, 12. It
is based on the fact that DNA nucleotides bind or hybridize with each other:
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a and t hybridize, and c and g hybridize. The DNA strands have a polarity
(5’, 3’), and hybridizing sequences must be of opposite polarity. To avoid
introducing notation to show polarity, we write complementary strands in
the reverse direction. For example, the sequence tgtgtgagtg hybridizes
with acacactcac. In a sequencing chip, all 4� possible oligonucleotides
(“probes”) of length � are attached to the surface of a substrate, each
fragment at a distinct location.

To use an SBH chip, the single-stranded target DNA is amplified, la-
belled fluorescently, and exposed to the sequencing chip. The probes on
the chip will hybridize to a copy of the single-stranded target DNA if the
substring complementary to the probe exists in the target. These probes
are then detected with a spectroscopic detector. For example, if � = 4, the
sequence tgtgtgagtg will hybridize to the probes acac, actc, caca,
cact, ctca, and tcac.

As chips can be washed and used again, and due to automatization,
this method is not only fast but also inexpensive. There are still technical
difficulties in producing an error-free chip; moreover the SBH image may
be difficult to read. We remark that the microarray industry grew out of
attempts to make SBH technology practical. However, even if these sources
of errors are eliminated, a major drawback of the SBH procedure is that
more than one sequence may produce the same SBH data. For example, if
� = 4, the sequence acactcacac will hybridize to the same probes as the
sequence acacactcac.

To control this error resulting from nonunique recoverability, we are
interested in an estimate for the probability that a sequence is uniquely
recoverable. This probability will depend on the probe length �, on the
length n of the target sequence, and on the frequencies of the different
nucleotides, a, c, g, and t, in the sequence. Furthermore we need to bound
the error made in estimating the probability of unique recoverability in
order to make assertions about the reliability of the chip.

As a simplification, we assume that we not only know the set of all �-
tuples in the sequence but also their multiplicity (but not the order in which
they occur). This multiset is called the �-spectrum of the sequence. In the
sequel, unique recoverability is understood to mean unique recoverability
of a sequence from its �-spectrum.

Unique recoverability from the �-spectrum can be characterized using
the de Bruijn graph whose vertices are the (� − 1)-tuples in the sequence.
Two vertices v and w are joined by a directed edge from v to w if the �-
spectrum contains an �-tuple for which the first (� − 1) nucleotides coincide
with v and the last (� − 1) nucleotides coincide with w. A sequence is
uniquely recoverable from its �-spectrum if and only if there is a unique
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(Eulerian) path connecting all the vertices. It was shown that there are
exactly three structures that prevent unique recoverability:

1. Rotation. The sequence starts and ends with the same (� − 1)-tuple.
In this case, the de Bruijn graph is a cycle, and any vertex could be
chosen as the starting point.

2. Transposition with a three-way repeat. If an (� − 1)-tuple occurs
three times in the sequence, then the de Bruijn graph has two loops at
this vertex, and the order in which these loops are passed is not fixed.

3. Transposition with two interleaved pairs of repeats. There are two
“interleaved” pairs of (� − 1)-tuple repeats, that is in the de Bruijn
graph there are two vertices x and y connected by a path of the
form . . . x . . . y . . . x . . . y . . . , where we described a path connecting
all the vertices by listing the vertices in the order they are used in the
path. This implies that there are two ways of going from x to y in the
graph.

Example 6.7.1. The sequence acacactcac possesses as 4-spectrum the
multiset {acac, acac, caca, cact, actc, ctca, tcac}. The competing se-
quence acactcacac has the same 4-spectrum. The de Bruijn graph for the
sequence acacactcac has as vertices aca, cac, act, ctc, and tca. There
are two directed edges from aca to cac, and one directed edge each from
cac to aca, from cac to act, from act to ctc, from ctc to tca, and from
tca to cac. The competing sequence acactcacac has the same de Bruijn
graph. For the sequence acacactcac, a path connecting all vertices is

aca, cac, aca, (cac, act, ctc, tca), cac.

The alternative path

aca, (cac, act, ctc, tca), cac, aca, cac,

also connecting all the vertices, corresponds to the sequence, acactcacac,
with the same 4-spectrum.

Thus unique recoverability can be described in terms of possibly over-
lapping repeats of (� − 1)-tuples within a single sequence. We use the model
M0. For a sequence to be uniquely recoverable, the event of an (� − 1)-
tuple repeat should be rare. This implies that we consider the occurrence
of (� − 1)-tuples under a Poisson regime. (Note that we are interested in
the configuration in which the repeats occur; hence we need a Poisson
process approximation for the process of repeats rather than a Poisson ap-
proximation for the number of repeats.) If repeats are rare, then three-way
repeats are negligible, and so is the probability that a sequence starts and
ends with the same (� − 1)-tuple. After bounding these probabilities, we
thus restrict our attention to interleaved pairs of repeats. Under the Poisson
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regime, if there are k pairs of repeats, then the occurrences of these repeats
are discrete uniform. Additional randomization makes the position of the
repeats continuously uniform, so that all orderings of these pairs will be
approximately equally likely. This allows the application of a combinatorial
argument using Catalan numbers to obtain that the number of interleaved
pairs of repeats, if k repeats are present, is approximately 2k/(k + 1)!. If
λ is the expected number of repeats of �-tuples in a single sequence, we
hence get, for the probability P�, that X1X2 . . . Xn is uniquely recoverable
from its �-spectrum,

P� ≈ e−λ
∑
k≥0

(2λ)k

k!(k + 1)!
.

