
Appendix C Analysis of SpamBayes for
Chapter 5

In this appendix, we analyze the effect of attack messages on SpamBayes. This analysis
serves as the motivation for the attacks presented in Section 5.3.

C.1 SpamBayes’ I ( · ) message score

As mentioned in Section 5.1.1, the SpamBayes I ( · ) function used to estimate spami-
ness of a message, is the average between its score S ( · ) and one minus its score H ( · ).
Both of these scores are expressed in terms of the chi-squared cumulative distribu-
tion function (CDF): χ2

2n ( · ). In both these score functions, the argument to the CDF
is an inner product between the logarithm of a scores vector and the indicator vector
δ (x̂) as in Equation (5.3). These terms can be re-arranged to rewrite these functions as
S (x̂) = 1 − χ2

2n

(−2 log sq (x̂)
)

and H (x̂) = 1 − χ2
2n

(−2 log hq (x̂)
)

where sq ( · ) and
hq ( · ) are scalar functions that map x̂ onto [0, 1] defined as

sq (x̂) �
∏

i

qδ(x̂)i
i (C.1)

hq (x̂) �
∏

i

(1 − qi)
δ(x̂)i . (C.2)

We further explore these functions in the next section, but first we expound on the
properties of χ2

k ( · ).
The χ2

k ( · ) CDF can be written out exactly using gamma functions. For k ∈ N and
x ∈ �0+ it is simply

χ2
k (x) = γ (k/2, x/2)

� (k/2)

where the lower-incomplete gamma function is γ (k, y) = ∫ y
0 tk−1e−tdt, the upper-

incomplete gamma function is � (k, y) = ∫∞
y tk−1e−tdt, and the gamma function is

� (k) = ∫∞
0 tk−1e−tdt. By these definitions, it follows that for any k and y, the gamma

functions are related by � (k) = γ (k, x) + � (k, x). Also note that for k ∈ N

� (k, y) = (k − 1)! e−y
k−1∑
j=0

y j

j!
� (k) = (k − 1)!.
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C.2 Constructing Optimal Attacks on SpamBayes 277

Based on these properties, the S ( · ) score can be rewritten as

S (x̂) = �
(
n,− log sq (x̂)

)
� (n)

= sq (x̂)
n−1∑
j=0

(− log sq (x̂)
) j

j!

H (x̂) = �
(
n,− log hq (x̂)

)
� (n)

= hq (x̂)
n−1∑
j=0

(− log hq (x̂)
) j

j!
.

It is easy shown that both these functions are monotonically non-decreasing in sq (x̂)
and hq (x̂) respectively. For either of these functions, the following derivative can be
taken (with respect to sq (x̂) or hq (x̂)):

d

dz

⎡
⎣z

n−1∑
j=0

(− log z) j

j!

⎤
⎦ = 1

(n − 1)!
(− log z)n−1 ,

which is non-negative for 0 ≤ z ≤ 1.

C.2 Constructing Optimal Attacks on SpamBayes

As indicated by Equation (5.7) in Section 5.3.1, an attacker with objectives described
in Section 5.2.1 would like to have the maximal (deleterious) impact on the perfor-
mance of SpamBayes. In this section, we analyze SpamBayes’ decision function I ( · )
to optimize the attacks’ impact. Here we show that the attacks proposed in Section 5.3.1
are (nearly) optimal strategies for designing a single attack message that maximally
increases I ( · ).

In the attack scenario described in Section 5.3.1.1, the attacker will send a series of
attack messages which will increase N (s) and n(s)

j for the tokens that are included in

the attacks. We will show how I ( · ) changes as the token counts n(s)
j are increased to

understand which tokens the attacker should choose to maximize the impact per mes-
sage. This analysis separates into two parts based on the following observation.

Remark C.1 Given a fixed number of attack spam messages, qj is independent of the
number of those messages containing the kth token for all k �= j.

This remark follows from the fact that the inclusion of the jth token in attack spams
affects n(s)

j and n j but not n(h)
k , N (s), N (h), n(s)

k , n(h)
k , or nk for all k �= j (see Equations (5.1)

and (5.2) in Section 5.1.1).
After an attack consisting of a fixed number of attack spam messages, the score I (x̂)

of an incoming test message x̂ can be maximized by maximizing each qj separately.
This motivates dictionary attacks and focused attacks—intuitively, the attacker would
like to maximally increase the qj of tokens appearing (or most likely to appear) in x̂
depending on the information the attacker has about future messages.

