
Appendix D Full Proofs for Near-Optimal
Evasion

In this appendix, we give proofs for the theorems from Chapter 8. First, we show that the
query complexity of K-step MultiLineSearch is O

(
Lε + √

Lε |W|)when K = (√Lε).
Second, we show three lower bounds for different cost functions. Each of the lower
bound proofs follows a similar argument: We use classifiers based on the cost-ball and
classifiers based on the convex hull of the queries to construct two alternative classi-
fiers with different ε-IMACs. This allows us to show results on the minimal number of
queries required.

Proof of K-step MultiLineSearch Theorem

To analyze the worst case of K-step MultiLineSearch (Algorithm 8.3), we analyze
the malicious classifier that seeks to maximize the number of queries. It is completely
aware of the state of the adversary; i.e., the dimension of the space D, the adversary’s
goal Lε , the cost function A, the bounds on the cost function C+

t and C−
t , and so forth.

In this proof, we refer to the querier as the adversary.

Proof of Theorem 8.5 At each iteration of Algorithm 8.3, the adversary chooses some
direction, e not yet eliminated from W. Every direction in W is feasible (i.e., could
yield an ε-IMAC), and the malicious classifier, by definition, will make this choice as
costly as possible. During the K steps of binary search along this direction, regardless
of which direction e is selected or how the malicious classifier responds, the candidate
multiplicative gap (see Section 8.1.3) along e will shrink by an exponent of 2−K ; i.e.,

B−

B+ =
(

C−

C+

)2−K

(D.1)

log
(
G′

t+1

) = log (Gt ) · 2−K (D.2)

The primary decision for the malicious classifier occurs when the adversary begins
querying other directions besides e. At iteration t, the malicious classifier has two
options:

Case 1 (t ∈ C1): Respond with ''+'' for all remaining directions. Here the bound
candidates B+ and B− are verified, and thus the new gap is reduced by an exponent
of 2−K ; however, no directions are eliminated from the search.
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286 Full Proofs for Near-Optimal Evasion

Case 2 (t ∈ C2): Choose at least one direction to respond with ''−''. Here since only
the value of C− changes, the malicious classifier can choose to respond to the first
K queries so that the gap decreases by a negligible amount (by always responding
with ''+'' during the first K queries along e, the gap only decreases by an exponent
of
(
1 − 2−K

)
). However, the malicious classifier must choose some number Et ≥

1 of directions that will be eliminated.

By conservatively assuming the gap only decreases in case 1, the total number of queries
is bounded for both cases independent of the order in which the malicious classifier
applies them.

At the t th iteration, the malicious classifier can either decide to be in case 1 (t ∈ C1)
or case 2 (t ∈ C2). We assume that the gap only decreases in case 1. That is, we define
G0 = C−

0 /C+
0 so that if t ∈ C1, then Gt = G2−K

t−1 whereas if t ∈ C2, then Gt = Gt−1.
This assumption yields an upper bound on the algorithm’s performance and decou-
ples the analysis of the queries for C1 and C2. From it, we derive the following upper
bound on the number of case 1 iterations that must occur before our algorithm ter-
minates; simply stated, there must be a total of at least Lε binary search steps made
during the case 1 iterations and every case 1 iteration makes exactly K steps. More
formally, each case 1 iteration reduces the gap by an exponent of 2−K and our termi-
nation condition is GT ≤ 1 + ε. Since our algorithm will terminate as soon as the gap
GT ≤ 1 + ε, iteration T must be a case 1 iteration and GT−1 > 1 + ε (otherwise the
algorithm would have terminated earlier). From this the total number of iterations must
satisfy

log2 (GT−1) > log2 (1 + ε)

log2 (G0)
∏

i∈C1∧i<T

2−K

︸ ︷︷ ︸
by Equation (D.2)

> log2 (1 + ε)

2−∑i∈C1∧i<T K
>

log2 (1 + ε)

log2 (G0)∑
i∈C1∧i<T

K > log2
log2 (G0)

log2 (1 + ε)︸ ︷︷ ︸
=Lε by Equation (8.6)

(|C1| − 1)K < Lε

where the factor (|C1| − 1) comes as a result of excluding the last case 1 iteration, T . A
similar derivation for GT ≤ 1 + ε yields |C1| · K ≥ Lε , and the only integer that satisfies
both these conditions is

|C1| =
⌈

Lε

K

⌉
. (D.3)

Now, at every case 1 iteration, the adversary makes exactly K + |Wt | − 1 queries
where Wt is the set of feasible directions remaining at the t th iteration. While Wt is
controlled by the malicious classifier, it is bounded by |Wt | ≤ |W|. Using this and the
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relation from Equation (D.3), we bound the number of queries, Q1, used in case 1 by

Q1 =
∑
t∈C1

(K + |Wt | − 1)

≤
∑
t∈C1

(K + |W| − 1)

=
⌈

Lε

K

⌉
· (K + |W| − 1)

≤
(

Lε

K
+ 1

)
· K +

⌈
Lε

K

⌉
· (|W| − 1)

= Lε + K +
⌈

Lε

K

⌉
· (|W| − 1) .