The Chen–Stein method for Poisson approximation provides explicit
bounds for the error terms in this approximation, as follows.

In the sequence X1 . . . Xn of independent identically distributed letters,
let p = ∑

a∈A µ2(a) be the probability that two random letters match. We
write t for � − 1, as we are interested in (� − 1)-repeats. Again we have to
declump. We define Yi,i = 0 for all i, and

Yi,j =
{

1I{X1 · · ·Xt = Xj+1 · · ·Xj+t} if i = 0
(1 − 1I{Xi = Xj })1I{Xi+1 · · ·Xi+t = Xj+1 · · · Xj+t} otherwise.

Thus Yi,j = 1 if and only if there is a leftmost repeat starting after i and
j . Put I = {(i, j ), 1 ≤ i, j ≤ n − � + 1}. A careful analysis yields that the
process Y = (Yα)α∈I is sufficient to decide whether a sequence is uniquely
recoverable from its �-spectrum (although Y contains strictly less informa-
tion than the process of indicators of occurrences).

For a Poisson process approximation, we first identify the expected
number λ of leftmost repeats. If α = (i, j ) does not have self-overlap, that
is, if j − i > t , then

E(Yα) =
{

pt if i = 0
(1 − p)pt otherwise.

Hence the expected number λ∗ of repeats without self-overlap is

λ∗ =
(

n − 2t

2

)
(1 − p)pt + (n − 2t)pt .

If α does have self-overlap, then, in order to have a leftmost repeat at
α, for indices in the overlapping set, two matches are required, and for
indices in the nonoverlapping set, one match is required. Let d = j − i;
then E(Yα) depends on the decomposition of t + d into a quotient q of d

and a remainder r (such that t + d = qd + r): if pq is the probability that
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q random letters match, then

E(Yα) =
{

pr
q+1p

d−r
q if i = 0

(pq − pq+1)rpd−r
q otherwise.

If λ∗ is bounded away from 0 and infinity, which corresponds to having
t = 2log1/p(n) + c for some constant c, then it can be seen that

λ ≈ n2

2
(1 − p)pt .

Under the regime that λ is bounded away from 0 and infinity, here is a
general result. Let µmax = maxa µ(a) be the probability of the most likely
letter.

Theorem 6.7.2. Let Z ≡ (Zα)α∈I be a process with independent Poisson
distributed coordinates Yα , with E(Zα) = E(Yα), α ∈ I . Then

dTV(Y , Z) ≤ b(n, t),

where the error term b(n, t) is such that

b(n, t) ∼
{

16λ2(t/n) in the uniform case
nµt

max in the nonuniform case.

6.8. Some probabilistic and statistical tools

6.8.1. Stein’s method for normal approximation

Stein’s method for the normal approximation makes it possible to obtain
multivariate normal approximations with a bound on the error in the distance
of suprema over convex sets, as follows.

Let H denote the class of convex sets in Rd . Let Yj , j = 1, . . . , n be
random vectors taking values in Rd , and let W = ∑n

j=1 Yj be the vector

of sums. Assume there is a constant B such that |Yj | := ∑d
i=1 |Y(j,i)| ≤ B.

Let Z ∼ N (0, Id ) have the d-dimensional standard multivariate normal
distribution.

Theorem 6.8.1. Let Si andNi be subsets of {1, . . . , n}, such that i ∈ Si ⊂
Ni , i = 1, . . . , n. Assume that there exist constants D1 ≤ D2 such that

max{Card(Si), i = 1, . . . , n} ≤ D1

and

max{Card(Ni), i = 1, . . . , n} ≤ D2.
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Then, for d = 1 there exists a universal constant c such that

sup
x∈R

|P(W ≤ x) − P(Z ≤ x)|

≤ c{2D2B + n(2 +
√

E(W 2))D1D2B
3 + χ1 + χ2 + χ3}.

