
7
Gaussian Mixture Models

Many natural statistics, such as the distribution of people’s heights, can be
modeled as a mixture of Gaussians. The components of the mixture represent
the parts of the distribution coming from different subpopulations. But if we
don’t know about the subpopulations in advance, can we figure out what they
are and learn their parameters? And can we then classify samples based on
which subpopulation they are likely to have come from? In this chapter we will
give the first algorithms for learning the parameters of a mixture of Gaussians
at an inverse polynomial rate. The one-dimensional case was introduced by
Karl Pearson, who was one of the founders of statistics. We will show the first
provable guarantees for his method. Building on this, we will solve the high-
dimensional learning problem too. Along the way, we will develop insights
about systems of polynomial equations and how they can be used for parameter
learning.

7.1 Introduction

Karl Pearson was one of the luminaries of statistics and helped to lay its
foundation. He introduced revolutionary new ideas and methods, such as:

(a) p-values, which are now the de facto way to measure statistical
significance

(b) The chi-squared test, which measures goodness of fit to a Gaussian
distribution

(c) Pearson’s correlation coefficient
(d) The method of moments for estimating the parameters of a distribution
(e) Mixture models for modeling the presence of subpopulations

107

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

108 7 Gaussian Mixture Models

Believe it or not, the last two were introduced in the same influential study
from 1894 that represented Pearson’s first foray into biometrics [120]. Let’s
understand what led Pearson down this road. While on vacation, his colleague
Walter Weldon and his wife had meticulously collected 1,000 Naples crabs
and measured 23 different physical attributes of each of them. But there was a
surprise lurking in the data. All but one of these statistics was approximately
Gaussian. So why weren’t they all Gaussian?

Everyone was quite puzzled, until Pearson offered an explanation: Maybe
the Naples crab is not one species, but rather two species. Then it is natural to
model the observed distribution as a mixture of two Gaussians, rather than
just one. Let’s be more formal. Recall that the density function of a one-
dimensional Gaussian with mean μ and variance σ 2 is

N (μ, σ 2, x) = 1√
2πσ 2

exp

{
−(x− μ)2

2σ 2

}
.

And for a mixture of two Gaussians, it is

F(x) = w1 N (μ1, σ 2
1 , x)︸ ︷︷ ︸

F1(x)

+(1− w1)N (μ2, σ 2
2 , x)︸ ︷︷ ︸

F2(x)

.

We will use F1 and F2 to denote the two Gaussians in the mixture. You can also
think of it in terms of how you’d generate a sample from it: Take a biased coin
that is heads with probability w1 and tails with the remaining probability 1−w1.
Then for each sample you flip the coin; i.e., decide which subpopulation your
sample comes from. If it’s heads, you output a sample from the first Gaussian,
otherwise you output a sample from the second one.

This is already a powerful and flexible statistical model (see Figure 7.1). But
Pearson didn’t stop there. He wanted to find the parameters of a mixture of two
Gaussians that best fit the observed data to test out his hypothesis. When it’s
just one Gaussian, it’s easy, because you can set μ and σ 2 to be the empirical
mean and empirical variance, respectively. But what should you do when there
are five unknown parameters and for each sample there is a hidden variable
representing which subpopulation it came from? Pearson used the method
of moments, which we will explain in the next subsection. The parameters
he found seemed to be a good fit, but there were still a lot of unanswered
questions, such as: Does the method of moments always find a good solution
if there is one?

Method of Moments

Here we will explain how Pearson used the method of moments to find the
unknown parameters. The key observation is that the moments of a mixture

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.1 Introduction 109

0.58 0.60 0.62 0.64 0.66 0.68 0.70

0
5

10
15

20

Figure 7.1: A fit of a mixture of two univariate Gaussians to Pearson’s data on
Naples crabs, created by Peter Macdonald using R.

of Gaussians are themselves polynomials in the unknown parameters. Let’s
denote the rth raw moments of a Gaussian by Mr:

E
x←F1(x)

[
xr] = Mr(μ, σ)

It is easy to compute M1(μ, σ) = μ and M2(μ, σ) = μ2 + σ 2, etc., and check
that Mr is a degree r polynomial in μ and σ . Now we have

E
x←F(x)

[
xr] = w1Mr(μ1, σ1)+ (1− w1)Mr(μ2, σ2) = Pr(w1, μ1, σ1, μ2, σ2).