Thus, we first analyze the effect of increasing n(s)
j on its score qi in Section C.2.1.

Based on this, we subsequently analyze the change in I (x̂) that is caused altering the
token score qi in Section C.2.2. As one might expect, since increasing the number of
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278 Analysis of SpamBayes

occurrences of the jth token in spam should increase the posterior probability that a
message with the jth token is spam, we show that including the jth token in an attack
message generally increases the corresponding score qj more than not including that
token (except in unusual situations which we identify below). Similarly, we show that
increasing q j generally increases the overall spam score I ( · ) of a message containing
the jth token. Based on these results, we motivate the attack strategies presented in
Section 5.3.1.

C.2.1 Effect of poisoning on token scores

In this section, we establish how token spam scores change as the result of attack
messages in the training set. Intuitively, one might expect that the jth score q j should
increase when the jth token is added to the attack email. This would be the case, in fact,
if the token score in Equation (5.1) were computed according to Bayes’ Rule. However,
as noted Section 5.1, the score in Equation (5.1) is derived by applying Bayes’ Rule
with an additional assumption that the prior distribution of spam and ham is equal. As
a result, there are circumstances in which the spam score qj can decrease when the jth

token is included in the attack email—specifically when the assumption is violated. We
show that this occurs when there is an extraordinary imbalance between the number of
ham and spam in the training set.

As in Section 5.3, we consider an attacker whose attack messages are composed a
single set of attack tokens; i.e., each token is either included in all attack messages or
none. In this fashion, the attacker creates a set of k attack messages used in the retraining
of the filter, after which the counts become

N (s) �→ N (s) + k

N (h) �→ N (h)

n(s)
j �→

{
n(s)

j + k, if a j = 1

n(s)
j , otherwise

n(h)
j �→ n(h)

j .

Using these count transformations, we compute the difference in the smoothed Spam-
Bayes score q j between training on an attack spam message a that contains the jth token
and an attack spam that does not contain it. If the jth token is included in the attack (i.e.,
a j = 1), then the new score for the jth token (from Equation 5.1) is

P(s,k)
j �

N (h)
(

n(s)
j + k

)
N (h)

(
n(s)

j + k
)

+ (N (s) + k
)

n(h)
j

.

If the token is not included in the attack (i.e., aj = 0), then the new token score is

P(s,0)
j �

N (h)n(s)
j

N (h)n(s)
j + (N (s) + k

)
n(h)

j

.
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Similarly, we use q(k)
j and q(0)

j to denote the smoothed spam score after the attack
depending on whether or not the jth token was used in the attack message. We will
analyze the quantity

�(k)q j � q(k)
j − q(0)

j .

One might reasonably expect this difference to always be non-negative, but here we
show that there are some scenarios in which �(k)q j < 0. This unusual behavior is a
direct result of the assumption made by SpamBayes that N (h) = N (s) rather than using a
proper prior distribution. In fact, it can be shown that the usual spam model depicted in
Figure 5.1(b) does not exhibit these irregularities. Below, we will show how SpamBayes’
assumption can lead to situations where �(k)q j < 0 but also that these irregularities
only occur when there is many more spam messages than ham messages in the training
dataset. By expanding �(k)q j and rearranging terms, the difference can be expressed as:

�(k)q j = s · k(
s + n j + k

) (
s + n j

) (P(s,k)
j − x

)

+ k · N (h) · n j(
s + n j

) (
N (h) · n(s)

j + (N (s) + k
)

n(h)
j

)P(h,k)
j ,

where P(h,k)
j = 1 − P(s,k)

j is the altered ham score of the jth token. The difference can be
rewritten as

�(k)q j = k(
s + n j + k

) (
s + n j

) · α j

α j � s (1 − x)

+P(h,k)
j · N (h) · n j

(
n j + k

)+ s · N (h) · n(h)
j − s

(
N (s) + k

)
n(h)

j

N (h) · n(s)
j + (N (s) + k

)
n(h)

j

.