For d ≥ 1 there exists a constant c depending only on the dimension d such
that

sup
A ∈H

|P(W ∈ A) − P(Z ∈ A)| ≤ c{2
√

dD2B + 2
√

dnD1D2B
3(| log B|

+ log n)+χ1+(|log B|+ log n)(χ2+χ3)},
where

χ1 =
n∑

j=1

E

∣∣∣∣∣∣E
⎛
⎝Yj

∣∣∣∣∣
∑
k �∈Sj

Yk

⎞
⎠
∣∣∣∣∣∣

χ2 =
n∑

j=1

E

∣∣∣∣∣∣∣E
⎛
⎜⎝Yj

⎛
⎝∑

k∈Sj

Yk

⎞
⎠

T
⎞
⎟⎠ − E

⎛
⎜⎝Yj

⎛
⎝∑

k∈Sj

Yk

⎞
⎠

T ∣∣∣∣∣
∑
l �∈Nj

Yl

⎞
⎟⎠
∣∣∣∣∣∣∣

χ3 =

∣∣∣∣∣∣∣I −
n∑

j=1

E

⎛
⎜⎝Yj

⎛
⎝∑

k∈Sj

Yk

⎞
⎠

T
⎞
⎟⎠
∣∣∣∣∣∣∣ .

Note that there are no explicit assumptions on the mean vector and the
variance–covariance matrix; however, for a good approximation it would be
desirable to have the mean vector close to zero, and the variance–covariance
matrix close to the identity.

6.8.2. The Chen–Stein method for Poisson approximation

The Chen–Stein method is a powerful tool for deriving Poisson approxi-
mations and compound Poisson approximations in terms of bounds on the
total variation distance. For any two random processes Y and Z with values

in the same space E, the total variation distance between their probability
distributions is defined by

dTV(L(Y ),L(Z)) = sup
B⊂E,measurable

|P(Y ∈ B) − P(Z ∈ B)|

= sup
h:E→[0,1],measurable

|E(h(Y )) − E(h(Z))| .

The following general bound on the distance to a Poisson distribution is
available.
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Theorem 6.8.2. Let I be an index set. For each α ∈ I , let Yα be a Bernoulli
random variable with pα = P(Yα = 1) > 0. Suppose that, for each α ∈
I , we have chosen Bα ⊂ I with α ∈ Bα . Let Zα, α ∈ I , be independent
Poisson variables with mean pα . The total variation distance between the
dependent Bernoulli process Y = (Yα, α ∈ I ) and the Poisson process Z =
(Zα, α ∈ I ) satisfies

dTV

(
L(Y ),L(Z)

) ≤ b1 + b2 + b3,

where

b1 =
∑
α∈I

∑
β∈Bα

pαpβ (6.8.1)

b2 =
∑
α∈I

∑
β∈Bα,β �=α

E(YαYβ) (6.8.2)

b3 =
∑
α∈I

E
∣∣E {

Yα − pα|σ (Yβ, β /∈ Bα)
}∣∣ . (6.8.3)

Moreover, if W = ∑
α∈I Yα and λ = ∑

α∈I pα < ∞, then

dTV(L(W ), Po(λ)) ≤ 1 − e−λ

λ
(b1 + b2) + min

(
1,

√
2

λe

)
b3.

Note that b3 = 0 if Yα is independent of σ (Yβ, β /∈ Bα}. We think of Bα

as a neighbourhood of strong dependence of Yα .
One consequence of this theorem is that for any indicator of an event,

that is for any measurable functional h from E to [0, 1], there is an error
bound of the form |E(h(Y )) − E(h(Z))| ≤ dTV(L(Y ),L(Z)). Thus, if T (Y )
is a test statistic then, for all t ∈ R,

|P (
T (Y ) ≥ t

) − P
(
T (Z) ≥ t

) | ≤ b1 + b2 + b3,

which can be used to construct confidence intervals and to find p-values
for tests based on this statistic.

Note that this method can also be used to prove compound Poisson
approximations. For multivariate compound Poisson approximations it is
very convenient. For univariate compound Poisson approximations, better
bounds are at hand, as will be illustrated in the next section.

6.8.3. Stein’s method for direct compound Poisson approximation

A drawback of the point process approach to compound Poisson approx-
imation is that the bounds are not very accurate. Instead it is possible to
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set up a related method for obtaining a compound Poisson approximation
directly, in the univariate case.

Denote by CP(λ, ν) the compound Poisson distribution with parameters
λ and ν, that is, the distribution of the random variable

∑
k≥1 kMk , where

(Mk)k≥1 are independent, and Mk ∼ Po(λνk), k = 1, 2, . . .

The particular case where λ = nφ(1 − p) and νk = pk−1(1 − p) for
some φ > 0 and 0 < p < 1, is called the Polya–Aeppli distribution.

Again, let I be an index set, and let

W =
∑
α∈I

Vα,

where (Vα)α∈I are nonnegative integer-valued random variables. Similarly
to the Poisson case, for each α ∈ I decompose the index set into disjoint
sets as

I = α ∪ Sα ∪ Wα ∪ Uα.

Here, Sα would correspond to the set of indices with strong influence on α,
Wα would correspond to the set of indices with weak influence on α, and
Uα collects the remaining indices. Put

Sα =
∑
β∈Sα

Vα

Wα =
∑

β∈Wα

Vα

Uα =
∑
β∈Uα

Vα.

