5

Optimisation Theory

All of the inductive strategies presented in Chapter 4 have a similar form. The
hypothesis function should be chosen to minimise (or maximise) a certain func-
tional. In the case of linear learning machines (LLMs), this amounts to finding a
vector of parameters that minimises (or maximises) a certain cost function, typi-
cally subject to some constraints. Optimisation theory is the branch of mathematics
concerned with characterising the solutions of classes of such problems, and de-
veloping effective algorithms for finding them. The machine learning problem has
therefore been converted into a form that can be analysed within the framework of
optimisation theory.

Depending on the specific cost function and on the nature of the constraints,
we can distinguish a number of classes of optimisation problems that are well un-
derstood and for which efficient solution strategies exist. In this chapter we will
describe some of the results that apply to cases in which the cost function is a con-
vex quadratic function, while the constraints are linear. This class of optimisation
problems are called convex quadratic programmes, and it is this class that proves
adequate for the task of training SVMs.

Optimisation theory will not only provide us with algorithmic techniques, but
also define the necessary and sufficient conditions for a given function to be a so-
lution. An example of this is provided by the theory of duality, which will provide
us with a natural interpretation of the dual representation of LLMs presented in
the previous chapters. Furthermore, a deeper understanding of the mathematical
structure of solutions will inspire many specific algorithmic heuristics and imple-
mentation techniques described in Chapter 7.

5.1 Problem Formulation

The general form of the problem considered in this chapter is that of finding the
maximum or minimum of a function, typically subject to some constraints. The
general optimisation problem can be stated as follows:
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Definition 5.1 (Primal optimisation problem) Given functions f, g;, i = 1,... |k,
and h;, i=1,... ,m, defined on a domain Q = R",

minimise  f(w), weQ,
subject to gi(w) <0, i=1,...,k,
hiw)=0, i=1,...,m,

where f(w) is called the objective function, and the remaining relations are called,
respectively, the inequality and equality constraints. The optimal value of the
objective function is called the value of the optimisation problem.

To simplify the notation we will write g(w) < 0 to indicate gi(w) < O,
i = 1,...,k. The expression h(w) = 0 has a similar meaning for the equality
constraints.

Since maximisation problems can be converted to minimisation ones by
reversing the sign of f(w), the choice of minimisation does not represent a
restriction. Similarly any constraints can be rewritten in the above form.

The region of the domain where the objective function is defined and where
all the constraints are satisfied is called the feasible region, and we will denote it
by

R={weQ:gw)<0,hw) =0}.

A solution of the optimisation problem is a point w* € R such that there exists
no other point w € R for which f(w) < f(w"). Such a point is also known as
a global minimum. A point w* € Q is called a local minimum of f(w) if 3¢ > 0
such that f(w) > f(w*), Yw € Q such that ||jw — w"|| < &.

Different assumptions on the nature of the objective function and the con-
straints create different optimisation problems.

Definition 5.2 An optimisation problem in which the objective function, inequal-
ity and equality constraints are all linear functions is called a linear programme.
If the objective function is quadratic while the constraints are all linear, the
optimisation problem is called a quadratic programme.

An inequality constraint g;(w) < 0 is said to be active (or tight) if the solution
w" satisfies g;(w") = 0, otherwise it is said to be inactive. In this sense, equality
constraints are always active. Sometimes, quantities called slack variables and
denoted by ¢ are introduced, to transform an inequality constraint into an
equality one, as follows:

gW) <0 <= g(W+&=0 with¢ >0,

Slack variables associated with active constraints are equal to zero, while those
for inactive constraints indicate the amount of ‘looseness’ in the constraint.

We will consider restricted classes of optimisation problems. First we define
what are meant by a convex function and a convex set.
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Definition 5.3 A real-valued function f(w) is called convex for w € R" if, Yw,u €
R”, and for any 8 € (0, 1),

f(Ow + (1 — O)u) < 8f(w) + (1 — 0)f (u).

