Appendix A Background for Learning
and Hyper-Geometry

This appendix contains background material we use throughout this book. In Sec-
tion A.1, we introduce basic foundations and notation in mathematics and probability
necessary for the machine learning concepts built upon in this book. Section A.2 sum-
marizes technical properties of hyperspheres and spherical caps used in the proofs for
near-optimal evasion.

A1 Overview of General Background Topics

We use standard terms and symbols from several fields, as detailed below to avoid ambi-
guities. We expect that the reader is familiar with the topics in logic, set theory, lin-
ear algebra, mathematical optimization, and probability as reviewed in this section. We
use = to denote equality and £ to denote defined as.

Typesetting of Elements, Sets, and Spaces

The typeface Style of a character is used to differentiate between elements of a set,
sets, and spaces as follows. Individual objects such as scalars are denoted with italic
roman font (e.g., x), and multidimensional vectors are denoted with bold roman font
(e.g., X). As discussed below, sets are denoted using blackboard bold characters (e.g.,
X). However, when referring to the entire set or universe that spans a particular kind
of object (i.e., a space), we use calligraphic script such as in X to distinguish it from
subsets X contained within this space.

Sequences and Indexes

In this book, we differentiate between two types of indexing of objects. The first type is
used to refer to an element in a sequence of similar objects. This type of index occurs
in the superscript following the referenced object and is enclosed within parentheses.
For instance, x'" x®, ..., x™) are a sequence of objects with x*) denoting the 7™ object
in the sequence. The second type of index refers to a component of a composite object
(e.g., within a multidimensional object) and is indexed by the subscript following the
object. For instance x1,x;, ..., xp are the components of the vector x. Thus, x® refers to
the /™ vector in a sequence of vectors, x") refers to its i coordinate, and x* is the k™
power of x;.
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256 Background for Learning and Hyper-Geometry

First-Order Logic

We next describe a formal syntax for expressing logical statements. The notation a A b
denotes the logical conjunction, a and b; a v b denotes the logical disjunction, a or b; —a
is the logical negation, not a; a = b is the logical implication defined as (—a) Vv b; and
a < bis logical equivalence (i.e., if and only if’) defined as (¢ = b) A (b = a). We
use the symbols V and 3 for universal and existential quantification, respectively. When
necessary, predicates can be formalized as functions such as p ( - ), which evaluates to
true if and only if its argument exhibits the property represented by the predicate. The
special identity predicate is defined as 1 [a] < a. For convenience, we overload this
notation for the indicator function, which instead evaluates to 1 if its argument is true
and to 0 otherwise.

Sets

A set, or a collection of objects, is denoted using blackboard bold characters such
as X as noted above and the empty set is given by . To group a collection of
objects as a set we use curly braces such as X = {a, b, c}. To specify set member-
ship we use x € X, and to explicitly enumerate the elements of a set we use the nota-
tion X = {x1, x2, ..., xy} for a finite set and X = {x, x5, ...} for a countably infinite
sequence. To qualify the elements within a set, we use the notation X = {x | 4 (x)} to
denote a set of objects that satisfy a logical condition represented here by the predi-
cate A( - ). We use Y C X to denote that Y is a subset of X; ie.,Vy(y €Y = y e
X). For finite sets, we use the notation |X| to denote the size of X. We denote the
union of two sets as XUY £ {a | (a € X)V (a € Y)}, the intersection of two sets
as XNY 2 {a| (aeX)A(aeY)), and the set difference of two sets as X\ Y £
{a| (a e X)A(a ¢Y)}; ie., the elements in X but not in Y. We also use the predi-
cate Ix [ - ] to denote the set indicator function for X; i.e., Ix [x] £ I [x € X] (again we
overload this function to map onto {0, 1} for convenience).

Integers and Reals

Common sets include the set of all integers 3 and the set of all real numbers 9. Spe-
cial subsets of the integers are the natural numbers 1 L2ze3|z>0={1,2,...}
and the whole numbers 9y £ {z€ 3| z>0} ={0,1,...}. Similarly, special subsets of
the reals are the positive reals Ry = {r € R | » > 0} and the non-negative reals Ry, =
{r e M| r = 0}. Intervals are subsets of the reals spanning between two bounds; these
are denoted by (a,b) 2 {reR|a<r<b}, [a,b)2{reR|a<r<b} (a,b] 2
{ref| a<r<b},and[a, bl £ {r e R | a <r < b}. For instance, R, = (0, oo) and
Nor = [0, 00).