For each case 2 iteration, the adversary makes exactly K + Et queries, and each elimi-
nates Et ≥ 1 directions; hence, |Wt+1| = |Wt | − Et . The malicious classifier will always
make Et = 1 in every case 2 instance since that maximally limits how much the adver-
sary gains. Nevertheless, since case 2 requires the elimination of at least one direction,
the following bound applies: |C2| ≤ |W| − 1. Moreover, regardless of the choice of Et ,∑

t∈C2
Et ≤ |W| − 1 since each direction can be eliminated no more than once and at

least one direction must remain. Thus,

Q2 =
∑
i∈C2

(K + Et )

≤ |C2| · K + |W| − 1

≤ (|W| − 1) (K + 1) .

The total number of queries used by Algorithm 8.3 is

Q = Q1 + Q2 ≤ Lε + K +
⌈

Lε

K

⌉
· (|W| − 1) + (|W| − 1) (K + 1)

= Lε + K +
⌈

Lε

K

⌉
· |W| −

⌈
Lε

K

⌉
+ K · |W| − K + |W| − 1

= Lε +
⌈

Lε

K

⌉
· |W| + K · |W| + |W| −

⌈
Lε

K

⌉
− 1

≤ Lε +
⌈

Lε

K

⌉
· |W| + K · |W| + |W|

= Lε +
(⌈

Lε

K

⌉
+ K + 1

)
|W|

Finally, choosing K = (√Lε) minimizes this expression. Substituting this K into Q’s
bound and using the bound Lε/(

√
Lε) ≤ √

Lε , yield

Q ≤ Lε +
(

2(
√

Lε) + 1
)
|W|

so Q = O
(
Lε + √

Lε |W|). �
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Proof of Lower Bounds

Here we give proofs for the lower bound theorems from Section 8.2.1.2 using the
same arguments for the multiplicative and additive cases. Recall that, for these lower
bounds, D is the dimension of the space, A : �D �→ �+ is any positive convex function,
and 0 < C+

0 < C−
0 are initial upper and lower bounds on the MAC. We also have that

F̂ convex,''+'' ⊆ F convex,''+'' is the set of classifiers consistent with the constraints on the
MAC; i.e., for f ∈ F̂ convex,''+'' the set X+

f is convex, BC+
0 (A) ⊆ X+

f and BC−
0 (A) �⊆ X+

f .
As in K-step MultiLineSearch, we again consider a malicious classifier.

Proof of Theorem 8.7 and 8.6 Suppose a query-based algorithm submits N < D + 1
membership queries x(1), . . . , x(N ) ∈ �D to the classifier. For the algorithm to be ε-
optimal, these queries must constrain the family of all consistent classifiers, F̂ convex,''+'',
to have a common point among their ε-IMAC sets. Suppose that the responses to the
queries are consistent with the classifier f defined as

f (x) =
{
+1, if A

(
x − xA

)
< C−

0

−1, otherwise
. (D.4)

For this classifier, X+
f is convex since A is a convex function, BC+

0 (A) ⊆ X+
f since C+

0 <

C−
0 , and BC−

0 (A) �⊆ X+
f since X+

f is the open C−
0 -ball, whereas BC−

0 (A) is the closed

C−
0 -ball. Moreover, since X+

f is the open C−
0 -ball, � x ∈ X−

f such that A
(
x − xA

)
<

C−
0 . Therefore, MAC ( f, A) = C−

0 , and any ε-optimal points x′ ∈ ε-IMAC(∗) ( f, A)
must satisfy C−

0 ≤ A
(
x′ − xA

) ≤ (1 + ε)C−
0 . Similarly, any η-optimal points x′ ∈

η-IMAC(+) ( f, A) must satisfy C−
0 ≤ A

(
x′ − xA

) ≤ C−
0 + η.