If a strict inequality holds, the function is said to be strictly convex. A function
that is twice differentiable will be convex provided its Hessian matrix is positive
semi-definite. An affine function is one that can be expressed in the form

f(w)=Aw+b,

for some matrix A and vector b. Note that affine functions are convex as they
have zero Hessian. A set Q < R” is called convex if, Yw,u € Q, and for any 6
€ (0,1), the point (6w + (1 — O)u) € Q.

If a function f is convex, any local minimum w* of the unconstrained
optimisation problem with objective function f is also a global minimum, since
for any u # w’, by the definition of a local minimum there exists 6 sufficiently
close to 1 that

fw’) < f(OW +(1—0O)m)

< Of(w)+(1—8)f(u).

It follows that f(w") < f(u). It is this property of convex functions that renders
optimisation problems tractable when the functions and sets involved are convex.

Definition 5.4 An optimisation problem in which the set €, the objective function
and all of the constraints are convex is said to be convex.

For the purposes of training SVMs we can restrict ourselves to the case where
the constraints are linear, the objective function is convex and quadratic and
Q = R”", hence we consider convex quadratic programmes.

Optimisation theory is concerned both with describing basic properties that
characterise the optimal points, and with the design of algorithms for obtaining
solutions. In this chapter we will focus on the theoretical aspects, leaving
algorithmic considerations to be addressed in Chapter 7. The next section will
present the technique of Lagrange multipliers and its extensions, always restricted
to the case of convex quadratic programmes.

5.2 Lagrangian Theory

The purpose of Lagrangian theory is to characterise the solution of an opti-
misation problem initially when there are no inequality constraints. The main
concepts of this theory are the Lagrange multipliers and the Lagrangian func-
tion. This method was developed by Lagrange in 1797 for mechanical problems,
generalising a result of Fermat from 1629. In 1951 Kuhn and Tucker further
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extended the method to allow inequality constraints in what is known as Kuhn—
Tucker theory. These three increasingly general results will provide all that we
need to develop efficient solutions for the task of optimising SVMs. For ease of
understanding we first introduce the simplest case and then go on to consider the
more complex type of problems. When there are no constraints the stationarity
of the objective function is sufficient to characterise the solution.

Theorem 5.5 (Fermat) A necessary condition for w* to be a minimum of f(w),
feclis % = 0. This condition, together with convexity of f, is also a
sufficient condition.

We will give one simple example of this type of optimisation taken from
Chapter 3 when we considered finding the best approximation in a reproducing
kernel Hilbert space.

Example 5.6 Suppose we wish to perform regression from a training set
S = (X1 91)--- »(Xery2)) < (X x Y)Y < (R" x RY,

generated from the target function t(x). If we assume a dual representation of
the form

¢
fx) = aK(x,x),
i=1

in Example 3.11 we showed that to minimise the RKHS norm of the error we
must minimise

4 £ 3
-2 Z oy + Z Z 000K (X, X ).
i=1 i=1 j=1

The positive semi-definiteness of the kernel K ensures that the objective
function is convex. Using Theorem 5.5 we compute the derivatives with respect
to a; and set equal to zero, obtaining

12
-2 +2> oK (xux)) =0,i=1,....¢,
j=1
or

Ga =y,

where we have denoted by G the Gram matrix with entries G;; = K(x;,X;).
Hence, the parameters a* for the solution can be obtained as

a=Gly.
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In constrained problems, one needs to define a function, known as the
Lagrangian, that incorporates information about both the objective function and
the constraints, and whose stationarity can be used to detect solutions. Precisely,
the Lagrangian is defined as the objective function plus a linear combination of
the constraints, where the coefficients of the combination are called the Lagrange
multipliers.

Definition 5.7 Given an optimisation problem with objective function f(w), and
equality constraints h(w) =0, i = 1,... ,m, we define the Lagrangian function as

L(w,B) = f(w)+ Y _ Bihi(w)

i=1
where the coeflicients f; are called the Lagrange multipliers.

