
Appendix B Full Proofs for Hypersphere
Attacks

In this appendix, we give proofs for the theorems from Chapter 4. For this purpose, we
introduce the concept of (τ, k)-differing sequences, which are a pair of sequences a, b ∈
A(M,∞) that are everywhere identical except in the τ th, τ + 1th, …, τ + kth consecutive
elements and have the following mass-balance property:

τ+k∑
t=τ

at =
τ+k∑
t=τ

bt . (B.1)

The following lemma for (τ, 1)-differing sequences simplifies several of the subsequent
proofs.

lemma B.1 For any (τ, 1)-differing sequences a, b ∈ A(M,∞) that are identical except
in their τ th and (τ + 1)th elements (with aτ + aτ+1 = bτ + bτ+1 from Equation (B.1)),
the difference between the distances of these sequences, �a,b � D (a) − D (b), can be
expressed as

�a,b =
(
μ

(a)
τ−1 + bτ

)
· aτ · aτ+1 −

(
μ

(a)
τ−1 + aτ

)
· bτ · bτ+1(

μ
(a)
τ−1 + aτ

) (
μ

(a)
τ−1 + bτ

) (
μ

(a)
τ−1 + aτ + aτ+1

) (B.2)

where μ
(a)
t = N +∑t

�=1 a� is the cumulative sum of the first t elements of the sequence
a as in Equation (4.7). This holds so long as either μ

(a)
τ−1 > 0 or both aτ > 0 and

bτ > 0.

Proof First, for t < τ , μ
(a)
t = μ

(b)
t since the two sequences are identical until the τ th

element. Similarly, for t > τ + 1 we again have μ
(a)
t = μ

(b)
t since the sequences only

differ in their τ th and (τ + 1)th elements and they are mass-balanced according to Equa-
tion (B.1) for which we define γ � aτ + aτ+1 = bτ + bτ+1 as the balance constant for
these sequences. Using these two facts and that, from Equation (4.12), δt (a) = at

μ
(a)
t

, we

have that δt (a) = δt (b) if t < τ or t > τ + 1. Thus difference in the distances achieved
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B.1 Proof of Theorem 4.7 267

by these two sequences is given from Equations (4.11) can be expressed as

�a,b =
∑
t=1

[δt (a) − δt (b)]

=
τ−1∑
t=1

[δt (a) − δt (b)]

︸ ︷︷ ︸
=0

+δτ (a) − δτ (b) + δτ+1 (a) − δτ+1 (b)

+
∑

t=τ+2

[δt (a) − δt (b)]

︸ ︷︷ ︸
=0

= aτ

μ
(a)
τ

− bτ

μ
(b)
τ

+ aτ+1

μ
(a)
τ+1

− bτ+1

μ
(b)
τ+1

= aτ

μ
(a)
τ−1 + aτ

− bτ

μ
(a)
τ−1 + bτ

+ aτ+1

μ
(a)
τ−1 + γ

− bτ+1

μ
(a)
τ−1 + γ

.

To combine these four terms, we can obtain a common denominator of � =(
μ

(a)
τ−1 + aτ

) (
μ

(a)
τ−1 + bτ

) (
μ

(a)
τ−1 + γ

)
for which the combined numerator is given by[

aτ

(
μ

(a)
τ−1 + bτ

)
− bτ

(
μ

(a)
τ−1 + aτ

)] (
μ

(a)
τ−1 + γ

)
+ (aτ+1 − bτ+1)

(
μ

(a)
τ−1 + aτ

) (
μ

(a)
τ−1 + bτ

)
= μ

(a)
τ−1aτ aτ+1 − μ

(a)
τ−1bτ bτ+1 + bτ aτ aτ+1 − aτ bτ bτ+1

=
(
μ

(a)
τ−1 + bτ

)
· aτ · aτ+1 −

(
μ

(a)
τ−1 + aτ

)
· bτ · bτ+1,

in which we used the definition of γ to cancel terms. Combining this numerator with
the denominator � yields Equation (B.2). Finally the condition that either μ

(a)
τ−1 > 0

or both aτ > 0 and bτ > 0 is necessary to prevent the denominator from becoming
zero. �

B.1 Proof of Theorem 4.7

Here we show that the optimal attack according to Equation (4.5) can be optimized in
a greedy fashion. Further, we show that the optimal attack points are all placed at the
intersection of the hypersphere’s boundary and the desired attack direction.

