6
Sparse Coding

Many types of signals turn out to be sparse, either in their natural basis or
in a hand-designed basis (e.g., a family of wavelets). But if we are given a
collection of signals and we don’t know the basis in which they are sparse,
can we automatically learn it? This problem goes by various names, including
sparse coding and dictionary learning. It was introduced in the context of
neuroscience, where it was used to explain how neurons get the types of
activation patterns they have. It also has applications to compression and deep
learning. In this chapter, we will give algorithms for sparse coding that leverage
convex programming relaxations as well as iterative algorithms where we will
prove that greedy methods successfully minimize a nonconvex function in an
appropriate stochastic model.

6.1 Introduction

Sparse coding was introduced by Olshausen and Field [117], who were
neuroscientists interested in understanding properties of the mammalian visual
cortex. They were able to measure the receptive field of neurons — essentially
how neurons respond to various types of stimuli. But what they found surprised
them. The response patterns were always

(a) spatially localized, which means that each neuron was sensitive only to
light in a particular region of the image;

(b) bandpass, in the sense that adding high-frequency components had a
negligible effect on the response; and

(c) oriented, in that rotating images with sharp edges produced responses
only when the edge was within some range of angles.

89

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

90 6 Sparse Coding

What’s surprising is that if you took a collection of natural images and
compressed them by finding a k-dimensional subspace to project them onto
using principal component analysis, the directions you find wouldn’t have any
of these properties. So how are neurons learning the basis they are using to
represent images?

What Olshausen and Field [117] proposed was revolutionary. First, what
is better about the basis that neurons are using is that they produce sparse
activation patterns. Or, in our language, neurons are representing the set of
natural images in a basis in which they are sparse. Second, Olshausen and Field
proposed that there are natural and biologically plausible rules for learning
such a basis. They introduced a simple update rule, whereby neurons that fire
together strengthen their connections to each other. This is called a Hebbian
learning rule. And empirically, they showed that their iterative algorithm, when
run on natural images, recovered a basis that met the above three properties.
Thus algorithms can explain the emergence of certain biological properties of
the visual cortex.

Since then, sparse coding and dictionary learning have become important
problems in signal processing and machine learning. We will assume that
we are given a collection of examples pD p@ . pP that are sparse in
a common basis. In particular, there is a matrix A and a set of represen-
tations x, x@ ... x® where Ax®) = p@ and each x© is sparse. Let’s
discuss two popular approaches, called the method of optimal directions and
k-SVD.

Method of Optimal Directions [68]

Input: Matrix B, whose columns can be jointly sparsely represented
Output: A basis A and representation X

Guess A
Repeat until convergence:

Given A, compute a column sparse XsothatA X ~ B (using, e.g.,
matching pursuit [111] or basis pursuit [50]).

Given X , compute the A that minimizes ||Z X — B||F.
End

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.1 Introduction 91

To simplify our notation, we have organized the observations b as
columns in a matrix B and will use the matrix X to represent our estimated
sparse representations. Another popular approach is the following:

K-SVD [5]

Input: Matrix B, whose columns can be jointly sparsely represented
Output A basis A and representation X
Guess A

Repeat until convergence:

Given 4, compute a column sparse XsothatA X ~ B (using, e.g.,
matching pursuit [111] or basis pursuit [50]).

For each column A;:

Group all samples b where X” has a nonzero at index ;.
Subtract off components in the other directions:

(@) A.50
b — ZAJ/XJ
J#
Organize these vectors into a residual matrix and compute
the top singular vector v and update the column A; to v.

End

You should think about these algorithms as variants of the alternating mini-
mization algorithm we gave for nonnegative matrix factorization. They follow
the same style of heuristic. The difference is that k-SVD is more clever about
how it corrects for the contribution of the other columns in our basis A when
performing an update, which makes it the heuristic of choice in practice.
Empirically, both of these algorithms are sensitive to their initialization but
work well aside from this issue.