If a point w* is a local minimum for an optimisation problem with only
equality constraints, it is possible that Q%P s 0, but that the directions in which
we could move to reduce f cause us to violate one or more of the constraints.
In order to respect the equality constraint h;, we must move perpendicular to
%‘:f—), and so to respect all of the constraints we must move perpendicular to
the subspace V spanned by

Ohi(w*) .
{T .l-l,...,m}.

If the % are linearly independent no legal move can change the value of the

objective function, whenever Q%‘f—) lies in the subspace V or in other words when
there exist f§; such that

(W) | o
— ; Bihi(w") = 0.

This observation forms the basis of the second optimisation result concerning
optimisation problems with equality constraints.

Theorem 5.8 (Lagrange) A necessary condition for a normal point w* to be a
minimum of f(w) subject to hi(w) =0, i=1,... ,m, with f, hy € C1, is

OL(w",p") 0
ow v

oL(w",p")

_5ﬂ = 0,

Jor some values B*. The above conditions are also sufficient provided that L(w,B")
is a convex function of w.

The first of the two conditions gives a new system of equations, whereas
the second returns the equality constraints. By imposing the conditions (jointly
solving the two systems) one obtains the solution.
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Example 5.9 (Largest volume box with a given surface) Let us consider the prob-
lem of finding the dimensions of the sides of a box, w,u,v whose volume is maxi-
mal and whose surface is equal to a given value ¢. The problem can be rewritten as

minimise  —wuv
subject to  wu + uv + ow = ¢/2.

The Lagrangian of this problem is L = —wuv + f(wu + uv + vw — ¢/2) and
the necessary conditions for optimality are given by the constraints and by the
stationarity conditions

XL o ot Bt =0,
ow
L vt B+ w =0,
ou
oL =—wu+ f(w+u)=0.
ov

These conditions imply that fv(w —u) = 0 and fw(u —v) = 0, whose only
non-trivial solutionisw =u =v = \/g . Hence since the conditions are necessary
for a minimum and the trivial solutions have zero volume, the maximum volume
box is a cube.

Example 5.10 (Maximum entropy distribution) The entropy of a probability
distribution p = (py,...,p,) over a finite set {1,2,...,n} is defined as H(p) =
— >, pilogp;, where naturally >/, p; = 1. The distribution with maximum
entropy can be found by solving an optimisation problem with the Lagrangian

L(p,B)=> _pilogpi+ (Zp,- — 1)
i=1 i=1

over the domain Q = {p : p; > 0, i = 1,... ,n}. The stationarity conditions imply
that logep;+ p = 0 for all i, indicating that all p; need to be equal to % This to-
gether with the constraint gives p = (%, e %). Since Q is convex, the constraint is
affine and the objective function is convex, having a diagonal Hessian with entries
(ep;iIn2)!, this shows that the uniform distribution has the maximum entropy.

Remark 5.11 Note that if we replace the ith constraint by hi(w) = b;, and
consider the value of the objective function at the optimal solution f* = f(w")

as a function of b,, then [%bﬂ] = f7. Hence the Lagrange multipliers contain
' 1b,=0

information about the sensitivilty of the solution to a given constraint.

Remark 5.12 Note that since the constraints are equal to zero, the value of the
Lagrangian at the optimal point is equal to the value of the objective function

L(w", ") = f(w").
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We now consider the most general case where the optimisation problem
contains both equality and inequality constraints. We first give the definition of
the generalised Lagrangian.

Definition 5.13 Given an optimisation problem with domain Q < R",

minimise  f(w), weQ,
subject to  gi{w) <0, i=1,...,k,
hi(W)=O, i=1,...,m,

we define the generalised Lagrangian function as

k m
L(w,a,B) = f(W)+ > ougi(W) + Y _ Bihi(w)

i=1 i=1

= f(w) + «'g(w) + p'h(w).
We can now define the Lagrangian dual problem.

Definition 5.14 The Lagrangian dual problem of the primal problem of Definition
5.1 is the following problem:

maximise  6(a, ),
subject to x>0,

where O(a, ) = infueo L(W,a, B). The value of the objective function at the
optimal solution is called the value of the problem.