Then, for α ∈ I ,

W = Vα + Sα + Wα + Uα.

Define the canonical parameters (λ, ν) of the corresponding compound
Poisson distribution by

λνk = 1

k

∑
α∈I

E{Vα1I(Vα + Sα = k)}, k ≥ 1

λ =
∑
k≥1

kνk. (6.8.4)

Put

q
(α)
jk = P(Vα = j, Sα = k)

mi,1
, j ≥ 1, k ≥ 0,
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and

m1,k = E(Vα)

m1 = E(W ) =
∑
α∈I

m1,α.

Similarly to the Poisson case, we shall need the quantities

δ1 =
∑
α∈I

m1,α

∑
j≥1

∑
k≥1

q
(α)
jk E

∣∣∣∣P(Vα = j, Sα = k|Wα)

P(Vα = j, Sα = k)
− 1

∣∣∣∣
δ2 = 2

∑
α∈I

E {VαdTV(L(Wα|Vα, Sα);L(Wα)}

δ3 =
∑
α∈I

{E(VαUα) + E(Vα)E(Vα + Sα + Uα)} .

Then, roughly, δ3 corresponds to b1 + b2 in the Poisson case, whereas δ1

and δ2 correspond to b3 in the Poisson case.
The following result can be shown to hold.

Theorem 6.8.3. There exist constants H0 = H0(λ, ν), H1 = H1(λ, ν),
independent of W , such that, with (λ, ν) given in (6.8.4),

dTV(L(W ), CP(λ, ν)) ≤ H0 min(δ1, δ2) + H1δ3,

and

H0, H1 ≤ min(1, (λν1)−1)eλ.

If in addition

kνk ≥ (k + 1)νk+1, k ≥ 1, (6.8.5)

then, with γ = λ(ν1 − 2ν2),

H0 ≤ min

{
1,

1√
γ

(
2 − 1√

γ

)}

H1 ≤ min

{
1,

1√
γ

(
1

4γ
+ log+(2γ )

)}
.

An important special case is the declumped situation, that is, W can be
written as

W =
∑
α∈I

∑
k≥1

k1Iαk,

where

1Iαk = 1I(α is the index of the representative of a clump of size k).
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For α ∈ I, k ∈ N, let B(α, k) ⊂ I × N contain {α} × N; this set can be
viewed intuitively as the neighbourhood of strong dependence of (α, k).

The canonical parameters are now

λ =
∑
α∈I

∑
k≥1

E(1Iαk)

νk = λ−1
∑
α∈I

E(1Iαk). (6.8.6)

For example, if 1Iαk = Ỹi,k , then W = N(w), and the canonical parame-
ters are (n − � + 1)µ̃k, k ≥ 1, and λ̃ = E(Ñ (w)), so that the approximating
distribution is as before, L(

∑
k≥1 kZk) with Zks independent Poisson vari-

ables with parameters (n − � + 1)µ̃k . Thus it is the same distribution as in
Corollary 6.4.8.

Similarly we shall need, as in the Poisson case, the quantities

b∗
1 =

∑
(α,k)∈I×N

∑
(β,k′)∈B(α,k)

k′kE(1Iαk)E(1Iβk′)

b∗
2 =

∑
(α,k)∈I×N

∑
(β,k′)∈B(α,k)\{(α,k)}

k′kE(1Iαk 1Iβk′)

b∗
3 =

∑
(α,k)∈I×N

kE
∣∣E{1Iαk − E(1Iαk)|σ (1Iβk′, (β, k′) �∈ B(α, k)}∣∣ .

The following result holds.

Theorem 6.8.4. With the parameters as in (6.8.6), we have that

dTV(L(W ), CP(λ, ν)) ≤ b∗
3H0 + (b∗

1 + b∗
2)H1.

6.8.4. Moment-generating function

Here is a short outline of moment-generating functions. The moment-
generating function M of a random variable X is defined as

�X(t) = E(etX).

So, if X has a discrete distribution p, we have that

�X(t) =
∑

x

etxp(x).

If the moment-generating function exists for all t in an open interval con-
taining zero, it uniquely determines the probability distribution.

In particular, under regularity conditions the moments of a ran-
dom variable can be obtained via the moment-generating function using
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differentiation. Namely, if �X(t) is finite, we have

�′
X(t) = d

dt
E(etX) = E(XetX).

Thus

�′
X(0) = E(X)

if both sides of the equation exist. Similarly, differentiating r times we
obtain

�
(r)
X (0) = E(Xr ).

A special case is when the moment-generating function �X(t) is ratio-
nal, that is, when �X(t) can be written as

�X(t) = p0 + p1t + · · · + prt
r

q0 + q1t + · · · + qsts
=
∑

d

f (d)td ,

for some r, s and coefficients p1, . . . , pr, q1, . . . , qs . By normalization we
may assume q0 = 1. Then

p0 + p1t + · · · + prt
r =

∑
d

f (d)td (1 + q1t + · · · + qst
s).