We want algorithms with provable guarantees. Then it is natural to focus on
the case where A is a basis for which we know how to solve sparse recovery
problems. Thus we could consider both the undercomplete case, where A has
full column rank, and the overcomplete case, where there are more columns
than rows and A is either incoherent or has the restricted isometry property.
That’s exactly what we’ll do in this chapter. We’ll also assume a stochastic

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

92 6 Sparse Coding

model for how the x(’s are generated, which helps prevent lots of pathologies
that can arise (e.g., a column in A is never represented).

6.2 The Undercomplete Case

In this section, we will give an algorithm for sparse coding when A has full
column rank. Our approach will be based on a convex programming relaxation
and many of the insights that we developed in the previous chapter. We will
find our matrix X of sparse representations using the insight that its rows are the
sparsest vectors in the row space of our matrix B of samples. More formally, the
algorithm of Spielman et al. [131] works under the following natural generative
model:

(a) There is an unknown dictionary A that is an n x m matrix and has full
column rank.

(b) Each sample x has independent coordinates, which are nonzero with
probability 6. If a coordinate is nonzero, its value is sample from a
standard Gaussian.

(c) We observe b where Ax = b.

Thus all of our samples are sparse in an unknown basis. So we would like
to find A, or equivalently find its left pseudoinverse A™, which is a linear
transformation that makes all of our samples sparse. The parameter 8 governs
the average sparsity of each representation x and it is required to be neither too
big nor too small. More formally, we assume

1 1

- <O0——-.

n— n'/2logn
Spielman et al. [131] gave a polynomial time algorithm to recover A exactly.
This is a stronger guarantee than the algorithms we will see later, which merely
recover A approximately or to arbitrarily good precision, but require more
and more samples to do so. However, the later algorithms will work in the
overcomplete case and in the presence of noise. It’s also important to note that,
strictly speaking, if the coordinates of x; were independent, we could recover
A using algorithms for independent component analysis [74]. However, those
algorithms are very sensitive to the independence assumption, and everything
we do here will work even under weaker conditions (that are a mouthful to
properly spell out).

We will make the simplifying assumption that A is invertible. This doesn’t
really cost us anything, but let’s leave that as an exercise for the reader. In any
case, the main insight that underlies the algorithm is contained in the following
claims:

Claim 6.2.1 The row span of B and the row span of A~'B = X are the same.

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.2 The Undercomplete Case 93

Proof: The proof follows by observing that for any vector u,
u'B=w'A)A™'B=1"x.

So we can represent any linear combination of the rows of B with a correspond-
ing linear combination of the rows of X. We can obviously go in the reverse
direction as well. W

We will state the second claim informally for now:

Claim 6.2.2 Given enough samples, with high probability the sparsest vectors
in the row span of X are the rows of X.

Hopefully this claim is intuitively obvious. The rows of X are independent
random vectors whose average sparsity is 6. For our choice of 8, we will have
few collisions, which means the sparsity of any two rows of X should be about
twice the sparsity of one row.

Now we come to the need for a convex programming relaxation. We
can’t hope to directly find the sparsest vector in an arbitrary subspace. We
proved that that problem is NP-hard in Theorem 5.1.5. But let’s leverage
our insights from sparse recovery and use a convex programming relaxation
instead. Consider the following optimization problem:

(P1) min |w/B||; s.t. Tw=1

This is the usual trick of replacing the sparsity of a vector with its £ norm. The
constraint 7w = 1 is needed just to fix a normalization, to prevent us from
returning the all-zero vector as a solution. We will choose r to be a column in
B for reasons that will become clear later. Our goal is to show that the optimal
solution to (Py) is a scaled row of X. In fact, we can transform the above linear
program into a simpler one that will be easier to analyze:

Q) min X[y st.cTz=1

Lemma 6.2.3 Let ¢ = A~'r. Then there is a bijection between the solutions of
(P1), and the solutions of (Q1) that preserves the objective value.