Proof Consider the t th iteration of the attack for any t ∈ N. The attacker’s goal in
the t th iteration is to maximize the displacement alignment given in Equation (4.5).
The attacker accomplishes this by crafting a set of αt ∈ N attack points: A(t ) ={
a(t,�)

}αt

�=1
. These points are designed to maximize D�

t
xA−c(0)

‖xA−c(0)‖ where Dt = c(t )−c(0)

R

by Equation (4.4), c(t ) is defined recursively by Equation (4.8), and each attack
vector is constrained to lie within the (t − 1)th hypersphere; i.e.,

∥∥a(t,�) − c(t−1)
∥∥ ≤

R for all � = 1, . . . , αt . The attacker’s objective can be modified without loss of
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268 Full Proofs for Hypersphere Attacks

generality by first transforming the space so that c(t−1) = 0 (via the transform x̂ �→
x − c(t−1)). This yields the following equivalent program that the attack optimizes:

maxA(t ) ρ
(

D̂t

)
= D̂�

t

x̂A − ĉ(0)∥∥x̂A − ĉ(0)
∥∥

s.t. ∀ � ∈ 1, . . . , αt

∥∥â(t,�)
∥∥2 ≤ R2,

where D̂t = ĉ(t )−ĉ(0)

R and ĉ(t ) takes the simplified form ĉ(t ) = 1
μt

∑αt
�=1 â(t,�). The Lagrang-

ian for this program at the t th attack iteration is

Lt

({
â(t,�)

}
,λ
) = D̂�

t

x̂A − ĉ(0)∥∥x̂A − ĉ(0)
∥∥ −

αt∑
�=1

λ�

(∥∥â(t,�)
∥∥2 − R2

)

= 1

Rμt

∥∥x̂A − ĉ(0)
∥∥

αt∑
�=1

(
â(t,�)

)� (
x̂A − ĉ(0)

)− αt∑
�=1

λ�(â(t,�) )�â(t,�)

−
(
ĉ(0)
)� (

x̂A − ĉ(0)
)

R
∥∥x̂A − ĉ(0)

∥∥ + R2
αt∑

�=1

λ�

where the variables λ� ≥ 0 are the Lagrangian multipliers and the second equality fol-
lows from expanding the above form of D̂t .

We compute the partial derivatives of Lt

({
â(t,�)

}
,λ
)

with respect to the Lagrangian
multipliers λ and set them to zero to reveal that, at a solution,

∥∥â(t,�)
∥∥ = R. Further, by

the complementary slackness conditions that arise from the dual of the above program,
it follows that the Lagrangian multipliers are non-zero; i.e., ∀ i λi ≥ 0. Then computing
the partial derivatives of Lt

({
â(t,�)

}
,λ
)

with respect to each â(t,�) and setting them to
zero reveals that, at a solution, we must have for all �,

â(t,�) = 1

2λ�Rμt

x̂A − ĉ(0)∥∥x̂A − ĉ(0)
∥∥ ,

which demonstrates that all optimal attack vectors must be a scaled version of the vector
x̂A − ĉ(0). Thus, by the fact that

∥∥â(t,�)
∥∥ = R, we must have

â(t,�) = R · x̂A − ĉ(0)∥∥x̂A − ĉ(0)
∥∥ and ĉ(t ) = R · αt

μt
· x̂A − ĉ(0)∥∥x̂A − ĉ(0)

∥∥ .

By reversing the transform making c(t−1) = 0, the attack vectors can be expressed as

a(t,�) = c(t−1) + R · xA − c(0)∥∥xA − c(0)
∥∥ ,

which gives the first part of the theorem. Similarly by reversing this transform for the
centroids and solving the resulting simple recursion we arrive at

c(t ) = c(t−1) + R · αt

μt
· xA − c(0)∥∥xA − c(0)

∥∥ = c(0) + R · xA − c(0)∥∥xA − c(0)
∥∥ ·

t∑
�=1

α�

μ�

,

as was to be shown. �
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B.2 Proof of Theorem 4.14 269

B.2 Proof of Theorem 4.14

Proof We show that any optimal sequence with M ∈ N0 attack points (in the sense of
Definition 4.10) must have a monotonically increasing sequence of non-zero elements.
For M = 0, the trivial sequence α
 = 0 is the only sequence in A(M,∞) and thus is opti-
mal (and trivially satisfies the theorem).