The first factor k
(s+n j+k)(s+n j )

in the above expression is non-negative so only α j can

make �(k)q j negative. From this, it is easy to show that N (s) + k must be greater that
N (h) for �(k)q j to be negative, but we demonstrate stronger conditions. Generally, we
demonstrate that for �(k)q j to be negative there must be a large disparity between the
number of spams after the attack, N (s) + k, and the number of ham messages, N (h).
This reflects the effect of violating the implicit assumption made by SpamBayes that
N (h) = N (s).

Expanding the expression for α j, the following condition is necessary for �(k)q j to
be negative:

s
(
N (s) + k

)
n(h)

j x

N (h)
>

s(1−x)
(

n(s)
j +k

)
n(h)

j (N (s)+k)

[(
N (s) + k

)
n(h)

j + N (h) · n(s)
j

]

+ n j

(
n j + k

)+ sn(s)
j (1 − x) + s · n(h)

j

.
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280 Analysis of SpamBayes

Because 1 − x ≥ 0 (since x ≤ 1) and n j = n(s)
j + n(h)

j , the right-hand side of the above
expression is strictly increasing in n(s)

j while the left-hand side is constant in n(s)
j . Thus,

the weakest condition to make �(k)q j negative occurs when n(s)
j = 0; i.e., tokens that

were not observed in any spam prior to the attack are most susceptible to having
�(k)q j < 0 while tokens that were observed more frequently in spam prior distribu-
tion to the attack require an increasingly larger disparity between N (h) and N (s) for
�(k)q j < 0 to occur. Here we analyze the case when n(s)

j = 0 and, using the previous
constraints that s > 0 and n(h)

j > 0, we arrive at the weakest condition for which �(k)q j

can be negative. This condition can be expressed succinctly as the following condition
on x for the attack to cause a token’s score to decrease:1

x >
N (h)

(
n(h)

j + s
) (

n(h)
j + k

)
s
(

n(h)
j

(
N (s) + k

)+ kN (h)
) .

First, notice that the right-hand side is always positive; i.e., there will always be some
non-trivial threshold on the value of x to allow for �(k)q j to be negative. Further, when
the right-hand side of this bound is at least one, there are no tokens that have a negative
�(k)q j since the parameter x ∈ [0, 1]. For instance, this occurs when n(h)

j = 0 or when

N (h) ≥ N (s) + k (as previously noted).
Reorganizing the terms, the bound on the number of spams can be expressed as,

N (s) + k > N (h) ·
(

n(h)
j

)2
+ (s + k) n(h)

j + s (1 − x) k

sn(h)
j x

.

This bound shows that the number of spam after the attack, N (s) + k, must be larger than
a multiple of total number of ham, N (h), to have any token with �(k)q j < 0. The factor
in this multiple is always greater than one, but depends on the n(h)

j of the jth token.
In fact, the factor is strictly increasing in n(h)

j ; thus, the weakest bound occurs when
n(h)

j = 1 (recall that when n(h)
j = 0, �(k)q j is always non-negative). When we examine

SpamBayes’ default values of s = 1 and x = 1
2 , the weakest bound (for tokens with

n(h)
j = 1 and n(s)

j = 0) is

N (s) + k > N (h) · (4 + 3k) .

Thus, when the number of spam after the attack, N (s) + k, is sufficiently larger than the
number of ham, N (h), it is possible that the score of a token will be lower if it is included
in the attack message than if it were excluded. This is a direct result of the assumption
made by SpamBayes that N (s) = N (h). We have shown that such aberrations will occur
most readily in tokens with low initial values of n(h)

j and n(s)
j ; i.e., those seen infrequently

in the dataset. However, for any significant number of attacks, k, the disparity between
N (s) + k and N (s) must be tremendous for such aberrations to occur. Under the default
SpamBayes settings, there would have to be at least 7 times as many spam as ham with

1 In the case that n(s)
j > 0, the condition is stronger but the expression is more complicated.
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Figure C.1 Plot of the aggregation statistic sq ( · ) relative to a single token score qi; on the
x-axis is qi and on the y-axis is sq ( · ). Here we consider a scenario where τx̂ = 0.14 and without
the ith token sq (x̂ \ {i}) = 0.2. The black dotted line is the value of δ (x̂)i, the gray dotted line is
the value of qi

∏
j �=i q j (i.e., sq (x̂) without including δ (x̂)), and the gray solid line is the value of

sq (x̂) as qi varies.

only a single attack message. For more attack messages (k > 1), this bound is even
greater. Thus, in designing attacks against SpamBayes, we ignore the extreme cases
outlined here and we assume that �(k)q j always increases if the jth token is included in
the attack. Further, none of the experiments presented in Section 5.5 meet the criteria
required to have �(k)q j < 0.