Proof: Given a solution w to (P1), we can set z = AT w. The objective values
are the same because

wiB=wlAx =71x
and the linear constraint is met, because again
l=Tw=rT@ANH 2= A Y ;=7

and it is easy to check that you can go from a solution to (Q1) to a solution to
(P1) in the analogous way. W

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

94 6 Sparse Coding

The Minimizers Are Somewhat Sparse

Here we will establish a key step in the analysis. We will show that any optimal
solution z, has its support contained in the support of c. Remember, we chose
r to be a column of B. We promised to give an explanation later, so now we
can ask: Why did we do this? The point is that if r is a column of B, then the
way our bijection between solutions to (P1) and (Q7) worked was that we set
¢ =A"!r, and so c is a column of X. In our model, c is sparse, so if we show
that the support of z is contained in the support of ¢, we’ll have proven that z,
is sparse too.

Now let’s state and prove the main lemma in this subsection. In what
follows, we will assert that certain things happen with high probability but
will not dwell on the number of samples needed to make these things be true.
Instead, we will give a heuristic argument why the concentration bounds ought
to work out that way and focus on the analogy to sparse recovery. For full
details, see Spielman et al. [131].

Lemma 6.2.4 With high probability, any optimal solution z,. to (Q1) satisfies
supp(zx) < supp(c).

Proof: Let’s decompose z, into two parts. Set J/ = supp(c) and write z, =
20 + z1 where zq is supported in J and z; is supported in J. Then we have
cTzo = ¢T'z,. What this means is that since z, is a feasible solution to (Qy),
then zg is too. Our goal is to show that zg is a strictly better solution to (Q1)
than z, is. More formally, we want to show:

15X < zEXlls-
Let S be the set of columns of X that have a nonzero entry in J. That is,
S = {jix/ # 0.
‘We now compute:
I X1 = llzg Xslh + Xl

T T T
= llzoXslt = llzy Xsllh + llzy Xsll1
T T T
> llzg Xl — 2llz; Xsllt + llzy X1l

For now, let’s assume the following claim:

Claim 6.2.5 With high probability, for any nonzero z; we have ||z1TX >
2|lz] Xsll1.-

With this claim, we have
T T
llze X111 > llzg Xl

which completes the proof. W

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.2 The Undercomplete Case 95

Now let’s prove Claim 6.2.5:
Proof: For now, let’s cheat and assume that z; is fixed and is a unit vector.
Then S is a random set, and if we take p samples from the model we have
T IS T
Elllz; Xsll1]1 = ?]E[Ilzlxllll.

The expected size of S is p x E[|supp(x;)|] x 0 = 0%np = o(p). Together, these
imply that

2E[IS]]

Elllz] Xll1 — 2llz} Xsl11 = (1 —)E[nz?xnl]

is bounded away from zero, thus proving our desired bound
17 Xl = 2llz{ Xsll1 > 0

holds with high probability for any fixed z;. We can take a union bound over
an e-net of all possible unit vectors z; and conclude by rescaling that the bound
holds for all nonzero z;’s. Wl

The Minimizers Are Rows of X

Now we know that the solutions to (Q1) are somewhat sparse, because their
support is contained in the support of c¢. But even sparse linear combinations
of the rows of X will have few collisions, and so we should expect the £; norm
to be approximately preserved. More precisely:

Lemma 6.2.6 With high probability, for any vector z supported in a set J of
size at most 100nlog n, we have

I5x1h = (1 io(l))Cﬁnanl

where C is the expected absolute value of a nonzero in X.

We will not prove this lemma here. See Spielman et al. [131] for full details.
However, the intuition is easy. We should expect most of the columns of X; to
have at most one nonzero element. It is straightforward to analyze the expected
contribution of these columns, and the remaining columns have only lower-
order contributions. What this means for us is that instead of (Q;), we can
consider

(R)) min ||z||; s.t. Tz =1

because the feasible regions of (Q1) and (R;) are the same, and their objective
value is nearly the same after rescaling. The final step is the following:

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

96 6 Sparse Coding

Lemma 6.2.7 If ¢ has a unique coordinate of maximum value c;, then the
unique optimal solution to (Ry) satisfies z; = 1/c; and z; = 0 for all other
coordinates j.