And so the rth raw moment of a mixture of two Gaussians is itself a degree
r + 1 polynomial, which we denote by Pr, in the parameters we would like to
learn.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

110 7 Gaussian Mixture Models

Pearson’s Sixth Moment Test: We can estimate Ex←F[xr] from random
samples. Let S be our set of samples. Then we can compute:

M̃r = 1

|S|
∑
x∈S

xr

And given a polynomial number of samples (for any r = O(1)), M̃r will be
additively close to Ex←F(x) [xr]. Pearson’s approach was:

• Set up a system of polynomial equations{
Pr(w1, μ1, σ1, μ2, σ2) = M̃r

}
, r = 1, 2, . . . , 5.

• Solve this system. Each solution is a setting of all five parameters that
explains the first five empirical moments.

Pearson solved the above system of polynomial equations by hand, and he
found a number of candidate solutions. Each solution corresponds to a way to
set all five unknown parameters so that the moments of the mixture match the
empirical moments. But how can we choose among these candidate solutions?
Some of the solutions were clearly not right; some had negative values for
the variance, or a value for the mixing weight that was not between zero and
one. But even after eliminating these solutions, Pearson was still left with
more than one candidate solution. His approach was to choose the candidate
whose prediction was closest to the empirical sixth moment M̃6. This is called
the sixth moment test.

Expectation Maximization

The workhorse in modern statistics is the maximum likelihood estimator, which
sets the parameters so as to maximize the probability that the mixture would
generate the observed samples. This estimator has lots of wonderful properties.
Under certain technical conditions, it is asymptotically efficient, meaning that
no other estimator can achieve asymptotically smaller variance as a function of
the number of samples. Even the law of its distribution can be characterized,
and is known to be normally distributed with a variance related to what’s called
the Fisher information. Unfortunately, for most of the problems we will be
interested in, it is NP-hard to compute [19].

The popular alternative is known as expectation maximization and was
introduced in an influential paper by Dempster, Laird, and Rubin [61]. It is
important to realize that this is just a heuristic for computing the maximum
likelihood estimator and does not inherit any of its statistical guarantees.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.2 Clustering-Based Algorithms 111

Expectation maximization is a general approach for dealing with latent
variables where we alternate between estimating the latent variables given our
current set of parameters, and updating our parameters. In the case of mixtures
of two Gaussians, it repeats the following until convergence:

• For each x ∈ S, calculate the posterior probability:

ŵ1(x) = ŵ1F̂1(x)

ŵ1F̂1(x)+ (1− ŵ1)F̂2(x)

• Update the mixing weights:

ŵ1 ←
∑

x∈S ŵ1(x)

|S|
• Reestimate the parameters:

μ̂i ←
∑

x∈S ŵi(x)x∑
x∈S ŵi(x)

, �̂i ←
∑

x∈S ŵi(x)(x− μ̂i)(x− μ̂i)
T∑

x∈S ŵi(x)

In practice, it seems to work well. But it can get stuck in local maxima of the
likelihood function. Even worse, it can be quite sensitive to how it is initialized
(see, e.g., [125]).

7.2 Clustering-Based Algorithms

Our basic goal will be to give algorithms that provably compute the true
parameters of a mixture of Gaussians, given a polynomial number of random
samples. This question was introduced in the seminal paper of Dasgupta [56],
and the first generation of algorithms focused on the high-dimensional case
where the components are far enough apart that they have essentially no
overlap. The next generation of algorithms are based on algebraic insights and
avoid clustering altogether.

The High-Dimensional Geometry of Gaussians

Before we proceed, we will discuss some of the counterintuitive properties of
high-dimensional Gaussians. First, the density of a multidimensional Gaussian
in R

n is given by

N (μ, �) = 1

(2π)n/2det(�)1/2
exp

{
−(x− μ)!�−1(x− μ)

2

}
.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

112 7 Gaussian Mixture Models

Here, � is the covariance matrix. If � = σ 2In and μ = �0, then the distribution
is just N (0, σ 2)×N (0, σ 2)×. . .×N (0, σ 2) and we call it a spherical Gaussian,
because the density function is rotationally invariant.

Fact 7.2.1 The maximum value of the density function is at x = μ.

Fact 7.2.2 For a spherical Gaussian, almost all the weight of the density
function has ‖x− μ‖2

2 = σ 2n± σ 2√n log n.

At first, these facts might seem to be inconsistent. The first one tells us that the
most probable value of a sample is at zero. The second one tells us that almost
all of the samples are far from zero. It’s easiest to think about what’s happening
in spherical coordinates. The maximum of the density function is when the
radius R = 0. But the rate at which the surface area of the sphere increases is
much faster than the rate that the density function decreases, until we reach
a radius of R = σ

√
n. Really, we should think about a high-dimensional

spherical Gaussian as being essentially a thin spherical shell.