We begin by proving a theorem known as the weak duality theorem, which
gives one of the fundamental relationships between the primal and dual problems
and has two useful corollaries.

Theorem 5.15 Let w € Q be a feasible solution of the primal problem of Definition
5.1 and (a,B) a feasible solution of the dual problem of Definition 5.14. Then

f(w) = 6(«, B).

Proof From the definition of («, §) for w € Q we have

6(x,B) = inf L(u,a, p)

< L(w,a, B)

= f(w) +a'g(w) + B'h(w) < f(w), (5.1)
since the feasibility of w implies g(w) < 0 and h(w) = 0, while the feasibility of
(o, p) implies o > 0. O

Corollary 5.16 The value of the dual is upper bounded by the value of the
primal,

sup {6(a, B) : & = 0} <inf {f(w) : g(w) < 0,h(w) = 0}.
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Corollary 5.17 If f(w*) = 8(«", B*), where & > 0, and g(w*) < 0, h(w*) = 0, then
w* and («, B*) solve the primal and dual problems respectively. In this case
aigiw)=0,fori=1,... k.

Proof Since the values are equal the sequence of inequalities in equation (5.1)
must become equalities. In particular the last inequality can only be an equality
if o gi(w"y =0, for all i. O

Remark 5.18 Hence, if we attempt to solve the primal and dual problems in
tandem, we may be able to detect that we have reached the solution by comparing
the difference between the values of the primal and dual problems. If this reduces
to zero, we have reached the optimum. This approach relies on the solutions
of the primal and dual having the same value, something that is not in general
guaranteed. The difference between the values of the primal and dual problems
is known as the duality gap.

Another way of detecting the absence of a duality gap is the presence of a
saddle point. A saddle point of the Lagrangian function for the primal problem
is a triple

(w',a",B"), withw" € Q, a" >0,
satisfying the additional property that
L(w",a,B) < L(w',a", ") < L(w,a", B°),

for all w € Q, « > 0. Note that w here is not required to satisfy the equality or
inequality constraints.

Theorem 5.19 The triple (w',a", B*) is a saddle point of the Lagrangian function
Jor the primal problem, if and only if its components are optimal solutions of the
primal and dual problems and there is no duality gap, the primal and dual problems
having the value

fw) =6(", ).

We will now quote the strong duality theorem, which guarantees that the
dual and primal problems have the same value for the optimisation problems
that we will be considering.

Theorem 5.20 (Strong duality theorem) Given an optimisation problem with con-
vex domain Q = R”*,

minimise  f(w), weqQ,
subject to gi(w) <0, i=1,...,k,
hiw)=0, i=1,...,m,

where the g; and h; are affine functions, that is
h(w) = Aw — b,

for some matrix A and vector b, the duality gap is zero.
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We are now in a position to give the Kuhn-Tucker theorem giving conditions
for an optimum solution to a general optimisation problem.

Theorem 5.21 ( Kuhn—Tucker) Given an optimisation problem with convex domain
Qc R,

minimise  f(w), weQ,
subject to gi(w) <0, i=1,...,k,
hiw)=0, i=1,...,m,

with f € C! convex and g;, h; affine, necessary and sufficient conditions for a normal
point w* to be an optimum are the existence of «*, " such that

OL(w',a’, ")

ow 0,
L(w",a",B") 0
op o

ag(w)=0,i=1,..,k
g(w)<0,i=1,...,k
a=20i=1,..,k

Remark 5.22 The third relation is known as Karush-Kuhn-Tucker complemen-
tarity condition. It implies that for active constraints, «; > 0, whereas for inactive
constraints «; = 0. Furthermore, it is possible to show that for active constraints

again changing the constraint to be b; in place of 0, of = [%g]b K so that

the Lagrange multiplier represents the sensitivity of the optimal value to the
constraint. Perturbing inactive constraints has no effect on the solution of the
optimisation problem.