Now we can state the main theorem:

Theorem 6.2.8 [131] Suppose A is an n x m matrix with full column rank
and we are given a polynomial number of samples from the generative model.
There is a polynomial time algorithm to recover A exactly (up to a permutation
and rescaling of its columns) that succeeds with high probability.

Proof: The theorem follows by putting together Lemma 6.2.4, Lemma 6.2.6,
and Lemma 6.2.7. Using these and the bijection in Lemma 6.2.3, we conclude
that for any optimal solution to (P), the vector that appears in the objective
function is

w'B =7'x

where the only the i coordinate of z is nonzero. Hence it is a scaled copy of
the i row of X. Now, since the generative model chooses the nonzero entries
of x from a standard Gaussian, almost surely there is a coordinate that is the
strictly largest in absolute value.

In fact, even more is true. For any fixed coordinate i, with high probability it
will be the strictly largest coordinate in absolute value for some column of X.
This means that if we repeatedly solve (P1) by setting r to be different columns
of B, then with high probability every row of X will show up. Now, once we
know the rows of X, we can solve for A as follows. With high probability, if
we take enough samples, then X will have a left pseudo-inverse and we can
compute A = BX™, which will recover A up to a permutation and rescaling of
its columns. This completes the proof. W

6.3 Gradient Descent

Gradient descent and its relatives are some of the most ubiquitous algorithms
in machine learning. Traditionally, we are faced with the task of minimizing
a convex function f : R” — R either over all of space (the unconstrained
case) or over some convex body K. The simplest possible algorithm you
could think of — follow the direction of steepest descent — works. Actually,
there are all sorts of convergence guarantees out there, depending on what
you know about your function. Is it at least twice differentiable? Do its
gradients smoothly vary? Can you fit a quadratic function under it? There

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.3 Gradient Descent 97

are even accelerated methods that get faster rates by leveraging connections
to physics, like momentum. You could write an entire book on iterative
methods. And indeed there are many terrific sources, such as Nesterov [116]
and Rockefellar [127].

In this section we will prove some basic results about gradient descent in
the simplest setting, where f is twice differentiable, f-smooth, and «-strongly
convex. We will show that the difference between the current value of our
objective and the optimal value decays exponentially. Ultimately, our interest
in gradient descent will be in applying it to nonconvex problems. Some of
the most interesting problems, like fitting parameters in a deep network, are
nonconvex. When faced with a nonconvex function f, you just run gradient
descent anyway.

It is very challenging to prove guarantees about nonconvex optimization
(except for things like being able to reach a local minimum). Nevertheless, our
approach for overcomplete sparse coding will be based on an abstraction of the
analysis of gradient descent. What is really going on under the hood is that the
gradient always points you somewhat in the direction of the globally minimal
solution. In nonconvex settings, we will still be able to get some mileage out
of this intuition by showing that under the appropriate stochastic assumptions,
even simple update rules make progress in a similar manner. In any case, let’s
now define gradient descent:

Gradient Descent

Given: A convex, differentiable function f : R” — R
Output: A point xr that is an approximate minimizer of f

Fort=1toT

Xep1 =X — nVf(x)
End

The parameter 7 is called the learning rate. You want to make it large, but
not so large that you overshoot. Our analysis of gradient descent will hinge
on multivariable calculus. A useful ingredient for us will be the following
multivariate Taylor’s theorem:

Theorem 6.3.1 Letf : R* — R be a convex, differentiable function. Then

1
fO) =f@ + (V@) v —» + 7O — 0"V = x) + o(lly — xI1%).