Consider an alternative classifier g that responds identically to f for x(1), . . . , x(N ) but
has a different convex positive set X+

g . Without loss of generality, suppose the first M ≤
N queries are positive and the remaining are negative. Let G = conv

(
x(1), . . . , x(M )

)
;

that is, the convex hull of these M positive queries. Now let X+
g be the convex hull of G

and the C+
0 -ball of A: X+

g = conv
(
G ∪ BC+

0 (A)
)

. Since G contains all positive queries

and C+
0 < C−

0 , the convex set X+
g is consistent with the observed responses, BC+

0 (A) ⊆
X+

g by definition, and BC−
0 (A) �⊆ X+

g since the positive queries are all inside the open
C−

0 -sublevel set. Further, since M ≤ N < D + 1, G is contained in a proper linear sub-
space of �D and hence the interior of G is empty; i.e., int (G) = ∅. Thus, there is always
some point from BC+

0 (A) that is on the boundary of X+
g ; i.e., BC+

0 (A) �⊆ int (G) because

int (G) = ∅ , hence, there must be at least one point from BC+
0 (A) on the boundary of

the convex hull of BC+
0 (A) and G . Hence, MAC (g, A) = infx∈X−

g

[
A
(
x − xA

)] = C+
0 .

Since the accuracy ε <
C−

0

C+
0

− 1, any x ∈ ε-IMAC(∗) (g, A) must have

A
(
x − xA

) ≤ (1 + ε)C+
0 <

C−
0

C+
0

C+
0 = C−

0
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whereas any y ∈ ε-IMAC(∗) ( f, A) must have A
(
y − xA

) ≥ C−
0 . Thus, ε-IMAC(∗) ( f, A)

∩ ε-IMAC(∗) (g, A) = ∅, and we have constructed two convex-inducing classifiers f and
g, which are both consistent with the query responses with no common ε-IMAC(∗).
Similarly, since η < C−

0 − C+
0 , any x ∈ η-IMAC(+) (g, A) must have

A
(
x − xA

) ≤ η + C+
0 < C−

0 − C+
0 + C+

0 = C−
0

whereas any y ∈ η-IMAC(+) ( f, A) must have A
(
y − xA

) ≥ C−
0 . Thus,

η-IMAC(+) ( f, A) ∩ η-IMAC(+) (g, A) = ∅, and so the two convex-inducing classi-
fiers f and g also have no common η-IMAC(+).

Suppose instead that a query-based algorithm submits N < L(∗)
ε membership queries

(or N < L(+)
η for the additive case). Recall our definitions: C−

0 is the initial upper bound

on the MAC, C+
0 is the initial lower bound on the MAC, and G(∗)

t = C−
t /C+

t is the gap

between the upper bound and lower bound at iteration t (G(+)
t = C−

t − C+
t for the addi-

tive case). The malicious classifier f responds with

f
(
x(t )
) =

⎧⎨
⎩+1, if A

(
x(t ) − xA

) ≤
√

C−
t−1 · C+

t−1

−1, otherwise
(D.5)

(for additive optimality, the condition for the first case is A
(
x(t ) − xA

) ≤ C−
t−1+C+

t−1

2 ).

When the classifier responds with ''+'', C+
t increases to no more than

√
C−

t−1 · C+
t−1 and

so Gt ≥ √
Gt−1. Similarly when this classifier responds with ''−'', C−

t decreases to no

less than
√

C−
t−1 · C+

t−1 and so again Gt ≥ √
Gt−1. Thus, these responses ensure that

at each iteration Gt ≥ √
Gt−1 (or in the additive case Gt ≥ Gt−1

2 ) and since the algo-

rithm cannot terminate until GN ≤ 1 + ε, it must be the case that N ≥ L(∗)
ε because of

Equation (8.6) (or in the additive case, it must be the case that N ≥ L(+)
η because of

Equation (8.5)). Otherwise, there are still two convex-inducing classifiers with consis-
tent query responses but with no common ε-IMAC. The first classifier’s positive set is
the smallest cost-ball enclosing all positive queries, while the second classifier’s posi-
tive set is the largest cost-ball enclosing all positive queries but no negatives. The MAC
values for these classifiers differ by more than a factor of (1 + ε) if N < L(∗)

ε (or, for
the additive case, by a difference of more than η if N < L(+)

η ), so they have no common
ε-IMAC. �

Proof of Theorem 8.12

For the proof of Theorem 8.12, we use the orthants (centered at xA)—i.e., an orthant is
the D-dimensional generalization of a quadrant in 2-dimensions. There are 2D orthants
in a D-dimensional space. We represent each orthant by its canonical representa-
tion, which is a vector of D positive or negative ones; i.e., the orthant represented by
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a = (±1,±1, . . . ,±1) contains the point xA + a and is the set of all points x satisfying

xi ∈
{

[0,+∞] , if ai = +1

[−∞, 0] , if ai = −1
.