C.2.2 Effect of poisoning on I ( · )

The key to understanding effect of attacks and constructing optimal attacks against
SpamBayes is characterizing conditions under which SpamBayes’ score I (x̂) increases
when the training corpus is injected with attack spam messages. To do this, we dissect
the method used by SpamBayes to aggregate token scores.

The statistics sq (x̂) and hq (x̂) from Equation (C.1) and (C.2) are measures of the
spaminess and haminess of the message represented by x̂, respectively. Both assume that
each token in the message presents an assessment of the spaminess of the message—the
score qi is the evidence for spam given by observing the ith token. Further, by assuming
independence, sq (x̂) and hq (x̂) aggregate this evidence into a measure of the overall
message’s spaminess. For instance, if all tokens have qi = 1, sq (x̂) = 1 indicates that
the message is very spammy and 1 − hq (x̂) = 1 concurs. Similarly, when all tokens
have qi = 0, both scores indicate that the message is ham.

These statistics also are (almost) nicely behaved. If we instead consider the ordinary
product of the scores of all tokens in the message x̂, s̃q (x̂) �

∏
i:x̂i=1 qi, it is a linear

function with respect to each qi, and is monotonically non-decreasing. Similarly, the
product h̃q (x̂) �

∏
i:x̂i=1 (1 − qi) is linear with respect to each qi and is monotonically

non-increasing. Thus, if we increase any score qi, the first product will not decrease
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and the second will not increase, as expected.2 In fact, by redefining the scores I ( · ),
S ( · ), and H ( · ) in terms of the simple products s̃q (x̂) and h̃q (x̂) (which we refer to
as Ĩ ( · ), S̃ ( · ), and H̃ ( · ), respectively), the following lemma shows that Ĩ ( · ) is non
decreasing in qi.

lemma C.2 The modified Ĩ (x̂) score is non-decreasing in qi for all tokens (indexed
by i).

Proof We show that the derivative of Ĩ (x̂) with respect to qk is non-negative for all k.
By rewriting, Equation (5.3) in terms of s̃q (x̂) as S̃ (x̂) = 1 − χ2

2n

(−2 log
(
s̃q (x̂)

))
, the

chain rule can be applied as follows:

∂

∂qk
S̃ (x̂) = d

ds̃q (x̂)

[
1 − χ2

2n

(−2 log
(
s̃q (x̂)

))] · ∂

∂qk
s̃q (x̂)

d

ds̃q (x̂)

[
1 − χ2

2n

(−2 log
(
s̃q (x̂)

))] = 1

(n − 1)!

(− log
(
s̃q (x̂)

))n−1
.

The second derivative is non-negative since 0 ≤ s̃q (x̂) ≤ 1. Further, the partial deriva-
tive of s̃q (x̂) with respect to qk is simply ∂

∂qk
s̃q (x̂) =∏i�=k:x̂i=1 qi ≥ 0. Thus, for all k,

∂

∂qk
S̃ (x̂) ≥ 0.

By an analogous derivation, replacing qi by 1 − qi,

∂

∂qk
H̃ (x̂) ≤ 0.

The final result is then give by

∂

∂qk
Ĩ (x̂) = 1

2

∂

∂qk
S̃ (x̂) − 1

2

∂

∂qk
H̃ (x̂) ≥ 0.

�
However, unlike the simple products, the statistics sq ( · ) and hq ( · ) have unusual

behavior because the function δ ( · ) sanitizes the token scores. Namely, δ ( · ) is the
indicator function of the set Tx̂. Membership in this set is determined by absolute dis-
tance of a token’s score from the agnostic score of 1

2 ; i.e., by the value gi �
∣∣qi − 1

2

∣∣.
The ith token belongs to Tx̂ if i) x̂i = 1 ii) gi ≥ Q (by default Q = 0.1 so all tokens in
(0.4, 0.6) are excluded) and iii) of the remaining tokens, the token has among the largest
T values of gi (by default T = 150).