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

98 6 Sparse Coding

Now let’s precisely define the conditions on f that we will impose. First we
need the gradient to not change too quickly:

Definition 6.3.2 We will say that f is B-smooth if for all x and y, we have

IVF) = Vil < Blly — xII.
Alternatively, if f is twice differentiable, the condition above is equivalent to
IV2f GOl < B for all x.

Next we need to be able to fit a quadratic function underneath f. We need a
condition like this to preclude the case where f is essentially flat for a long time
but we need to move far to reach the global minimum. If you can fit a quadratic
function underneath f, then you know that the global minimum cannot be too
far away from where you currently are.

Definition 6.3.3 We will say that a convex function f is a-strongly convex if
for all x and y, we have

6 =0TV @ —x > aly —x|?

or, equivalently, for all x and y, f satisfies

o
FO) 2 f@) + (V@) =0 + Sy =2l
Now let’s state the main result we will prove in this section:

Theorem 6.3.4 Letf be twice differentiable, B-smooth, and a-strongly convex.
Let x* be the minimizer of f and n < % Then gradient descent starting from
X1 satisfies

o\ 1—1
o =) = B(1=5) I =2
We will make use of the following helper lemma:

Lemma 6.3.5 If f is twice differentiable, B-smooth, and o-strongly con-
vex, then

1
Vi) (xy — x%) > %ux, — X2+ 5 IVF o>

Let’s come back to its proof. For now, let’s see how it can be used to
establish Theorem 6.3.4:

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.3 Gradient Descent 99

Proof: Leta’ = § and B’ = ﬁ Then we have

Ixrsr — x*I% = [lxy — x* — nVfGo)|1?
= |l — X7 = 2 VF ()T (o — x*) + 0?1 VF o) |12
< e — X1 = 200 [lx; — x* 1> + BIVF @)D
= (1 = 2na) lx; — x| + (> = 208)IVF () |1
< (1 —2na") [l — x*[|*.

The first equality follows from the definition of gradient descent. The first
inequality follows from Lemma 6.3.5 and the last inequality from the bound
on the learning rate 7. To complete the proof, note that

FO) + V)T (0 =) < f(65).
Rearranging this inequality and invoking S-smoothness, we have
f0) — &) < V@) (o — x*) < Bllx —x*1%.
And putting it all together, we have
fe) = fe) = (1= 200")y — |2
which completes the proof. W
Now let’s tie up our loose ends and prove Lemma 6.3.5:

Proof: First, by strong convexity we have
F&) = f0) + V@ (& =) + S lx =2
Using the fact that f(x) > f(x*) and rearranging, we get
VAT =) = Sl =P

This is half of the lemma. Now let’s relate the left-hand side to the norm of the
gradient. Actually, we need a more convenient form of Theorem 6.3.1 that has
Lagrange remainder:

Theorem 6.3.6 Letf : R" — R be a twice differentiable function. Then, for
somet € [0,1] and X' = ty + (1 — f)x, we have

Vi) = VI + V) (x = y).

This can be proven using a multivariate intermediate value theorem. In any
case, by setting y = x* and observing that Vf(x*) = 0, we get

V() = VA () (x — x%)

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

100 6 Sparse Coding

from which we get
VT (V) TV = V)T (x — x%)

for some x' = tx 4+ (1 — 1)x*. Now, B-smoothness implies that (V2f(x'))~! >
% V£ (x')||2, which gives us

1
nwuﬂ@—ﬁng.

Taking the average of the two main inequalities completes the proof. W

Actually, our proof works even when the direction you move in is just
an approximation to the gradient. This is an important shortcut when, for
example, f is a loss function that depends on a very large number of training
examples. Instead of computing the gradient of f, you can sample some
training examples, compute your loss function on just those, and follow its
gradient. This is called stochastic gradient descent. The direction it moves
in is a random variable whose expectation is the gradient of f. The beauty
of it is that the usual proofs of convergence for gradient descent carry over
straightforwardly (provided your sample is large enough).