For M > 0, the proof proceeds by contradiction by assuming that there exists an such
that there is an optimal sequence, α
 ∈ A(M,∞) with a sub-sequence of non-zero ele-
ments that is not monotonically non-decreasing. To simplify the proof, we instead con-
sider an equivalent sequence (with respect to the distance function) with all interleaving
zero elements removed from α
. As shown in Theorem 4.12, the placement of zero ele-
ments in the sequence does not affect the distance function D ( · ). Thus, the sequence
α
 achieves the same distance as the sequence αopt created by removing the zero ele-
ments of α
. Moreover, for α
 to not be non-decreasing in some non-zero sub-sequence,
the sequence αopt must have at least one pair of adjacent decreasing elements. That is,
there exists an index τ such that the τ th and (τ + 1)th elements decrease: α

opt
τ > α

opt
τ+1.

We show that, by switching these elements, the distance achieved by the resulting
sequence exceeds that of αopt ; i.e., αopt is not optimal. Formally, we assume that

∃αopt ∈ A(M,∞) s.t. ∀α ∈ A(M,∞) D
(
αopt
) ≥ D (α) (B.3)

and ∃τ ∈ N s.t. αopt
τ > α

opt
τ+1 > 0. (B.4)

Now we consider an alternative sequence α′ ∈ A(M,∞) that switches the τ th and (τ + 1)th

element of αopt :

α′
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α
opt
t , if t < τ

α
opt
t+1, if t = τ

α
opt
t−1, if t = τ + 1

α
opt
t , if t > τ + 1

.

By design, αopt and α′ are (τ, 1)-differing sequences and thus we can compute the
difference in their distances by applying Lemma B.1 to yield1

�αopt ,α′ =

(
μ

(αopt )
τ−1 + α′

τ

)
· αopt

τ · αopt
τ+1 −

(
μ

(αopt )
τ−1 + α

opt
τ

)
· α′

τ · α′
τ+1(

μ
(αopt )
τ−1 + α

opt
τ

) (
μ

(αopt )
τ−1 + α′

τ

) (
μ

(αopt )
τ−1 + α

opt
τ + α

opt
τ+1

)

=
(
α

opt
τ+1 − α

opt
τ

) · αopt
τ · αopt

τ+1(
μ

(αopt )
τ−1 + α

opt
τ

) (
μ

(αopt )
τ−1 + α

opt
τ+1

) (
μ

(αopt )
τ−1 + α

opt
τ + α

opt
τ+1

) ,

in which μ
(αopt )
t = N +∑t

�=1 α
opt
�

from Lemma B.1.

1 Although μ
(αopt )
τ−1 may be zero (e.g., if τ = 0), the lemma is applicable since we assumed α

opt
τ > α

opt
τ+1 > 0.
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270 Full Proofs for Hypersphere Attacks

The denominator in the above expression is strictly positive since α
opt
τ > 0, α

opt
τ+1 >

0 and μ
(αopt )
τ−1 ≥ 0. Further, from assumption (B.4), we have that α

opt
τ > α

opt
τ+1 > 0,

and hence, the above numerator is strictly less than zero.2 Thus, we have �αopt ,α′ =
D (αopt ) − D (α′) < 0, from which we conclude that D (α
) = D (αopt ) < D (α′). This
contradicts assumption (B.3) that α
 is optimal, thus showing that any sequence with a
sub-sequence of its non-zero elements that is not monotonically non-decreasing is non-
optimal. Hence, every sub-sequence of the non-zero elements of any optimal attack
sequence must be monotonically non-decreasing. �

B.3 Proof of Theorem 4.15

We show that the optimal distances achieved by attack sequences are strictly monoton-
ically increasing in the attack capacity available to the attacker and the attack duration
during which the attack is executed. To do so, we first demonstrate that it is non-optimal
to use all attack points during a single retraining iteration unless there is only a single
attack point or retraining iteration.

lemma B.2 For M > 1 and T > 1, any attack α with only a single non-zero element
τ (i.e., such that ατ > 0 and αt = 0 for all t �= τ ) is a non-optimal sequence.

Proof Any such sequence α described above achieves distance 1 by Equations (4.11)
and (4.12). For ατ = 1, we construct the alternative sequence α′

1 = 1 and α′
2 = 1, which

is in A(M,T ) for M > 1 and T > 1 and achieves a distance of 3
2 > 1. Thus, this alterna-

tive sequence achieves a higher distance than any sequence with a single element that is
one and so these are not optimal sequences.