Remark 523 One way to interpret the above results is that a solution point
can be in one of two positions with respect to an inequality constraint, either
in the interior of the feasible region, with the constraint inactive, or on the
boundary defined by that constraint with the constraint active. In the first case,
the conditions for optimality for that constraint are given by Fermat’s theorem,
so the «; need to be zero. In the second case, one can use Lagrange’s theorem
with a non-zero ¢;. So the KKT conditions say that either a constraint is active,
meaning g;(w") = 0, or the corresponding multiplier satisfies «f = 0. This is
summarised in the equation gi(w")o; = 0.

53 Duality

Lagrangian treatment of convex optimisation problems leads to an alternative
dual description, which often turns out to be easier to solve than the primal
problem since handling inequality constraints directly is difficult. The dual
problem is obtained by introducing Lagrange multipliers, also called the dual
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variables. Dual methods are based on the idea that the dual variables are the
fundamental unknowns of the problem.

We can transform the primal into a dual by simply setting to zero the deriva-
tives of the Lagrangian with respect to the primal variables, and substituting the
relations so obtained back into the Lagrangian, hence removing the dependence
on the primal variables. This corresponds to explicitly computing the function

O(a, B) = inf L(w,a, B).
weQ

The resulting function contains only dual variables and must be maximised
under simpler constraints. This strategy will be adopted in subsequent chapters
and has become one of the standard techniques in the theory of Support Vector
Machines. The pleasing feature of the resulting expression for the primal variables
is that it matches exactly the dual representation introduced in Chapter 2 and
so will seem very natural in the context in which we will be using it. Hence,
the use of dual representations in Support Vector Machines not only allows
us to work in high dimensional spaces as indicated in Chapter 3, but also
paves the way for algorithmic techniques derived from optimisation theory. As
a further example the duality gap can be used as a convergence criterion for
iterative techniques. A number of further consequences will flow from the convex
quadratic programmes that arise in SVM optimisation. The Karush—-Kuhn—
Tucker complementarity conditions imply that only the active constraints will
have non-zero dual variables, meaning that for certain optimisations the actual
number of variables involved may be significantly fewer than the full training
set size. We will see that the term support vector refers to those examples for
which the dual variables are non-zero.

Example 5.24 (Quadratic programme) We demonstrate the practical use of dual-
ity by applying it to the important special case of a quadratic objective function.

minimise ~ jwQw —k'w,
subject to  Xw < ¢,

where Q is a positive definite n X n matrix, k is an n-vector; ¢ an m-vector, w
the unknown, and X an m x n matrix. Assuming that the feasible region is not
empty, this problem can be rewritten as

max (min (;—W’QW —kK'w+o (Xw— c))) .

=0

The minimum over w is unconstrained, and is attained at w = Q!(k — X'a).
Resubstituting this back in the original problem, one obtains the dual:

maximise —3«'Pa—a'd — JK'QKk,
subject to a >0,

where P = XQ7'X/, and d = ¢ — XQ~'k. Thus, the dual of a quadratic program
is another quadratic programme but with simpler constraints.
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Figure 5.1: Example of a minimal enclosing sphere for a set of points in two
dimensions

54 Exercises
1. A ball centred at a point v of radius R is the set
Br(v)={u:|lu—v|| < R}.

Express the problem of finding the ball of smallest radius that contains a
given set

S = {Xl,... ,X/}

of vectors as an optimisation problem. See Figure 5.1 for a simple two
dimensional example. Convert the problem derived to the dual form, hence
showing that the solution can be expressed as a linear combination of the
set S and can be solved in a kernel-induced feature space.

2. The convex hull of a set
T = {Xl,... ,Xg}

is the set of all convex combinations of the points in T. Given a linearly
separable training set § = St U S~ of positive and negative examples,
express the problem of finding points x* and x™~ in the convex hulls of S+
and S~ for which the distance ||x* — x| is minimal as an optimisation
problem. Note that this distance is twice the margin of the training set S.
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parameter
space

yersion space

Figure 5.2: The version space for a linear learning machine

3. Consider the parameter space of weight vectors for a linear learning ma-
chine. Each point of this space corresponds to one hypothesis for fixed
bias. Each training example x gives rise to a hyperplane in this space
defined by the equation

(w-x)=0.