There is an even further abstraction we can make. What if the direction
you move in isn’t a stochastic approximation of the gradient, but is just some
direction that satisfies the conditions shown in Lemma 6.3.5? Let’s call this
abstract gradient descent, just to give it a name:

Abstract Gradient Descent

Given: A functionf : R* — R
Output: A point x7 that is close to x*

Fort=1toT

Xe+1 = X¢ — N8t
End

Let’s introduce the following key definition:

Definition 6.3.7 We say that g; is (¢, B/, €;)-correlated with a point x* if for
all t we have

T 2 2
g O —x*) = o |lxy — x*|I7 + B'llgell” — €.

We have already proven that if f is twice differentiable, f-smooth, and «-
strongly convex, then the gradient is (g, %,0)—correlated with the optimal

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.4 The Overcomplete Case 101

solution x*. It turns out that the proof we gave of Theorem 6.3.4 generalizes
immediately to this more abstract setting:

Theorem 6.3.8 Suppose that g, is (o', B', €;)-correlated with a point x* and,
moreover, n < 2B'. Then abstract gradient descent starting from x| satisfies

/
a1 max; €
o =217 = (1= T2) o =2

!

Now we have the tools we need for overcomplete sparse coding. We’ll
prove convergence bounds for iterative methods in spite of the fact that the
underlying function they are attempting to minimize is nonconvex. The key is
to use the above framework and exploit the stochastic properties of our model.

6.4 The Overcomplete Case

In this section, we will give an algorithm for sparse coding that works for
overcomplete dictionaries. As usual, we will work in a stochastic model. More
formally, x is a random k-sparse vector generated according to the following
procedure:

(a) The support of x is chosen uniformly at random from all size k subsets
of [m].

(b) If the /™ coordinate is nonzero, then its value is independently chosen to
be +1 or —1 (with equal probability).

And we observe just the right-hand side of Ax = b. Our goal is to learn the
columns of A given enough samples from the model. Actually, we’ve made
some simplifying assumptions in the above model that we won’t actually need.
We don’t really need the support of x to be chosen uniformly at random, or
the coordinates to be independent. In fact, our algorithms will even be able to
tolerate additive noise. Nevertheless, our model is easier to think about, so let’s
stick with it.

Now we come to the main conceptual insight. Usually we think of iterative
algorithms as performing alternating minimization on a nonconvex objective
function. For example, a popular energy function in the context of sparse
coding is the following:

p p
EAR) =) p?0 =202+ " LED)
i=1 i=1

where Ax) = b are our observed samples. Moreover, L is a loss function
that penalizes for vectors X that are not k-sparse. You can think of this as

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

102 6 Sparse Coding

being a hard penalty function that is infinite when x has more than k nonzero
coordinates and is zero otherwise. It could also be your favorite sparsity-
inducing soft penalty function.

Many iterative algorithms attempt to minimize an energy function like the
one above that balances how well your basis explains each sample and how
sparse each representation is. The trouble is that the function is nonconvex, so
if you want to give provable guarantees, you would have to figure out all kinds
of things, like why it doesn’t get stuck in a local minimum or why it doesn’t
spend too much time moving slowly around saddle points.

Question 8 Instead of viewing iterative methods as attempting to minimize
a known nonconvex function, can we view them as minimizing an unknown
convex function?

What we mean is: What if, instead of the X’s, we plug in the true sparse
representations x? Our energy function becomes

P
EAX) =) b7 — A7)
i=1

which is convex, because only the basis A is unknown. Moreover, it’s natural to
expect that in our stochastic model (and probably many others), the minimizer
of £ (Z, X) converges to the true basis A. So now we have a convex function
where there is a path from our initial solution to the optimal solution via
gradient descent. The trouble is that we cannot evaluate or compute gradients
of the function £ (:4\, X), because X is unknown.