Identification of the coefficients of t i on both sides yields

pi =
i∑

d=0

f (d)qi−d for i ≤ r

0 =
i∑

d=0

f (d)qi−d for i > r.

This gives a recurrence formula for the coefficients f (d); we have

f (0) = p0

f (d) = pd −
min(d,s)∑

i=1

f (d − i)qi, d ≥ 1

where pd = 0 for d > r .

6.8.5. The δ-method

In general, the δ-method, or propagation of error, is a linear approximation
(Taylor expansion) of a nonlinear function of random variables. Here we
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are particularly interested in the validity of a normal approximation for
functions of random vectors.

Theorem 6.8.5. Let Xn = (Xn1, Xn2, . . . , Xnk) be a sequence of random
vectors satisfying

bn(Xn − µ)
D−→ N (0, �)

with bn → ∞. The vector valued function g(x) = (g1(x), . . . , g�(x)) has
real valued gi(x) with nonzero differential

∂gi

∂gx

=
(

∂gi

∂gx1

, . . . ,
∂gi

∂gxk

)
.

Define D = (di,j ) where di,j = (∂gi/∂gxj
)(µ). Then

bn(g(Xn) − g(µ))
D−→ N (0, D�DT).

6.8.6. A large deviation principle

Assume X1 · · · Xn is an irreducible Markov chain on a finite alphabet A
with transition probabilities π(a, b), a, b ∈ A. Large deviations from the
mean can be described as follows.

Theorem 6.8.6 (Miller). Let f be a function mapping A into R.
Then, n−1 ∑n

i=1 f (Xi) obeys a large deviation principle with rate func-
tion I defined below: for every closed subset F ⊂ R and every open subset
O ⊂ R,

lim sup
n→+∞

1

n
log P

(
1

n

n∑
i=1

f (Xi) ∈ F

)
≤ − inf

x∈F
I (x),

lim inf
n→+∞

1

n
log P

(
1

n

n∑
i=1

f (Xi) ∈ O

)
≥ − inf

x∈O
I (x).

The rate function I is positive, convex, uniquely equal to zero at x =
E(f (X1)) and given by

I (x) = sup
θ

(θx − log λ(θ)),

where λ(θ) is the largest eigenvalue of the matrix
(
eθf (b)π(a, b)

)
a,b∈A.

6.8.7. A CLT for martingales

For martingales, the following central limit theorem is available.
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Theorem 6.8.7. Let (ξn,i)i=1,...,n be a triangular array of d-dimensional
random vectors such that E||ξn,i ||22 < ∞, and V be a positive d × d ma-
trix. Put Fn,i = σ (ξn,1, . . . , ξn,i); E(ξn,i | Fn,i−1) denotes the conditional
expectation vector of ξn,i and Cov(ξn,i | Fn,i−1) denotes the conditional
covariance matrix of ξn,i . If as n → ∞

(i)
n∑

i=1

E(ξn,i | Fn,i−1)
P→ 0,

(ii)
n∑

i=1

Cov(ξn,i | Fn,i−1) → V ,

(iii) ∀ε > 0,
n∑

i=1

P(|ξn,i | > ε | Fn,i−1)
P→ 0,

then
∑n

i=1 ξn,i
D→ N (0, V ).

Notes

The material in this chapter can be viewed as an updated version of Reinert
et al. (2000). Recent progress on exact distributional results, as well as on
compound Poisson approximation and on multivariate normal approxima-
tion, is included.

This chapter does not deal with the algorithmic issues; an excellent
starting point would be Waterman (1995) or Gusfield (1997). For a particular
example see also Apostolico et al. (1998), and for a recent exposition see
Lonardi (2001).

Number of clumps. Equations (6.2.6) and (6.2.9) that characterize the oc-
currence of a clump, or a k-clump, of the word w at a given position with
respect to the periods of w are due to Schbath (1995a).

Word locations. The recursive formula for the exact distribution of the
distance D between two word occurrences (Theorem 6.3.1) is from Robin
and Daudin (1999). It was first proposed for independent and uniformly
distributed letters by Blom and Thorburn (1982). The moment-generating
function of the distance D, expressed as a rational function and given
in Theorem 6.3.2, also comes from Robin and Daudin (1999). Recently,
Stefanov (2003) obtained another expression for the generating function
that avoids the calculation of the “infinite” sum of the �us.

Similar results are derived in Robin and Daudin (2001) and Stefanov
(2003) for the probability distribution of the distance between any word in
a given set. They are not presented in Section 6.6 but are useful for instance
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for the purpose of calculating the occurrence probability of a structured
motif (Robin et al. (2002); Stefanov et al. (2004)). These motifs are of
particular interest since they are candidate promotors for transcription.
Indeed, a structured motif is of the form v(d1 : d2)w, denoting a word v

separated from a word w by a distance between d1 and d2; where v and
w can be approximate patterns. Efficient algorithms exist to find such
structured motifs (Marsan and Sagot 2000a).