Indexed Sets

To order the elements of a set, we use an index set as a mapping to each element.
For a finite indexable set, we use the notation {x(i)}i\;l to denote the sequence of N
objects, ¥V, indexed by {1, ..., N} . More generally, a set indexed by some I is denoted
{x®}._;- An infinite sequence can be indexed by using infinite index sets such as 9 or

I depending on the cardinality of the sequence.
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Multidimensional Sets

Sets can also be coupled to describe multidimensional objects or ordered tuples.
In refering to an object that is a tuple, we use a (lowercase) bold character such
as x and use parenthetical brackets (-) to specify the contents of the tuple. The
simplest tuple is an ordered pair (x,y) € X x Y, which is a pair of objects from
two sets: x € X and y € Y. The set of all such ordered pairs is called the Carte-
sian product of the sets X and Y denoted by X x Y 2 {(x,y) | xe X Ay e Y}.
This concept extends beyond ordered pairs to objects of any dimension. A D-

tuple is an ordered list of D objects belonging to D sets: (xj,x2,...,Xp) €
Xf): | X; where the generalized Cartesian product X?Z X EXxXyx...xXp=
{(x1,x0,...,xp) | x1 € X] Ax, €X; A ... A xp € Xp};ie., the set of all such D-

tuples. The dimension of this Cartesian product space and any member tuple is D, and
the function dim ( - ) returns the dimension of a tuple. When each element of a D-tuple
belongs to a common set X, the generalized Cartesian product is denoted with expo-
nential notation as XP £ X2 X; e.g., the Euclidean space %t” is the D-dimensional
real-valued space.

Vectors

For our purposes, a vector is a special case of ordered D-tuples that we represent
with a (usually lowercase) bold character such as v; unlike general tuples, vector
spaces are endowed with an addition operator and a scalar multiplication operator,
which obey properties discussed here. Consider a D-dimensional vector v € X" with
elements in the set X. The i element or coordinate of v is a scalar denoted by

v; € X where i € {1, 2, ..., D}. Special real-valued vectors include the all ones vec-
torl1 =(1,1,---,1),theall zeros vector 0 = (0, 0, - - - , 0), and the coordinate or basis
vector @ £ 0,...,1,...,0), which has a one only in its d™ coordinate and is zero
elsewhere.

A vector space, X, is a set of vectors that can be added to one another or multiplied
by a scalar to yield a new element within the space; i.e., the space is closed under vector
addition and scalar multiplication operations that obey associativity, commutativity, and
distributivity and have an identity (vector and scalar, respectively) as well as additive
inverses. For example, the Euclidean space " is a vector space for any n € 91 under the
usual vector addition and real multiplication. A convex set C C X’ is a subset of a vector
space with real scalars, with the property that Vo € [0, 1], x,y€eC = (1 —a)x+
ay € C; ie., C is closed under convex combinations. A vector space X is a normed
vector space if it is endowed with a norm function || - || : X — 9 such that for all
vectors x, y € X, i) there is a zero element 0 that satisfies ||x|| = 0 < x = 0, ii) for any
scalar «, |lax|| = |a| ||x||, and iii) the triangle inequality holds: ||x + y|| < [Ix]| + IVl .
A common family of norms are the £, norms defined as

Ixll, £ 32 bil? (A1)

for p € M. An extension of this family includes the £, norm, which is defined as
I¥lloe = max [Jx;]].
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Matrices

Usually denoted with an uppercase bold character such as A, a matrix is a multi-
dimensional object with two indices, which represent a row and column. The (i, j)th
element of A is denoted by 4;; € X where i € {1,2,..., M} and j € {1,2,...,N}.
The full matrix can then be expressed element-wise using the bracket notation:

A A - Ay

Ayy Azp - Aay
A= . . .