The Cluster-Then-Learn Paradigm

Clustering-based algorithms are all based on the following strategy:

• Cluster all of the samples S into two sets S1 and S2 depending on whether
they were generated by the first or second component.

• Output the empirical mean and covariance of each Si along with the
empirical mixing weight |S1|

|S| .

The details of how we will implement the first step and what types of
conditions we need to impose will vary from algorithm to algorithm. But first
let’s see that if we could design a clustering algorithm that succeeds with high
probability, the parameters we find would be provably good estimates for the
true ones. This is captured by the following lemmas. Let |S| = m be the number
of samples.

Lemma 7.2.3 If m ≥ C log 1/δ

ε2 and clustering succeeds, then

|ŵ1 − w1| ≤ ε

with probability at least 1− δ.

Now let wmin = min(w1, 1− w1). Then

Lemma 7.2.4 If m ≥ C n log 1/δ

wminε2 and clustering succeeds, then

‖μ̂i − μi‖2 ≤ ε

for each i, with probability at least 1− δ.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.2 Clustering-Based Algorithms 113

Finally, let’s show that the empirical covariance is close too:

Lemma 7.2.5 If m ≥ C n log 1/δ

wminε2 and clustering succeeds, then

‖�̂i −�i‖ ≤ ε

for each i, with probability at least 1− δ.

All of these lemmas can be proven via standard concentration bounds. The first
two follow from concentration bounds for scalar random variables, and the
third requires more high-powered matrix concentration bounds. However, it is
easy to prove a version of this that has a worse but still polynomial dependence
on n by proving that each entry of �̂i and �i are close and using the union
bound. What these lemmas together tell us is that if we really could solve
clustering, then we would indeed be able to provably estimate the unknown
parameters.

Dasgupta [56]: �̃(
√

n) Separation
Dasgupta gave the first provable algorithms for learning mixtures of Gaussians,
and required that ‖μi − μj‖2 ≥ �̃(

√
nσmax) where σmax is the maximum

variance of any Gaussian in any direction (e.g., if the components are not
spherical). Note that the constant in the separation depends on wmin, and we
assume we know this parameter (or a lower bound on it).

The basic idea behind the algorithm is to project the mixture onto log k
dimensions uniformly at random. This projection will preserve distances
between each pair of centers μi and μj with high probability, but will contract
distances between samples from the same component and make each com-
ponent closer to spherical, thus making it easier to cluster. Informally, we can
think of this separation condition as: if we think of each Gaussian as a spherical
ball, then if the components are far enough apart, these balls will be disjoint.

Arora and Kannan [19] and Dasgupta and Schulman [64]:
�̃(n1/4) Separation

We will describe the approach in [19] in detail. The basic question is, if
√

n
separation is the threshold where we can think of the components as disjoint,
how can we learn when the components are much closer? In fact, even if the
components are only �̃(n1/4) separated, it is still true that every pair of samples
from the same component is closer than every pair of samples from different
components. How can this be? The explanation is that even though the balls
representing each component are no longer disjoint, we are still very unlikely
to sample from their overlap region.

Consider x, x′ ← F1, and y ← F2.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

114 7 Gaussian Mixture Models

Claim 7.2.6 All of the vectors x − μ1, x′ − μ1, μ1 − μ2, y − μ2 are nearly
orthogonal (whp).

This claim is immediate, since the vectors x−μ1, x′ −μ1, y−μ2 are uniform
from a sphere, and μ1−μ2 is the only fixed vector. In fact, any set of vectors in
which all but one are uniformly random from a sphere are nearly orthogonal.

Now we can compute:

‖x− x′‖2 ≈ ‖x− μ1‖2 + ‖μ1 − x′‖2

≈ 2nσ 2 ± 2σ 2
√

n log n

And similarly:

‖x− y‖2 ≈ ‖x− μ1‖2 + ‖μ1 − μ2‖2 + ‖μ2 − y‖2

≈ 2nσ 2 + ‖μ1 − μ2‖2 ± 2σ 2
√

n log n

Hence if ‖μ1 − μ2‖ = �̃(n1/4, σ), then ‖μ1 − μ2‖2 is larger than the error
term and each pair of samples from the same component will be closer than
each pair from different components. Indeed, we can find the right threshold
τ and correctly cluster all of the samples. Again, we can output the empirical
mean, empirical covariance, and relative size of each cluster, and these will be
good estimates of the true parameters.