Now based on Lemma A.2, we give the required proof of Theorem 8.12:

Proof of Theorem 8.12 Suppose a query-based algorithm submits N membership
queries x(1), . . . , x(N ) ∈ �D to the classifier. Again, for the algorithm to be ε-optimal,
these queries must constrain all consistent classifiers in the family F̂ convex,''+'' to have a
common point among their ε-IMAC sets. The responses described above are consistent
with the classifier f defined as

f (x) =
{
+1, if Ap

(
x − xA

)
< C−

0

−1, otherwise
.

For this classifier, X+
f is convex since Ap is a convex function for p ≥ 1, BC+

0
(
Ap

) ⊆
X+

f since C+
0 < C−

0 , and BC−
0
(
Ap

) �⊆ X+
f since X+

f is the open C−
0 -ball, whereas

BC−
0
(
Ap

)
is the closed C−

0 -ball. Moreover, since X+
f is the open C−

0 -ball, � x ∈
X−

f such that Ap

(
x − xA

)
< C−

0 ; therefore MAC
(

f, Ap

) = C−
0 , and any ε-optimal

points x′ ∈ ε-IMAC(∗)
(

f, Ap

)
must satisfy C−

0 ≤ Ap

(
x′ − xA

) ≤ (1 + ε)C−
0 .

Now consider an alternative classifier g that responds identically to f for x(1), . . . , x(N )

but has a different convex positive set X+
g . Without loss of generality suppose the first

M ≤ N queries are positive and the remaining are negative. Consider a set that is the
convex hull of the orthants of all M positive queries; that is,

G = conv
(

orth
(
x(1)
) ∩ X+

f , orth
(
x(2)
) ∩ X+

f , . . . , orth
(
x(M )

) ∩ X+
f

)
(D.6)

where orth (x) is some orthant that x lies within relative to the center, xA (a data point
may lie within more than one orthant, but it is only necessary to select one of the orthants
that contains it to cover it). By intersecting each data point’s orthant with the set X+

f and

taking the convex hull of these regions, G is convex, contains xA, and is a subset of X+
f

consistent with all the query responses of f; i.e., each of the M positive queries is in X+
g

and all the negative queries are in X−
g . Moreover, G is a superset of the convex hull of

the M positive queries. Thus, the largest enclosed �p ball within G is an upper bound on
MAC

(
g, Ap

)
, so we bound the size of this �p ball instead.

We now represent each orthant as a vertex in a D-dimensional hypercube graph—the
Hamming distance between any pair of orthants is the number of different coordinates
in their canonical representations, and two orthants are adjacent in the graph if and only
if they have a Hamming distance of one. Using this notion of Hamming distance, we
find a K-K-covering of X of the hypercube. We refer to the orthants used to construct
G in Equation D.6 as covering orthants because they cover the M positive queries. The
vertexes corresponding to these covering orthants form a covering of the hypercube.
Suppose the M covering orthants are sufficient for a K covering but not K − 1 covering;
then there must be at least one vertex not in the covering that has at least a K Hamming
distance to every vertex in the K-covering of X. This vertex corresponds to an empty
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orthant that differs from all covered orthants in at least K coordinates of their canonical
vertexes. Without loss of generality, suppose this uncovered orthant has the canonical
vertex of all positive ones that is scaled to C−

0 1. Now, consider the hyperplane with
normal vector w = 1 and displacement

d =
{

C−
0 (D − K )

p−1
p if 1 < p < ∞

C−
0 (D − K ) if p = ∞

that specifies the discriminant function s (x) = x�w − d =∑D
i=1 xi − d. For this hyper-

plane, the vertex C−
0 1 yields

s
(
C−

0 1
) = C−

0 D − d

= C−
0 D − (C−

0 D − K
) p−1

p

> C−
0 D − (C−

0 D − K
)

> 0.

Also for any orthant a with Hamming distance at least K from this uncovered orthant, all
points x ∈ orth (a) ∩ X+

f yield the following valuation of the function s, by definition
of the orthant and X+

f :

s (x) =
D∑

i=1

xi − d

=
∑

{i | ai=+1}
xi︸︷︷︸
≥0

+
∑

{i | ai=−1}
xi︸︷︷︸
≤0

− d.