Avi Amz - Aun

As suggested by this notation, a matrix’s first index specifies its row and the second
specifies its column. Each row and column are themselves vectors and are denoted by
A;, and A, ; respectively. We also use the bracket notation [ - ]; ; to refer to the (i, b
element of a matrix-valued expression; e.g., [A + B]; ; is the (i, j)th element of the
matrix A + B. Special matrices include the identity matrix I, with 1’s along its diagonal
and 0’s elsewhere, and the zero matrix 0 with zero in every element. The transpose of an
M x N-dimensional matrix is an N x M-dimensional matrix denoted as A" and defined
as [AT]i,j = Aj’,'.

Matrix Multiplication

Here we consider vectors and matrices whose elements belong to a scalar field X
endowed with multiplication and addition (e.g., 3, N). For the purpose of matrix
multiplication, we represent an N-dimensional vector as the equivalent N x 1 matrix
for notational convenience. The inner product between two vectors v and w, with
dim (v) = dim (w) = N, is the scalar denoted by v/ w = Zfil v; - w;. The outer prod-
uct between M-dimensional vector v and N-dimensional vector w is an M x N-
dimensional matrix denoted by vw' with elements [VWT]U = v; - w;. The product
between an M x N-dimensional matrix A and an N-dimensional vector w is denoted
Aw and defined as the M-dimensional vector of inner products between the i row
A;. and the vector w; i.e., [Aw], = A/, w. It follows that v’ Aw is a scalar defined as
v Aw = Zi’ ;i - Aj j - w;. The matrix product between an M x N-dimensional matrix
A and an N x K-dimensional matrix B is an M x K-dimensional matrix denoted by AB
whose (i, j)™ element is the inner product between the i row of A and the /™ column
of B;ie., [AB],; = A/ B, ;.

We also use the Hadamard (element-wise) product of vectors and matrices that we
denote with the ® operator. The Hadamard product of vectors v and w, with dim (v) =
dim (w), is a vector defined as [v © w]; £ v; - w;. Similarly, the Hadamard product of
matrices A and B, with dim (A) = dim (B), is the matrix [A © B]; ; = Aij-Bij.

Functions

We denote a function using regular italic font; e.g., the function g. However, for common
named functions (such as logarithm and sine) we use the non-italicized Roman typeface
(e.g., log and sin). A function is a mapping from its domain X to its co-domain or range
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Y; g: X — Y. To apply g to x, we use the usual notation g (x); x € X is the argument
and g(x) € Y is the value of g at x. We also use this notation to refer to parameterized
objects, but in this case, we will name the object according to its type. For instance,
B (g) £ {x | g(x) < C} is a set parameterized by the function g called the C-ball of g,
and so we call attention to the fact that this object is a set by using the set notation B in
naming it.

A convex function is any real-valued function g : X — 9 whose domain X is a con-
vex set in a vector space such that, for any x(!), x? € X and any « € [0, 1], the function
satisfies the inequality

f (ax(l) +(1— ot)x(z)) <af (x(l)) +(1-a)f (x(z)) .

Families of Functions

A family of functions is a set of functions, for which we extend the previous con-
cept of multidimensional sets. Functions can be defined as tuples of (possibly) infi-
nite length—instead of indexing the tuple with natural numbers, it is indexed by the
domain of the function; e.g., the reals. To represent the set of all such functions, we
use the generalized Cartesian product over an index set I as X, X where X is the
co-domain of the family of functions. For instance, the set of all real-valued functions
is G = X, eq N; 1€, every function g € G is a mapping from the reals to the reals:
g: N — N. We also consider special subsets such as the set of all continuous real-
valued functions G(©oninuows) — o e G | continuous (g)} or the set of all convex func-
tions G — (g e G| Ve [0,1] gltx+ (1 —¢t)y) <tg(x)+ (1 —1t)g(y)}. Par-
ticularly, we use the family of all classifiers (as defined in Section 2.2.2) in a D-
dimensional space in Chapter 8. This family is the set of functions mapping R” to
the set {"—", "+"} and is denoted by F £ X g {"—", "+"}.