For our purposes, for every message x̂, there is some value τx̂ < 1
2 that defines an

interval
(

1
2 − τx̂,

1
2 + τx̂

)
to exclude tokens. That is

δ (x̂)i = x̂i ·
{

0 if qi ∈ ( 1
2 − τx̂,

1
2 + τx̂

)
1 otherwise

.

2 These statistics also behave oddly in another sense. Namely, adding an additional token will always decrease
both products and removing a token will always increase both products. Applying the chi-squared distribu-
tion rectifies this effect.
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Figure C.2 The effect of the δ ( · ) function on I ( · ) as the score of the ith token, qi, increases
causing qi to move into or out of the region (0.4, 0.6) where all tokens are ignored. In each plot,
the x-axis is the value of qi before it’s removal and the y-axis is the change in I ( · ) due to the
removal; note that the scale on the y-axis decreases from top to bottom. For the top-most row
of plots there is 1 unchanged token scores in addition to the changing one, for the middle row
there are 3 additional unchanged token scores, and for the bottom row there are 5 additional
unchanged token scores. The plots in the left-most column demonstrate the effect of removing
the ith token when initially qi ∈ (0, 0.4); the scores of the additional unchanging tokens are all
fixed to the same value of 0.02 (dark dashed black), 0.04, 0.06, 0.08, 0.10, or 0.12 (light dashed
black). The plots in the right-most column demonstrate the effect of adding the ith token when
initially qi ∈ (0.4, 0.6); the scores of the additional unchanging tokens are all fixed to the same
value of 0.88 (dark gray), 0.90, 0.92, 0.94, 0.96, or 0.98 (light gray).
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Clearly, for tokens in x̂, δ (x̂)i steps from 1 to 0 and back to 1 as qi increases. This causes
sq (x̂) to have two discontinuities with respect to qi: it increases linearly on the intervals[
0, 1

2 − τx̂
]

and
[

1
2 + τx̂, 1

]
, but on the middle interval

(
1
2 − τx̂,

1
2 + τx̂

)
it jumps discon-

tinuously to its maximum value. This behavior of is depicted in Figure C.1. Similarly,
hq (x̂) decreases linearly except on the middle interval

(
1
2 − τx̂,

1
2 + τx̂

)
where it also

jumps to its maximum value. Thus, neither sq (x̂) or hq (x̂) have monotonic behavior on
the interval [0, 1].

To better understand how I (x̂) behaves when qi increases given that neither sq (x̂) or
hq (x̂) are monotonic, we analyze its behavior on a case by case basis. For this purpose,
we refer to the three intervals

[
0, 1

2 − τx̂
]
,
(

1
2 − τx̂,

1
2 + τx̂

)
, and

[
1
2 + τx̂, 1

]
as A, B,

and C, respectively. Clearly, if qi increases but stays within the same interval, I (x̂) also
increases. This follows from Lemma C.2 and the fact that I (x̂) will not change if qi

remains within interval B. Similarly, I (x̂) also increases if qi increases from interval A

to interval C; this too follows from Lemma C.2. The only cases when I (x̂) may decrease
when qi increases occur when either qi transitions from interval A to B or qi transitions
from interval B to C, but in these cases, the behavior of I (x̂) depends heavily on the
scores for the other tokens in x̂ and the value of qi before it increases as depicted by
Figure C.2. It is also worth noting that I (x̂) in fact will never decrease if x̂ has more
than 150 tokens outside the interval (0.4, 0.6), since in this case increasing qi either into
or out of B also corresponds to either adding or removing a second token score qj. The
effect in this case is that I (x̂) always increases.

The attacks against SpamBayes that we introduced in Section 5.3 ignore the fact that
I (x̂) may decrease when increasing some token scores. In this sense, these attacks are
not truly optimal. However, determining which set of tokens will optimally increase
the overall I ( · ) of a set of future messages {x̂} is a combinatorial problem that seems
infeasible for a real-world adversary. Instead, we consider attacks that are optimal for the
relaxed version of the problem that incorporates all tokens from x̂ in computing I (x̂).
Further, in Section 5.5, we show that these approximate techniques are extraordinarily
effective against SpamBayes in spite of the fact some non-optimal tokens are included
in the attack messages.
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