The path we will follow in this section is to show that simple, iterative algo-
rithms for sparse coding move in a direction that is an approximation to the gra-
dient of £(A, X). More precisely, we will show that under our stochastic model,
the direction our update rule moves in meets the conditions in Definition 6.3.7.
That’s our plan of action. We will study the following iterative algorithm:

Hebbian Rule for Sparse Coding

Input: Samples b = Ax and an estimate A
Output: An improved estimate A

Fort=0to T

Decode using the current dictionary:

39 = threshold; (A7)

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.4 The Overcomplete Case 103

Update the dictionary:

q(t+1)
A<A+n Z (b — ATD) sign(x)T
i=qt+1
End

We have used the following notation:

Definition 6.4.1 Let sign denote the entrywise operation that sets positive
coordinates to +1, negative coordinates to —1, and zero to zero. Also, let
threshold¢ denote the entrywise operation that zeros out coordinates whose
absolute value is less than C/2 and keeps the rest of the coordinates the same.

The update rule is also natural in another sense. In the context of neuroscience,
the dictionary A often represents the connection weights between two adjacent
layers of neurons. Then the update rule has the property that it strengthens
the connections between pairs of neurons that fire together when you set up a
neural network that computes the sparse representation. Recall, these are called
Hebbian rules.

Now let’s define the metric we will use to measure how close our estimate A
is to the true dictionary A. As usual, we cannot hope to recover which column
is which or the correct sign, so we need to take this into account:

Definition 6.4.2 We will say that two n x m matrices A and A, whose columns
are unit vectors, are (8, k)-close if there is a permutation and sign flip of the
columns of A that results in a matrix B that satisifes

1Bi — Aill <6
for all i, and furthermore |B — A| < «||A]|.

First let’s analyze the decoding step of the algorithm:

Lemma 6.4.3 Suppose that A is an n X m matrix that is jt-incoherent and that
Ax = b is generated from the stochastic model. Further suppose that

k< ;
~ 10w logn

and A is (1/logn,2)-close to A. Then decoding succeeds; i.e.,
sign(threshold, 2 (A7 b)) = sign(x)

with high probability.

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

104 6 Sparse Coding

We will not prove this lemma here. The idea is that for any j, we can write

(ZTb)j = AjTijj + (Z] - Aj)Tij]' -|—1/4\]T Z Aixi
ieS\{j}

where § = supp(x). The first term is x;. The second term is at most 1/logn in
absolute value. And the third term is a random variable whose variance can be
appropriately bounded. For the full details, see Arora et al. [16]. Keep in mind
that for incoherent dictionaries, we think of u = 1/4/n.

Let y denote any vector whose norm is negligible (say n~*1). We will use
y to collect various sorts of error terms that are small, without having to worry
about what the final expression looks like. Consider the expected direction that
our Hebbian update moves in when restricted to some column j. We have

g = E[(b — A%) sign(%))]

where the expectation is over a sample Ax = b from our model. This is a priori
a complicated expression to analyze, because b is a random variable of our
model and ¥ is a random variable that arises from our decoding rule. Our main
lemma is the following:

Lemma 6.4.4 Suppose that A and A are (1 /logn,?2)-close. Then

g = pjaj(—AADA; + piA_jOAT A; + y
where q; = P[j € S|, qij = Pli,j € S] and p; = E[x;sign(x;)|j € S]. Moreover,
0 = diag({gi })-

Proof: Using the fact that the decoding step recovers the correct signs of x
with high probability, we can play various tricks with the indicator variable for
whether or not the decoding succeeds and be able to replace X’s with x’s. For
now, let’s state the following claim, which we will prove later:

Claim 6.4.5 gj = E[(I — AsA})Ax sign(x))] £ y

Now let S = supp(x). We will imagine first sampling the support of x, then
choosing the values of its nonzero entries. Thus we can rewrite the expectation
using subconditioning as

g = EIE[(— AsA})Ax sign())]IS] & v
= EIE[(— AsA§)Ajx; sign(y)I1S] & ¥
= pEIT — AsADA] £ v

= pjqiI — ng,'T)Aj + PjZ—ijszAj tvy.