Optimization

Learning theory makes heavy use of mathematical optimization. Optimization typically
is cast as finding a best object x from a space X in terms of finding a minimizer of an
objective function f : X — 9.

x* € argmin [ f (x)]
xeX
where argmin [ - ] is a mapping from the space of all objects X to a subset X' C X,
which is the set of all objects in X that minimize f (or equivalently maximize — f).
Optimizations can additionally be restricted to obey a set of constraints. When specify-
ing an optimization with constraints, we use the following notation:

argmin, v [/ (x)]
s.t. C(x)

where f is the function being optimized and C represents the constraints that need
to be satisfied. Often there will be several constraints C; that must be satisfied in the
optimization.
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(a) A Spherical Cap on a Circle (b) An Angular Cap on a Circle

Figure A.1 This figure shows various depictions of spherical caps. (a) A depiction of a spherical
cap of height 4, which is created by a halfspace that passes through the sphere. The gray region
represents the area of the cap. (b) The geometry of the spherical cap: The intersecting halfspace
forms a right triangle with the centroid of the hypersphere. The length of the side of this triangle
adjacent to the centroid is R — 4, its hypotenuse has length R, and the side opposite the centroid

has length \/A(2R — h). The half-angle ¢, given by sin (¢) = ~ h(ff_h), of the right circular cone
is used to parameterize the cap.

Probability and Statistics

We denote a probability distribution over the space & by Py. It is a function that is
defined on the subsets in a o-field of X (i.e., a set of subsets A® C X that is closed
under complements and countable unions) and satisfies (i) Py (A®) > 0 for all sub-
sets A, (ii) Py (X) = 1, and (iii) for pairwise disjoint subsets A, A®) . it yields
Py (U; A?) = 3, Px (A®) . For a more thorough treatment, we refer the interested
reader to Billingsley (1995). A random variable drawn from distribution Py is denoted
by X ~ Py—notice that we do not use a special notation for the random variable, but
we make it clear in the text that they are random. The expected value of a random vari-
able is denoted by Ex~p, [X] = [ x dPy (x) or simply by E [X] when the distribution
of the random variables is known from the context. The family of all probability distri-
butions on X is denoted by Py ; as above, this is the family of all functions that assign
probability to elements of the o-field of X.

A.2 Covering Hyperspheres
Here we summarize the properties of hyperspheres and spherical caps and a covering
number result provided by Wyner (1965) and Shannon (1959). This covering result will

be used to bound the number of queries required by any evasion algorithm for £, costs
in Appendix D.2.
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A D-dimensional hypersphere is simply the set of all points with £, distance less than
or equal to its radius R from its centroid (in Chapter 8, x?); i.e.,; the ball B (4,). Any
D-dimensional hypersphere of radius R, S¥, has volume

D
vol (S¥) = ——_ . RP (A2)
r(1+7%)
and surface area
D- 71%
SR _ = =" .RDfl
surf( ) T (1 n %)

A D-dimensional spherical cap is the outward region formed by the intersection of
a halfspace and a hypersphere as depicted in Figure A.1(a). The cap has a height of 4,
which represents the maximum length between the plane and the spherical arc. A cap
of height 4 on a D-dimensional hypersphere of radius R will be denoted by CF and has
a volume

D1 R=h
—RD arccos(T)
vol (CF) = -~ / sin® (1) dt

(%)
and surface area
> —h
(D— 1)-7-[%RD—1 arccos( £1) o
surf (Cy) = Cay 0 sin®2 () dt.
2

Alternatively, the cap can be parameterized in terms of the hypersphere’s radius R and
the half-angle ¢ about a central radius (through the peak of the cap) as in Figure A.1(b).
A cap of half-angle ¢ forms the right triangle depicted in the figure, for which R —
h = Rcos (¢) so that 4 can be expressed in terms of R and ¢ as 7 = R % (1 — cos ¢).
Substituting this expression for 4 into the above formulas yields the volume of the cap
as

vol (CX) = iﬁl) f " sin® (1) de (A3)
r (%) Jo

and its surface area as

D-1

_ .73 RD-1 ¢
surf (CEF) = b-D-x R / sin®2 (¢) dt.
0

r (%)

Based on these formulas, we now bound the number of spherical caps of half-angle ¢
required to cover the sphere mirroring the result of Wyner (1965).