Similarly, for ατ > 1, we again construct an alternative sequence α′ with α′
1 = ατ − 1

and α′
2 = 1, which has the same attack size as α and also has a duration of 2, which

places it in A(M,T ) for M > 1 and T > 1. Further, the alternative sequence achieves
a distance of 1 + 1

ατ
> 1. Thus, we have demonstrated an alternative sequence in this

space that achieves a higher distance and so any such sequence with a single non-zero
element is not optimal. �

This lemma is one of several results needed for the proof of Theorem 4.15 below.
Additionally, it assumes that there is a greatest non-zero element within any sequence
of finite attack size, M . This is true for all integral sequences, but does not hold for
continuously valued sequences as discussed below. We now present the main proof of
this section.

Proof of Theorem 4.15 First we show that, for any fixed N > 0, D

N (M,∞) and

D

N (M, T ) are strictly monotonically increasing with respect to M ∈ N0; i.e., ∀ M (1) <

M (2) ∈ N0, we claim D

N

(
M (1),∞) < D


N

(
M (2),∞) and that, for any fixed T ∈

N, D

N

(
M (1), T

)
< D


N

(
M (2), T

)
. By Definition 4.10 of D


N ( · ,∞), there exists a

2 Notice that, if either α
opt
τ = 0 or α

opt
τ+1 = 0, the numerator would be zero, thus giving the two sequences

equal distances and making this result consistent with Theorem 4.12.

https://doi.org/10.1017/9781107338548.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.011


B.3 Proof of Theorem 4.15 271

sequence α
 ∈ A(M (1),∞) such that D (α
) = D

N

(
M (1),∞). However, we also have

α
 ∈ A(M (2),∞); that is, any optimal sequence from A(M (1),∞) is also in the space
A(M (2),∞) but uses at most M (1) < M (2) of its total attack capacity. Moreover, since∑

t α

t ≤ M (1) and all sequences consist of elements α


t ∈ N0, there must exist a last
non-zero index τ ∈ N of α


t ; i.e., for all t > τ , α

t = 0. From this, we construct an alter-

nate sequence α′, which is identical to α
 except that we add the excess attack capacity
to its last non-zero element: α′

τ = α

τ + m where m = M (2) − M (1) > 0. The difference

in the distances of these two sequences is simply the difference in their final non-zero
contributions:

D (α
) − D
(
α′) = δτ (α
) − δτ

(
α′)

= α

τ

M (1) + N
− α


τ + m

M (2) + N

= α

τ M (2) + α


τ N − α

τ M (1) − α


τ N − mM (1) − mN(
M (1) + N

) (
M (2) + N

)
=

(
α


τ − M (1) − N
)

m(
M (1) + N

) (
M (2) + N

) ,
where m > 0 and M (2) > M (1) ≥ 0. All terms in this ratio are positive except the term(
α


τ − M (1) − N
)
, which is negative since α


τ ≤ M (1) and N ≥ 1. Thus, the above dif-
ference is negative and D


N

(
M (2),∞) ≥ D (α′) > D (α
) = D


N

(
M (1),∞). This proof

also holds for any fixed T ≥ 1, thus also showing that D

N

(
M (2), T

)
> D


N

(
M (1), T

)
.

Second, for N = 0, we demonstrate strict monotonicity of D

0 ( · ,∞) and D


0 ( · , T )
for any T > 1. Since D


0 (M,∞) ≥ 0 for any M ∈ N0, and D

0 (M,∞) = 0 if and

only if M = 0, we have that D

0 (M,∞) > D


0 (0,∞) for any M > 0, as required. In
the case M (2) > M (1) = 1, every sequence in A(1,∞) (or A(1,T )) achieves D


0 (1,∞) =
D


0 (1, T ) = 1. Further the sequence (1, 1) is in A(M (2),∞) for all M (2) > 1 (and also

in A(M (2),T ) for any T > 1), and itachieves a distance of 1 + 1
2 , thus exceeding

D

0 (1,∞). Thus, it again follows that D


0

(
M (2),∞) > D


0 (1,∞) and for any fixed
T > 1, D


0

(
M (2), T

)
> D


0 (1, T ). Finally, for M (2) > M (1) > 1, we use a similar proof

as was used above for N > 0. Again, there is a sequence α
 ∈ A(M (1),∞) such that
D (α
) = D