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

6.4 The Overcomplete Case 105

The second equality uses the fact that the coordinates are uncorrelated,
conditioned on the support S. The third equality uses the definition of p;. The
fourth equality follows from separating the contribution from j from all the
other coordinates, where A_; denotes the matrix we obtain by deleting the it
column. This now completes the proof of the main lemma. W

So why does this lemma tell us that our update rule meets the conditions in
Definition 6.3.7? When A and A are close, you should think of the expression
as follows:

8 = pigiI — AADA; + piA_jOAT A; +y

~pjg;(Aj—A)) systemic error

And so the expected direction that the update rule moves in is almost the
ideal direction A; — Zj, pointing toward the true solution. What this tells us
is that sometimes the way to get around nonconvexity is to have a reasonable
stochastic model. Even though in a worst-case sense you can still get stuck in
a local minimum, in the average case you often make progress with each step
you take. We have not discussed the issue of how to initialize it. But it turns
out that there are simple spectral algorithms to find a good initialization. See
Arora et al. [16] for the full details, as well as the guarantees of the overall
algorithm.

Let’s conclude by proving Claim 6.4.5:

Proof: Let F denote the event that decoding recovers the correct signs of x.
From Lemma 6.4.3, we know that F holds with high probability. First let’s use
the indicator variable for event F to replace the X inside the sign function with
x at the expense of adding a negligible error term:

gj = E[(b — A%) sign®) 1] + E[(b — A%) sign(3) 17]
= E[(b — A%) sign(x))Lr] y

The equality uses the fact that sign(x;) = sign(x;) when event F occurs. Now
let’s substitute in forx:

gj = E[(b — A threshold; 2 (A b)) sign(x))17] + y
= E[(b — AsALb) sign(x))1r] £ y
= E[(— AsAD)b sign(x)) 1] £ y
Here we have used the fact that threshold; /Z(ZTb) keeps all coordinates in S

the same and zeros out the rest when event F occurs. Now we can play some
more tricks with the indicator variable to get rid of it:

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

106 6 Sparse Coding

g = E[(— AsAL)b sign(x))] — E[(I — AsAL)b sign(x))17] £ y
= E[(I — AsA§)b sign(x)] £ ¥

which completes the proof of the claim. Line by line, the manipulations are
trivial, but they yield a useful expression for the update rule. W

There are other, earlier algorithms for overcomplete sparse coding. Arora
et al. [15] gave an algorithm based on overlapping clustering that works for
incoherent dictionaries almost up to the threshold where the sparse recovery
problem has a unique solution, a la Lemma 5.2.3. Agarwal et al. [2, 3] gave
algorithms for overcomplete, incoherent dictionaries that work up to thresholds
that are worse by a polynomial factor. Barak et al. [25] gave algorithms based
on the sum-of-squares hierarchy that work with nearly linear sparsity, but
where the degree of the polynomial depends on the desired accuracy.

6.5 Exercises

Problem 6-1: Consider the sparse coding model y = Ax where A is a fixed
n X n matrix with orthonormal columns a;, and x has i.i.d. coordinates drawn
from the distribution

+1 with probability «/2,
xi =14 —1 with probability /2,
0 with probability 1 — «.

The goal is to recover the columns of A (up to sign and permutation) given
many independent samples y. Construct the matrix

M= Ey[<y(”,y> <y(2),y>yyr]

where y(' = Ax(D and y® = Ax® are two fixed samples from the
sparse coding model, and the expectation is over a third sample y from
the sparse coding model. Let Z be the (unit-norm) eigenvector of M corre-
sponding to the largest (in absolute value) eigenvalue.

(a) Write an expression for M in terms of a,xD x@ {ai}.

(b) Assume for simplicity that x(!) and x® both have support size exactly an
and that their supports intersect at a single coordinate i*. Show that
(z,ai)*> > 1 — O(e®n) in the limit @ — 0.

This method can be used to find a good starting point for alternating
minimization.

https://doi.org/10.1017/9781316882177.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.007