The situation for a two dimensional weight vector is shown in Figure 5.2 for
three examples. Each hyperplane divides the space into those hypotheses
giving the correct classification and those giving an incorrect classification.
The region of hypotheses which correctly classify the whole training set
is sometimes referred to as the version space. In Figure 5.2 this is the
central triangle. Express the problem of finding the centre of the largest
sphere completely contained in the version space, that is the point SV in
Figure 5.2. Note that the point is distinct from the centre of mass of the
version space also shown in the figure. Convert the problem to the dual
form.

5.5 Further Reading and Advanced Topics

The theory of optimisation dates back to the work of Fermat, who formulated
the result on stationarity for unconstrained problems in the 17th century. The
extension to the constrained case was made by Lagrange in 1788, for the case
of equality constraints. [t was not until 1951 that the theory was generalised
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to the case of inequality constraints by Kuhn and Tucker [77], giving rise
to the modern theory of convex optimisation. Karush had already described
the optimality conditions in his dissertation iri 1939 [69] and this is why the
conditions arising from the Kuhn—Tucker theorem are usually referred to as the
Karush-Kuhn-Tucker (KKT) conditions.

In the following years, considerable work was done by Wolfe, Mangasarian,
Duran, and others, to extend the duality results known for linear programming
to the convex programming case (see for example the introduction of [80]).
The diffusion of computers in the 1960s greatly increased the interest in what
was then known as mathematical programming, which studies the solution of
problems by (usually linear or quadratic) optimisation methods.

The use of optimisation in machine learning was pioneered by Olvi Man-
gasarian (for example, [84], [85], [87]) with his work on linear programming
machines. See also [14] by Bennett et al. for a very nice discussion of linear and
quadratic optimisation techniques applied to pattern recognition. Mangasarian
took his ideas to their extreme, designing algorithms that can perform data
mining on datasets of hundreds of thousands of points (see Section 7.8 for
more references). The perceptron algorithm described in Chapter 2 can also
be regarded as a simple optimisation procedure, searching for a feasible point
given a set of linear constraints specified by the data. But rather than picking
any point in the feasible region (an ill-posed problem) one could choose to
pick some specific point satisfying some extremal property like the ones dis-
cussed in Chapter 4 such as being maximally distant from the boundaries of
the feasible region. This type of consideration will lead to the development
of Support Vector Machines in the next chapter. Mangasarian’s early work
mainly focused on minimising the 1-norm of the solution w. Notice finally
that the application of optimisation ideas to problems like least squares regres-
sion (discussed in Chapter 2) was already a use of such concepts in machine
learning.

Optimisation theory is a well-developed and quite stable field, and the stan-
dard results summarised in this chapter can be found in any good textbook.
A particularly readable and comprehensive text on optimisation theory is [11];
also the classic books [80], [41] and [86] provide good introductions. Optimi-
sation theory usually also includes the algorithmic techniques needed to solve
the problem practically. We will address this issue in Chapter 7. The important
contribution of optimisation theory to the theory of Support Vector Machines,
however, lies not on the algorithmic side, but rather in its providing a math-
ematical characterisation of the solutions, via the KKT conditions, giving a
mathematical meaning to the dual variables (introduced in Chapter 2) and to
the margin slack vector (introduced in Chapter 4), and generally in providing a
geometrical intuition for the dual problem.

Exercises 1 concerning the centre of the smallest ball containing the data is
relevant if we wish to minimise the estimate of the fat shattering dimension of
a given set of points by optimally shifting the origin. This problem was first
studied in [128], while Exercise 2 concerning the distance between convex hulls
is discussed in [14], and provides an efficient way to characterise the maximal
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margin hyperplane. This is discussed in [73] where it is used to motivate an_
interesting algorithm (see Section 7.8 for more references).

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.
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