LEMMA A.l (Result based on Wyner (1965) Covering the surface of D-dimensional
hypersphere of radius R, SR, requires at least

| \P2
( sin (¢))

spherical caps of half-angle ¢ € (0, %)
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Proof Suppose there are M caps that cover the hypersphere. The total surface area of
the M caps must be at least the surface area of the hypersphere. Thus,

R
- surf (S )
R
surf (C¢>
Dx? _ pp-1
- r(1+%)
- ol — . _
Ol T [ i 1) d

Dy (%) [ ? b }
> D_r (1 n %)) /0 sin” < (¢) dt )

which is the result derived by Wyner (although applied as a bound on the packing num-
ber rather than the covering number). We continue by lower bounding the above inte-
gral. As demonstrated above, integrals of the form f0¢ sin? (¢) dt arise in computing
the volume or surface area of a spherical cap. To upper bound the volume of such
a cap, note that 7) the spherical cap is defined by a hypersphere and a hyperplane,
ii) their intersection forms a (D — 1)-dimensional hypersphere as the base of the cap,
iii) the projection of the center of the first hypersphere onto the hyperplane is the center
of the (D — 1)-dimensional hyperspherical intersection, iv) the distance between these
centers is R — &, and v) this projected point achieves the maximum height of the cap;
i.e., continuing along the radial line achieves the remaining distance 4~—the height of
the cap. We use these facts to upper bound the volume of the cap by enclosing the
cap within a D-dimensional hypersphere. As seen in Figure A.1(b), the center of the
(D — 1)-dimensional hyperspherical intersection forms a right triangle with the original
hypersphere’s center and the edge of the intersecting spherical region (by symmetry, all
such edge points are equivalent). That right triangle has one side of length R — 4 and a
hypotenuse of R. Hence, the other side has length s = \/A(2R — h) = Rsin (¢). More-
over, R > h implies s > h. Thus, a D-dimensional hypersphere of radius s encloses the
cap, and its volume from Equation (A.2) bounds the volume of the cap as

(Sie}

- (Rsin (¢))” .

1(CF) < vol (§) = ——
v0(¢)§vo() I

r(i+3%)

Applying this bound to the formula for the volume of the cap in Equation A.3 then
yields the following bound on the integral:

7T RP [, n? ) B

Wzl)/o sin” (¢) dt < m'(RSIH(Cb))
* D vl (58

A sin (t) dt < 1_‘(1—4_%) - SIn (¢)

https://doi.org/10.1017/9781107338548.010 Published online by Cambridge University Press


https://doi.org/10.1017/9781107338548.010

A.2 Covering Hyperspheres 263

Using this bound on the integral, the bound on the size of the covering from Wyner
reduces to the following (weaker) bound:

DAL (%) [ﬁr (%) oo }
r(3) |

Finally, using properties of the gamma function, it can be shown that

D=1 which simplifies the above expression to

D
| \P-2
> .
- (ww)

It is worth noting that by further bounding the integral f0¢ sin? (¢) dt, the bound in
Lemma A.1 is weaker than the original bound on the covering derived in Wyner (1965).
However, the bound provided by the lemma is more useful for later results because it is
expressed in a closed form (see the proof for Theorem 8.13 in Appendix D.2).

Of course, there are other tighter bounds on this power-of-sine integral. In
Lemma A.1, this quantity is controlled using a bound on the volume of a spherical
cap, but here we instead bound the integral directly. A naive bound can be accom-
plished by observing that all the terms in the integral are less than the final term, which
yields

= (D—-Dr(1+2)

NGOV

r(+3)r(%)

0

¢
/ sin” (1) dt < ¢ - sin® (¢),

0

but this bound is looser than the bound achieved in the lemma. However, by first per-
forming a variable substitution, a tighter bound on the integral can be obtained. The vari-

able substitution is given by letting p = sin’ (¢), t = arcsin (/p), and dt = 5 \/1% -
This yields

¢ 1 psi’@ 5t
/ sin® (1) dt:—/ P~ ap.
0 2 Jo l—p

Within the integral, the denominator is monotonically decreasing in p since, for the
interval of integration, p < 1. Thus it achieves its minimum value at the upper limit
p = sin® (¢). Fixing the denominator at this value therefore results in the following
upper bound on the integral:

¢ ) 1 sin2(¢) o1 SinD+l (¢)
D —_— 2 e —
/(; sin” (¢) dt < 7c0s (@) /0 p? dp= ( Dcos (@) (A.4)

This bound is not strictly tighter than the bound applied in Lemma A.1, but for large D
and ¢ < 7, this result does achieve a tighter bound. We apply this bound for additional
analysis in Section 8.3.1.4.
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A3 Covering Hypercubes