0

(
M (1),∞) and we take τ to be index of the last non-zero element of α
. We

again contruct an alternate sequence α′ that is identical to α
 except the excess attack
capacity is added to its last non-zero element: α′

τ = α

τ + m where m = M (2) − M (1) >

0. Then, as above, in examining the difference in the distances of these two sequences,
it can be shown that

D (α
) − D
(
α′) =

(
α


τ − M (1)
)

m

M (1) · M (2)
,

where m > 0 and M (2) > M (1) > 1. Again, all terms in the fraction are positive except
the term

(
α


τ − M (1)
)
. But, by Lemma B.2, α
 ∈ A(M (1),∞) for M (1) > 1 cannot be

optimal unless α

τ < M (1). Thus the above difference is negative and D


0

(
M (2),∞) ≥

D (α′) > D (α
) = D

0

(
M (1),∞). This proof construction also holds for any fixed dura-

tion T > 1, thus also showing that D

0

(
M (2), T

)
> D


0

(
M (1), T

)
.
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Thirdly, we show that D

N (M, T ) is strictly monotonically increasing with respect to

T ∈ {1, . . . , M}; that is, for any fixed N ∈ N0 and M ∈ N and ∀ T1 < T2 ∈ {1, . . . , M},
we claim D


N (M, T1) < D

N (M, T2).

For T1, T2 ≤ M , by Definition 4.10 of D

N (M, T ), there exists a sequence α
 ∈ A(M,T1 )

such that D (α
) = D

N (M, T1). However, since T2 > T1, we also have α
 ∈ A(M,T2 ); that

is, any optimal sequence from A(M,T1 ) is also in the space A(M,T2 ) but has a trailing
sequence of zeros: α


T1+1 = . . . = α

T2

= 0. Alternatively, there is some last index τ < T2

such that α

τ > 0 and α


t = 0 for all t > τ .
In fact, this τ th element must be greater than 1 since, by Theorem 4.14, the non-zero

elements of α
 must be non-decreasing. Thus, either α

τ > 1 or all previous elements

must be in {0, 1}. However, since τ < T2 ≤ M , such a sequence can have at most M − 1
elements, but the first part of this theorem already showed that such a sequence is not
optimal. Hence, α


τ > 1.
Using this fact, we can construct an alternative sequence α′ ∈ A(M,T2 ) that moves one

attack point from the τ th element of α
 to its (τ + 1)th element:

α′
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α

t , if t < τ

α

t − 1, if t = τ

1, if t = τ + 1

α

t−1, if t > τ + 1

.

By design, α
 and α′ are (τ, 1)-differing sequences and Lemma B.1 yields

�α
,α′ =
(
μ

(α
 )
τ−1 + α′

τ

)
· α


τ · α

τ+1 −

(
μ

(α
 )
τ−1 + α


τ

)
· α′

τ · α′
τ+1(

μ
(α
 )
τ−1 + α


τ

) (
μ

(α
 )
τ−1 + α′

τ

) (
μ

(α
 )
τ−1 + α


τ + α

τ+1

)

=
−1 ·

(
μ

(α
 )
τ−1 + α


τ

)
· (α


τ − 1
)

(
μ

(α
 )
τ−1 + α


τ

) (
μ

(α
 )
τ−1 + α′

τ

) (
μ

(α
 )
τ−1 + α


τ + α

τ+1

)
in which μ

(αopt )
t = N +∑t

�=1 α
opt
�

. This difference is negative, from which we conclude
that D (α
) < D (α′). This contradicts assumption (B.3) that α
 is optimal in A(M,T2 ); i.e.,
we have shown there is a sequence in A(M,T2 ) whose distance exceeds D


N (M, T1). Thus,
D


N (M, T ) is strictly monotonically increasing for T ≤ M .
Finally, to see that D


N (M, T ) = D

N (M,∞) for T ≥ M , any sequence in A(M,T ) must

have at least M − T zero elements. As we showed in Theorem 4.12, the distance of a
sequence is invariant to the placement of these zero elements so, without loss of gen-
erality, we can place them at the end. Thus, any sequence in A(M,T ) achieves the same
distance as a sequence in A(M,M ), and the optimal distances achieved within these two
spaces is equal. �

Notice that the above argument does not hold for the space B(M,∞) of all positive-
real-valued sequences with total mass of M since there need not be a greatest non-zero
element in such a sequence. However, optimality is not well-defined on such a space.
This proof does, however, extend directly to sequences in B(M,T ) since the finite attack
duration T implies the existence of a greatest non-zero element.
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B.4 Proof of Theorem 4.16

The proof of this theorem is again similar to the proofs in the previous sections.