A related problem concerns the position T1 of the first occurrence of
a word; it is treated in Rudander (1996) and more recently in Stefanov
(2003). The moment generating function of T1 given on page 289 is taken
from Robin and Daudin (1999).

The Poisson approximation for the statistical distribution of the k-
smallest r-scan presented on page 286 is due to Dembo and Karlin (1992).
This approximation is very useful for the comparison between the expected
distribution of the r-scans and the one observed in the biological sequence.
It has been first applied in Karlin and Macken (1991) to the E. coli genome
by approximating the r-scan distribution given in Section 6.3.1 by a sum
of r − 1 independent exponential random variables. Robin and Daudin
(2001) refined this approximation using the exact distribution of the r-
scans. Related work is presented by Robin (2002) but using a compound
Poisson model for the word occurrences rather than a Markov model for
the sequence of letters. This new approach has the advantage of taking the
eventual unexpected frequency of the word of interest into account when
analysing its location along a sequence. See Glaz et al. (2001) for more
material and applications of scan statistics.

Word count distribution. The method of obtaining the exact distribution of
the word count presented here generalizes the result that Gentleman and
Mullin (1989) obtained for the case that the sequence is composed of i.i.d.
letters, where each letter occurs with equal probability. In this case, Gen-
tleman (1994) also gives an algorithm for calculating the word frequency
distribution. Moreover, in the Markov case the exact distribution of the count
can also be obtained by other techniques: Kleffe and Langbecker (1990)
as well as Nicodème et al. (2002) used an automaton built on the pattern
structure matrix, whereas Régnier (2000) used a language decomposition
approach to obtain the generating function of the count (see Chapter 7).

The variance (6.4.1) of the count N(w) is inspired by Kleffe and
Borodovsky (1992).

Gaussian approximation. The asymptotic normality of the difference be-
tween the word count and its estimator was first proposed by Lundstrom
(1990) using the δ-method. For an exposition, see Waterman (1995). The
two alternative approaches presented in this chapter, the martingale and the
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conditional ones, have the advantage of providing explicit formulae for the
asymptotic variance. They are both due to Prum et al. (1995) for the first
order Markov chain model, and to Schbath (1995b) for higher order models
and phased models. The conditional expectation of the count is originally
due to Cowan (1991).

The bound Theorem 6.4.4 on the distance to the normal distribution was
obtained by Huang (2002). This paper, and references therein, discusses also
the constant c which appears in the bound. The result in the independent
case was first presented in Reinert et al. (2000).

Poisson and compound Poisson approximations. When the sequence letters
are independent, Poisson and compound Poisson approximations for N(w)
have been widely studied in the literature (Chryssaphinou and Papastavridis
1988a, b), Arratia et al. (1990), Godbole (1991), Hirano and Aki (1993),
Godbole and Schaffner (1993), Fu (1993)). Markovian models under differ-
ent conditions have then been considered (Rajarshi 1974; Godbole 1991;
Godbole and Schaffner 1993; Hirano and Aki 1993; Geske et al. 1995;
Schbath 1995a; Erhardsson 1997), but few works concern general periodic
words and provide explicit parameters of the limiting distribution. Our two
basic references in this chapter are Arratia et al. (1990) and Schbath (1995a).

For the compound Poisson and Poisson approximation error term due to
the estimation of the transition probabilities, refer to Schbath (1995b). Rein-
ert and Schbath (1998) showed that the end effects due to the finite sequence
are negligible for the count (Equation (6.4.11)) and the count of clumps.
Stefanov et al. (2004) have recently provided the exact distribution of the
number of clumps; the Poisson approximation seems to perform very nicely.

The special case of runs of 1 in a random sequence of letters in the
binary alphabet {0, 1} is extensively studied: Erdös and Rényi (1970)
gave the asymptotic behaviour of the longest run in a sequence of
Bernoulli trials, and of the length of the longest segment that contains a
proportion of 1 greater than a predescribed level α. Their result was refined
by Guibas and Odlyzko (1980), Deheuvels et al. (1986), and Gordon
et al. (1986). The compound Poisson approximation for counts of runs
in the case where the sequence letters are independent was considered by
Eichelsbacher and Roos (1999), also employing the Chen–Stein method
using results by Barbour and Utev (1998) (the limiting distribution is the
same as the one given in (6.4.15), reduced to this special case). Barbour
and Xia (1999) obtained a more accurate limiting approximation for the
case of runs of length 2; this approximation is based on a perturbation of
a Poisson distribution.

Direct compound Poisson approximation. Theorem 6.4.9, which presents
a direct compound Poisson approximation of the count, is due to Barbour
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et al. (2001). They give a more general form of the result, and also a bound
for the Kolmogorov distance. Using the approach by Erhardsson (1999),
they also derive a slightly less explicit but asymptotically better bound in
terms of stopping times for a Markov chain.