Since all the terms in the second summation are nonpositive, the second sum is at most 0.
Thus, maximizing the first summation upper bounds s (x). The summation

∑
{i | ai=+1} xi

(with the constraint that ‖x‖p < C−
0 , which is necessary for x to be in X+

f ) has at
most D − K terms and is maximized by xi = C−

0 (D − K )−1/p (or xi = C−
0 for p = ∞)

for which the first summation is upper bounded by C−
0 (D − K )

p−1
p or C−

0 (D − K ) for
p = ∞; i.e., it is upper bounded by d and so s (x) ≤ 0. Thus, this hyperplane separates
the scaled vertex C−

0 1 from each set orth (a) ∩ X+
f where a is the canonical represen-

tation of any orthant with a Hamming distance of at least K from the positive orthant
represented by 1. This hyperplane also separates the scaled vertex from G by the prop-
erties of the convex hull. Since the displacement d defined above is greater than 0, by
applying Lemma A.3, this separating hyperplane upper bounds the cost of the largest �p

ball enclosed in G as

MAC
(
g, Ap

) ≤ C−
0 (D − K )

p−1
p · ‖1‖−1

p
p−1

= C−
0

(
D − K

D

) p−1
p

for 1 < p < ∞ and

MAC
(
g, Ap

) ≤ C−
0 (D − K ) · ‖1‖−1

1 = C−
0

D − K

D
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for p = ∞. Based on this upper bound on the MAC of g and the MAC of f (i.e., C−
0 ), if

there is a common ε-IMAC between these classifiers, it must satisfy

(1 + ε) ≥
{(

D
D−K

) p−1
p , if 1 < p < ∞

D
D−K , if p = ∞

.

Solving for the value of K required to achieve a desired accuracy of 1 + ε yields

K ≤
⎧⎨
⎩

(1+ε)
p

p−1 −1

(1+ε)
p

p−1
D, if 1 < p < ∞

ε
1+ε

D, if p = ∞
,

which bounds the size of the K-covering of X required to achieve the desired multiplica-
tive accuracy ε.

For the case 1 < p < ∞, Lemma A.2 shows there must be

M ≥ exp
{

ln(2) · D
(

1 − H
(

1 − (1 + ε)
p

1−p

))}
vertexes of the hypercube in the K-covering of X to achieve any desired accuracy 0 <

ε < 2
p−1

p − 1, for which

δ = (1 + ε)
p

p−1 − 1

(1 + ε)
p

p−1

<
1

2

to satisfy the condition required by the lemma. Thus, this theorem is applicable for any

ε < 2
p−1

p − 1. For example, for p = 2, the theorem is applicable for any ε <
√

2 − 1.
Moreover, since H (δ) < 1 for any δ < 1

2 ,

αp,ε = exp

{
ln(2)

(
1 − H

(
(1 + ε)

p
p−1 − 1

(1 + ε)
p

p−1

))}
> 1

and

M ≥ αD
p,ε .

Similarly for p = ∞, applying Lemma A.2 requires M ≥ 2D(1−H ( ε
1+ε )) to achieve

any desired accuracy 0 < ε < 1 (for which ε/(1 + ε) < 1/2 as required by the lemma).
Again, by the properties of entropy, the constant α∞,ε = 2(1−H ( ε

1+ε )) > 1 for any 0 <

ε < 1 and M ≥ αD
∞,ε . �

It is worth noting that the constants αp,ε and α∞,ε required by Theorem 8.12 can
be expressed in a more concise form by expanding the entropy function (H (δ) =
−δ log2 (δ) − (1 − δ) log2 (1 − δ)). For 1 < p < ∞ the constant is given by

αp,ε = 2 ·
(

1 − (1 + ε)
p

1−p

)
· exp

(
ln

(
−1

1 − (1 + ε)
p

p−1

)
· (1 + ε)

p
1−p

)
. (D.7)

In this form, it is difficult to directly see that αp,ε > 1 for ε < 2
p−1

p − 1, but using the
entropy form in the proof above shows that this is indeed the case. Similarly, for p = ∞
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the more concise form of the constant is given by

α∞,ε = 2

1 + ε
exp

(
ln (ε) ·

(
ε

1 + ε

))
. (D.8)

Again, as shown in the proof above, α∞,ε > 1 for ε < 1.