Proof We show that any optimal sequence α
 ∈ A(M,∞) only has elements in the set
{0, 1}. This is trivially satisfied for 0, the only sequence in A(0,∞), and thus is optimal.

For M > 0, the proof proceeds by contradiction by assuming that there is an optimal
sequence, α
 ∈ A(M,∞), for which there exists a τ such that α


τ > 1. We will arrive at a
contradiction to the claim that this α
 achieves an optimal displacement within A(M,∞)

by instead considering the equivalent (with respect to the distance function) sequence
αopt , which is identical to α
 except that a zero is inserted after the τ th element and all
subsequent elements are shifted to the next index; i.e., αopt

τ > 1 and α
opt
τ+1 = 0. As shown

in Lemma 4.11, removing (or inserting) a zero elements in the sequence does not affect
the distance function D ( · ). Thus, the sequence α
 achieves the same distance as the
sequence αopt .

We show that there is an alternative sequence, whose distance exceeds that of αopt ;
i.e., αopt is not optimal. Formally, we first assume that

∃αopt ∈ A(M,∞) s.t. ∀α ∈ A(M,∞) D
(
αopt
) ≥ D (α) (B.5)

and ∃τ ∈ N s.t. αopt
τ > 1 ∧ α

opt
τ+1 = 0. (B.6)

Now we consider an alternative sequence α′ ∈ A(M,∞) that shifts 1 unit from α
opt
τ to

α
opt
τ+1

α′
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α
opt
t , if t < τ

α
opt
t − 1, if t = τ

1, if t = τ + 1

α
opt
t , if t > τ + 1

.

By design, αopt and α′ are (τ, 1)-differing sequences and thus we can compute the
difference in their distances by applying Lemma B.1 to yield3

�αopt ,α′ =

(
μ

(αopt )
τ−1 + α′

τ

)
· αopt

τ · αopt
τ+1 −

(
μ

(αopt )
τ−1 + α

opt
τ

)
· α′

τ · α′
τ+1(

μ
(αopt )
τ−1 + α

opt
τ

) (
μ

(αopt )
τ−1 + α′

τ

) (
μ

(αopt )
τ−1 + α

opt
τ + α

opt
τ+1

)

=

(
μ

(αopt )
τ−1 + α

opt
τ

)
· (1 − α

opt
τ

)
(
μ

(αopt )
τ−1 + α

opt
τ

)2 (
μ

(αopt )
τ−1 + α

opt
τ − 1

) ,

in which μ
(αopt )
t = N +∑t

�=1 α
opt
�

from Lemma B.1.
The denominator in the above expression is strictly positive since α

opt
τ > 1 and

μ
(αopt )
τ−1 ≥ 0. Further, from assumption (B.6), we have that α

opt
τ > 1, and hence, the

3 Although μ
(αopt )
τ−1 may be zero (e.g., if τ = 0), the lemma is applicable since we assumed α

opt
τ > 1.
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above numerator is negative.4 Thus, we have �αopt ,α′ = D (αopt ) − D (α′) < 0 , from
which we conclude that D (α
) = D (αopt ) < D (α′). This contradicts assumption (B.5)
that α
 is optimal, thus showing that any sequence with an element not in {0, 1} is
non-optimal. Hence, any optimal sequence must have α


t ∈ {0, 1} for all t. Further,
an optimal sequence α
 ∈ A(M,∞) must have exactly M ones since, by Theorem 4.15,
D


0 (M,∞) strictly increases in M .
Finally, the optimal displacement can be derived by supposing first that the adver-

sary can control all M + N points, including the initial N points. As we showed
above, one optimal sequence is 1M+N . It then follows from substituting αt = 1 and
μt = t into Equation (4.11) that D (1M+N ) =∑M+N

t
1
t = hM+N . Now we subtract

the contribution from the first N points, which is hN . This yields the result for
D


N (M,∞). �

B.5 Proof of Theorem 4.18

The final proof we present here is for optimal attacks of a limited duration T using the
relaxation to continuous attack sequences introduced in Section 4.4.1. In this continuous
domain, we optimize Program (4.16) using optimization techniques.