Indeed, in Erhardsson (1997), Erhardsson (1999), and Erhardsson
(2000), a different approach based on the direct compound Poisson ap-
proximation Theorem 6.8.3 is developed. The idea is to express counts of
events as numbers of visits of a certain Markov chain to a rare set, and to
use regeneration cycles for suitable couplings. It results in bounds that are
formulated in terms of stopping times of Markov chains. Results of this type
are less explicit, but they have asymptotic order O(n−1) under the typical
regime nµ(w) = O(1), see also Barbour et al. (2001) and Gusto (2000),
whereas the bounds in Theorem 6.4.9 and in Corollary 6.4.8 (which is from
Schbath 1995a) are of order O(n−1 log n) under the same regime.

Numerical experiments in Barbour et al. (2001) display that the bound
in Theorem 6.4.9 and the bound from the Erhardsson (1997)-approach
perform better than the bound in Corollary 6.4.8 for the word acgacg
in the bacteriophage Lambda (n = 48 502) under three different transition
matrices. In contrast, Gusto (2000) compared the result from Erhardsson
(1999) to the one in Schbath (1995a) and did not observe any marked
improvement for all words of length 8 in the bacteriophage Lambda. This
may illustrate that, whereas the compound Poisson approximation via a
Poisson process approximation works well in the case of rare words, it does
not yield the best bounds in the case of not so rare words.

Approximation using a large deviation principle. Section 6.4.6 is inspired
by Schbath (1995b). Nuel (2001) obtained a better approximation using a
large deviation principle for the empirical distribution of the �-letter words.
This empirical distribution is defined as the random measure Ln,� on A�

such that, for w ∈ A�,

Ln,�(w) = 1

n − � + 1

n−�+1∑
i=1

Yi(w),

so that Ln,�(w) = N(w). However, the definition of the large deviation rate
function and its mathematical treatment are more involved than that given
in Section 6.4.6.

Renewal count distribution. For a classical introduction to renewals, see
Chapter 13 in Feller (1950). Exact results for the distribution of Rn can be
found in Régnier (2000). When the letters X1, . . . , Xn are independent and
identically distributed, the asymptotic distribution of the renewal count was
studied by Breen et al. (1985) and Tanushev and Arratia (1997). The Central
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Limit Theorem 6.5.1 in the Markovian case is due to Tanushev (1996). He
also proved a multivariate approximation. The theorem is much easier to
prove in the i.i.d. case, see Waterman (1995). The main technique being
generating functions, no bound on the rate of convergence is obtained.

The Poisson approximation for renewals based on the Poisson approx-
imation for the number of clumps is the idea behind the proof of Geske
et al. (1995), although they prove the result only for words having at most
one principal period. Related results have been obtained by Chryssaphinou
and Papastavridis (1988b). Theorem 6.5.2 is due to Chryssaphinou et al.
(2001); they also derive the stated conditions under which convergence to
a Poisson distribution holds.

Occurrences of multiple patterns. The multivariate generating function of
the counts of multiple words can be found in Régnier (2000) and can be
derived from Robin and Daudin (2001). The methods used are extensions
of the ones presented in Section 6.4.1.

The covariance was also calculated in Lundstrom (1990), in a different
form. Theorem 6.6.1 is proven in Huang (2002); there it is also shown that
Ln is invertible as well as there being a discussion of the constant c; see also
references therein. As in Rinott and Rotar (1996), Huang (2002) considers
more general classes of test functions as well, but not so general as to cover
total variation.

The Poisson and compound Poisson approximations for the joint dis-
tribution of declumped counts and multiple word counts presented here
are due to Reinert and Schbath (1998). Recently, Chen and Xia (to appear)
obtained a much improved bound for the independent model, in the Wasser-
stein metric (which is weaker than the total variation metric), for the Poisson
approximation of counts of palindromes, assuming the four-letter alphabet
A = {a, c, g, t} and that pa = pt, pc = pg. Formula (6.6.6) for mixed
clumps is due to Chryssaphinou et al. (2001). Recent work of Roquain
and Schbath (in preparation) on mixed clumps provides a more adapted
compound Poisson limit distribution for the count of multiple words.

Tanushev (1996) studied nonoverlapping occurrences in competitions
with each other, including the derivation of the mean for the number of
competing renewal counts, and, most notably, the normal approximation
Theorem 6.6.6. The mean of the total number of competing renewals,∑q

r=1 Rc
n(wr ), has recently been presented in a slightly simpler form by

Chryssaphinou et al. (2001). Also the alternative approach for a Poisson
approximation for competing renewal counts is given in Chryssaphinou
et al. (2001).

Some applications to DNA sequences. The quality of the approximate p-
values was extensively studied in Robin and Schbath (2001); their results
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here are combined with the approximate scores obtained with the large
deviation approach of Nuel (2001). Most of the numerical results presented
in this chapter have been obtained thanks to the R’MES software (Bouvier
et al. (1999)) available at http://www-mig.jouy.inra.fr/ssb/rmes).