Here we introduce results for covering D-dimensional hypercube graphs—a collection
of 2P nodes of the form (£1, &1, ..., 1) where each node has an edge to every other
node that is Hamming distance 1 from it. The following lemma summarizes coverings
of a hypersphere and is utilized in Appendix D for a general query complexity result for
£, distances:

LEMMA A.2 Forany0 < § < % and D > 1, to cover a D-dimensional hypercube graph
so that every vertex has a Hamming distance of at most h = |8D] to some vertex in the
covering, the minimum number of vertixes in the covering is bounded by

O (D, h) = 2P0-HO),
where H (§) = —élog, (§) — (1 — 8)log, (1 — 8) is the entropy of é.
Proof There are 2P vertices in the D-dimensional hypercube graph. Each vertex in the
covering is within a Hamming distance of at most 4 for exactly ZLO (f) vertexes.
Thus, one needs at least 2°/ (ZZ:O (1,3)) vertexes to cover the hypercube graph. Now
we apply the following bound (cf. Flum & Grohe 2006, page 427)

[8D]

D
< pH@ED
Y (0)

k=0

to the denominator,! which is valid for any 0 < § < O

1
3
LEMMA A.3 The minimum of the €, cost function A, from the target x" to the halfspace
H™b) — {x | X'w> bTw} can be expressed in terms of the equivalent hyperplane

. . T
x'w > d parameterized by a normal vector w and displacement d = (b - xA) W as

d-|wl|}, ifd>0
min A4, (x — XA) = = s (A.S5)
xeH M 0, otherwise
Jorall 1 < p < oo and for p= oo itis
. d-lwly', ifd >0
min Ay (x —x1) = ! . A.6
xeH™D) 0 ( ) 0, otherwise (A.6)

Proof For 1 < p < 0o, minimizing 4, on the halfspace H™-P) is equivalent to finding a
minimizer for

D
! T
mln—E P st x'w<d.
x p*4
i=1

Clearly, if d < 0 then the vector 0 (corresponding to x* in the transformed space) triv-
ially satisfies the constraint and minimizes the cost function with cost 0, which yields

' Gottlieb, Kontorovich, & Mossel (2011) present a tighter entropy bound on this sum of binomial coeffi-
cients, but it is unnecessary for our result.
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the second case of Equation (A.5). For the case d > 0, we construct the Lagrangian
12
LEA)E =Dl —r(x'w—d).
L

Differentiating this with respect to x and setting that partial derivative equal to zero
yield
. 1
x; = sign (w;) (A|w;])7T .

Plugging this back into the Lagrangian yields

D
1 — ) )
Lo 1) = —La5 3wl 4,
p i=1

which we differentiate with respect to A and set the derivative equal to zero to yield

d -
A= — .
<Z?=1 |wi|”l>

Plugging this solution into the formula for x* yields the solution

) d e
xp =sign(w) | —5———= | lwil"".
Zi=1 [w;| 71

The £, cost of this optimal solution is given by

Ap (X =x) =d - Wil

-1
which is the first case of Equation (A.5).

For p = o0, once again if d < 0 then the vector 0 trivially satisfies the constraint and
minimizes the cost function with cost 0, which yields the second case of Equation (A.6).
For the case d > 0, we use the geometry of hypercubes (the equi-cost balls of a £, cost
function) to derive the second case of Equation (A.6). Any optimal solution must occur
at a point where the hyperplane given by x'w = b w is tangent to a hypercube about
x?—this can either occur along a side (face) of the hypercube or at a corner. However,
if the plane is tangent along a side (face), it is also tangent at a corner of the hypercube.
Hence, there is always an optimal solution at some corner of the optimal cost hypercube.

The corner of the hypercube has the following property:

Il =gl = ... = Ixpl;

that is, the magnitude of all coordinates of this optimal solution is the same value.
Further, the sign of the optimal solution’s i coordinate must agree with the sign of the
hyperplane’s i coordinate, w;. These constraints, along with the hyperplane constraint,
lead to the following formula for an optimal solution:

x; = d - sign (w;) [}

for all i. The £, cost of this solution is simply d - ||w||1_1. O
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