Proof To optimize the objection function of Equation (4.15) in terms of the continuous
sequences μ, we first verify that this function is well-behaved for feasible sequences.
For all t, μt > 0 since μt is monotonically non-decreasing in t and μ0 = N > 0. Any
such sequence thus can be characterized as a positive-valued vector; i.e., μ ∈ (0,∞)T .
On this domain, the objective function given in Equation (4.15) is continuous as are
its first derivatives. Thus, by Theorem 1.2.3 of Peressini, Sullivan & Jerry J. Uhl
(1988), the extrema of this function are either its stationary points or lie on the
boundary.

First, we eliminate the possibility that an optimum exists at the boundary. Any
sequence on the boundary of this domain must have two or more consecutive elements
in the total mass sequence that are equal, or rather, in the original formulation, there
must be an element β j = 0. By Theorem 4.12, such a boundary sequence is equivalent
to a sequence of length T − 1. However, by Theorem 4.15, the function D


0 (M, T ) is
increasing in T , unless T ≥ M . Thus, no boundary point of the total mass formulation
is an optimal sequence and so every optimal sequence must be a critical point of the
objective.

Second, to find the stationary points of this objective function, we solve for sequences
that make its partial derivatives equal zero. For each τ ∈ 1 . . . T − 1, the partial

4 An astute reader may wonder what this analysis implies when α
opt
τ ∈ {0, 1}. For α

opt
τ = 0, the sequence α′

would have have a negative τ th element and thus is not in A(M,∞). For α
opt
τ = 1, the above numerator is zero,

but the denominator also may be zero so Lemma B.1 does not always apply. Instead, the alternate sequence
α′ can be viewed as simply swapping the position of a 1 with a 0 in the sequence. Thus, Theorem 4.12 can
be applied to show that αopt and α′ have equal distances and no contradiction arises.
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derivative with respect to the τ th element, μτ , yields the following condition:

∂

∂μτ

[
T −

T∑
t=1

μt−1

μt

]
= 0 ⇒ μτ−1

μ2
τ

= 1

μτ+1
.

These conditions do not hold for τ = 0 or τ = T , but we already have μ0 = N and
μT = M + N . Further, since μ


t ∈ �+, we can instead consider the logarithm of these
variables: �μt � log (μt )), for which any stationary point must satisfy the following
system of equations:

�μ0 = log (N )

2 · �μt = �μt−1 + �μt+1 ∀ t ∈ {1 . . . T − 1} (B.7)

�μT = log (M + N ) ,

The second condition is equivalently defined by the recurrence relation �μt = 2�μt−1 −
�μt−2, for t ≥ 2. This recurrence has a characteristic polynomial given by χ (r) =
r2 − 2r + 1. Solving χ (r) = 0 yields the single root r = 1, for which there must
exist φ and ψ such that �μt = φ · rt + ψ · t · rt = φ + ψ · t. Using the boundary con-
ditions �μ0 = log (N ) and �μT = log (M + N ), we find that φ = log (N ) and ψ =
1
T log

(
M+N

N

)
. Thus, the unique solution to this linear recurrence relation is given by

�μt = log (N ) + t
T log

(
M+N

N

)
.

Naturally, this corresponds to the sequence μ

t = N

(
M+N

N

)( t
T ), which satisfies μ


0 = N
and μ


T = N + M and is a non-decreasing sequence. Moreover, the logarithmic condi-
tions given in Equation (B.7) must hold for any optimal positive sequence, but specify
a system of T + 1 equalities in terms of T + 1 variables and thus have a unique solu-
tion. Thus, μ
 is the unique positive sequence that maximizes the program given in
Equation (4.16).

Having established optimality, the optimal distance achieved is

D

N (M, T ) = T −

T∑
t=1

N

N

(
M + N

N

)( t−1
T ) (M + N

N

)( −t
T )

= T

(
1 −

(
N

M + N

) 1
T

)

as was to be shown. Finally, using the definition of total mass in Equation (4.7), for

t ≥ 1, β

t = μ


t − μ

t−1 = N

(
M+N

N

) t−1
T

((
M+N

N

) 1
T − 1

)
. This completes the proof. �

https://doi.org/10.1017/9781107338548.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.011