The details on the treatment of sequencing by hybridization as presented
here are given in Arratia et al. (1996). The characterization of unique re-
coverability from the �-spectrum is due to Pevzner (1989); Ukkonen (1992)
conjectured and Pevzner (1995) proved that there are exactly three struc-
tures that prevent unique recoverability. De Bruijn graphs are described in
van Lint and Wilson (1992). Theorem 6.7.2 is from Arratia et al. (1996),
where more detailed versions are also given. This bound is improved by
Shamir and Tsur (2001). In Arratia et al. (1996), a more general result is de-
rived for general alphabets, and explicit bounds are obtained. These bounds
can be used to approximate the probability of unique recoverability. Arratia
et al. (2000) have obtained results on the number of possible reconstructions
for a given sequence (when the reconstruction is not unique).

Some probabilistic and statistical tools. Stein’s method for the normal
approximation was first published by Stein (1972). Rinott and Rotar (1996)
applied it to obtain multivariate normal approximations with a bound on the
error in the distance of suprema over convex sets, which yields Theorem
6.8.1. Indeed, Rinott and Rotar (1996) derive the result for more general
classes of test functions.

First published by Chen (1975) as the Poisson analog to Stein’s method
for normal approximations (Stein 1972), the Chen–Stein method for Poisson
approximation has found widespread application; word counts being just
one of them. A friendly exposition is found in Arratia et al. (1989) and
a description with many examples can be found in Arratia et al. (1990)
and Barbour et al. (1992b). The key theorem for word counts in stationary
Markov chains is Theorem 1 in Arratia et al. (1990) with an improved
bound by Barbour et al. (1992b) (Theorem 1.A and Theorem 10.A), giving
Theorem 6.8.2.

Much of the section on direct compound Poisson approximation is based
on the overview of Barbour and Chryssaphinou (2001). This approach
started with Barbour et al. (1992a); see also Roos (1993), Barbour and
Utev (1998). Recently much attention has been given to this problem,
and readers are referred to the references in Barbour and Chryssaphinou
(2001).

For δ3, in Barbour and Chryssaphinou (2001) there is an additional,
alternative quantity given in terms of the Wasserstein distance between
two distributions. Instead of Condition (6.8.5), improved bounds on H0

and H1 are also available under the condition that m−1(m2 − m1) < 1/2,
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where m2 = ∑
k≥1 k2νk , see Barbour and Chryssaphinou (2001). They also

obtain Theorem 6.8.3, which in their paper is also phrased in the Kol-
mogorov distance, and slightly more general, and Theorem 6.8.4. Barbour
and Chryssaphinou (2001) also provide refined versions of this approach as
well as results in Kolmogorov distance. Barbour and Mansson (2002) give
related results in Wasserstein distance.

A short outline of moment-generating functions can be found, for ex-
ample, in Rice (1995). Theorem 6.8.5 on the delta method can be found,
for example, on p. 313 of Waterman (1995). The large deviation princi-
ple Theorem 6.8.6 for Markov chains can be found on p. 78 in Bucklew
(1990). The martingale central limit Theorem 6.8.7 is in Dacunha-Castelle
and Duflo (1983) p. 80.

General tools. The autocorrelation polynomial was introduced by Guibas
and Odlyzko (1980); see also Li (1980), Biggins and Cannings (1987). The
result that two words commute if and only if they are powers of the same
word can be found in Lothaire (1997). The Perron–Frobenius Theorem
used on page 272 is classical; see for example Karlin and Taylor (1975).
The chi-square test for independence is textbook material in statistics; Rice
(1995) gives a good exposition. The case of general order Markov chains
is reviewed in Billingsley (1961). However, for a higher order, a longer
sequence of observations is required (see Guthrie and Youssef 1970). For
an introduction to martingales, see, for example, Chung (1974). The Law
of Iterated Logarithm for Markov chains is due to Senoussi (1990).

Genome analysis. The first analysis of the restriction sites in E. coli was
carried out by Churchill et al. (1990) while analysing the distance between
those sites. Avoidance of restriction sites in E. coli was first presented by
Karlin et al. (1992). The Cross-over Hotspot Instigator sites are very impor-
tant for several bacteria (see Biaudet et al. 1998; Chedin et al. 1998; Sourice
et al. 1998). Their significant abundances were first shown in Schbath
(1995b) for E. coli and then in El Karoui et al. (1999) for other bacteria.
Several papers aim at identifying over- and underrepresented words in a
particular genome (for instance, Leung et al. 1996; Rocha et al. 1998). They
usually use the maximal Markov model (see also Brendel et al. 1986). The
Poisson approximation used in BLAST to approximate the p-value of a
sequence alignment was first proposed in Altschul et al. (1990), and proven
in Karlin and Dembo (1992). The variational composition of a genome has
been studied with HMMs by Churchill (1989), Muri (1998), Durbin et al.
(1998).
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