Proof of Theorem 8.13

For this proof, we build on previous results for K-covering of X hyperspheres. The proof
is based on a covering number result from Wyner (1965) that first appeared in Shannon
(1959). This result bounds the minimum number of spherical caps required to cover the
surface of a hypersphere and is summarized in Appendix A.2.

Proof of Theorem 8.13 Suppose a query-based algorithm submits N < D + 1 mem-
bership queries x(1), . . . , x(N ) ∈ �D to the classifier. For the algorithm to be ε-optimal,
these queries must constrain all consistent classifiers in the family F̂ convex,''+'' to have a
common point among their ε-IMAC sets. Suppose that all the responses are consistent
with the classifier f defined as

f (x) =
{
+1, if A2

(
x − xA

)
< C−

0

−1, otherwise
; (D.9)

For this classifier, X+
f is convex since A2 is a convex function, BC+

0 (A2) ⊆
X+

f since C+
0 < C−

0 , and BC−
0 (A2) �⊆ X+

f since X+
f is the open C−

0 -ball, whereas

BC−
0 (A2) is the closed C−

0 -ball. Moreover, since X+
f is the open C−

0 -ball, � x ∈
X−

f such that A2
(
x − xA

)
< C−

0 therefore MAC ( f, A2) = C−
0 , and any ε-optimal

points x′ ∈ ε-IMAC(∗) ( f, A2) must satisfy C−
0 ≤ A2

(
x′ − xA

) ≤ (1 + ε)C−
0 .

Now consider an alternative classifier g that responds identically to f for x(1), . . . , x(N )

but has a different convex positive set X+
g . Without loss of generality suppose

the first M ≤ N queries are positive and the remaining are negative. Let G =
conv

(
x(1), . . . , x(M )

)
; that is, the convex hull of the M positive queries. We assume

xA ∈ G, since otherwise, the malicious classifier can construct the set X+
g as in the

proof for Theorems 8.7 and 8.6 and achieve MAC ( f, A2) = C+
0 , thereby showing the

desired result. Otherwise when xA ∈ G, consider the points z(i) = C−
0

x(i)

A2(x(i)−xA) ; i.e., the

projection of each of the positive queries onto the surface of the �2 ball BC−
0 (A2). Since

each positive query lies along the line between xA and its projection z(i), by convexity
and the fact that xA ∈ G, the set G is a subset of conv

(
z(1), z(2), . . . , z(M )

)
—we refer

to this enlarged hull as Ĝ. These M projected points
{
z(i)
}M

i=1
must form a K-covering

of X of the C−
0 -hypersphere as the loci of caps of half-angle φ


ε = arccos
(

1
1+ε

)
. If not,

then there exists some point on the surface of this hypersphere that is at least an angle
φ


ε from all z(i) points, and the resulting φ

ε -cap centered at this uncovered point is not

in Ĝ (since a cap is defined as the intersection of the hypersphere and a halfspace).
Moreover, by definition of the φ


ε -cap, it achieves a minimal �2 cost of C−
0 cos φ


ε . Thus,
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if the adversary fails to achieve a φ

ε -K-covering of X of the C−

0 -hypersphere, the alter-

native classifier g has MAC (g, A2) < C−
0 cos φ


ε = C−
0

1+ε
and any x ∈ ε-IMAC(∗) (g, A2)

must have

A2
(
x − xA

) ≤ (1 + ε)MAC < (1 + ε)
C−

0

1 + ε
= C−

0

whereas any y ∈ ε-IMAC(∗) ( f, A) must have A
(
y − xA

) ≥ C−
0 . Thus, there are no com-

mon points in the ε-IMAC(∗) sets of these consistent classifiers (i.e., ε-IMAC(∗) ( f, A) ∩
ε-IMAC(∗) (g, A) = ∅), and so the adversary would have failed to ensure ε-multiplica-
tive optimality. Thus, an φ


ε -K-covering of X is necessary for ε-multiplicative optimality
for �2 costs. Moreover, from our definition of φ


ε , for any ε ∈ (0,∞), φ
 ∈ (0, π
2

)
and

thus, Lemma A.1 is applicable for all ε. From Lemma A.1, to achieve an φ

ε -K-covering

of X requires at least

M ≥
(

1

sin φ

ε

)D−2

queries. Using the trigonometric identity sin (arccos(x)) = √
1 − x2, and substituting

for φ

ε yields the following bound on the number of queries required for a given multi-

plicative accuracy ε:

M ≥
(

1

sin
(
arccos

(
1

1+ε

))
)D−2

≥
(

(1 + ε)2

(1 + ε)2 − 1

) D−2
2

.

�
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