Vempala and Wang [141]: �̃(k1/4) Separation
Vempala and Wang [141] removed the dependence on n and replaced it with
a separation condition that depends on k, the number of components. The
idea is that if we could project the mixture into the subspace T spanned
by {μ1, . . . , μk}, we would preserve the separation between each pair of
components but reduce the ambient dimension.

So how can we find T , the subspace spanned by the means? We will restrict
our discussion to a mixture of spherical Gaussians with a common variance
σ 2I. Let x ∼ F be a random sample from the mixture; then we can write
x = c + z where z ∼ N(0, σ 2In) and c is a random vector that takes the value
μi with probability wi for each i ∈ [k]. So:

E[xxT] = E[ccT]+ E[zzT] =
k∑

i=1

wiμiμ
!
i + σ 2In

Hence the top left singular vectors of E[xxT], whose singular value is strictly
larger than σ 2, exactly span T . We can then estimate E[xxT] from sufficiently
many random samples, compute its singular value decomposition, and project
the mixture onto T and invoke the algorithm of [19].

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.3 Discussion of Density Estimation 115

Brubaker and Vempala [40]: Separating Hyperplane
What if the largest variance of any component is much larger than the
separation between the components? Brubaker and Vempala [40] observed
that none of the existing algorithms succeed for a mixture that looks like a
pair of parallel pancakes. In this example, there is a hyperplane that separates
the mixture so that almost all of one component is on one side and almost
all of the other component is on the other side. They gave an algorithm that
succeeds, provided that such a separating hyperplane exists; however, the
conditions are more complex to state for mixtures of three or more Gaussians.
With three components, it is easy to construct mixtures that we can hope to
learn, but where there are no hyperplanes that separate one component from the
others.

7.3 Discussion of Density Estimation

The algorithms we have discussed so far all rely on clustering. But there
are some cases where this strategy just won’t work, because clustering is
information theoretically impossible. More precisely, we will show that if
dTV(F1, F2) = 1/2, then we will quickly encounter a sample where we cannot
figure out which component generated it, even if we know the true parameters.

Let’s formalize this through the notion of a coupling:

Definition 7.3.1 A coupling between F and G is a distribution on pairs (x, y)
so that the marginal distribution on x is F and the marginal distribution on y
is G. The error is the probability that x �= y.

So what is the error of the best coupling? It is easy to see that it is exactly
the total variation distance:

Claim 7.3.2 There is a coupling with error ε between F and G if and only if
dTV(F, G) ≤ ε.

In fact, this is a nice way to think about the total variation distance. Oper-
ationally upper-bounding the total variation distance tells us there is a good
coupling. In a similar manner, you can interpret the KL divergence as the
penalty you pay (in terms of expected coding length) when you optimally
encode samples from one distribution using the best code for the other.

Returning to the problem of clustering the samples from a mixture of two
Gaussians, suppose we have dTV(F1, F2) = 1/2 and that

F(x)+ 1/2F1(x)+ 1/2F2(x).

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

116 7 Gaussian Mixture Models

Using the above claim, we know that there is a coupling between F1 and F2

that agrees with probability 1/2. Hence, instead of thinking about sampling
from a mixture of two Gaussians in the usual way (choose which component,
then choose a random sample from it), we can alternatively sample as follows:

1. Choose (x, y) from the best coupling between F1 and F2.
2. If x = y, output x with probability 1/2, and otherwise output y.
3. Else output x with probability 1/2, and otherwise output y.

This procedure generates a random sample from F just as before. What’s
important is that if you reach the second step, the value you output doesn’t
depend on which component the sample came from. So you can’t predict
it better than randomly guessing. This is a useful way to think about the
assumptions that clustering-based algorithms make. Some are stronger than
others, but at the very least they need to take at least n samples and cluster all
of them correctly. In order for this to be possible, we must have

dTV(F1, F2) ≥ 1− 1/n.

But who says that algorithms for learning must first cluster? Can we hope to
learn the parameters even when the components almost entirely overlap, such
as when dTV(F1, F2) = 1/n?

Now is a good time to discuss the types of goals we could aim for and how
they relate to each other.

(a) Improper Density Estimation

This is the weakest learning goal. If we’re given samples from some distribu-
tion F in some class C (e.g., C could be all mixtures of two Gaussians), then
we want to find any other distribution F̂ that satisfies dTV(F, F̂) ≤ ε. We do
not require F̂ to be in class C too. What’s important to know about improper
density estimation is that in one dimension it’s easy. You can solve it using a
kernel density estimate, provided that F is smooth.

Here’s how kernel density estimates work. First you take many samples and
construct an empirical point mass distribution G. Now, G is not close to F. It’s
not even smooth, so how can it be? But you can fix this by convolving with a
Gaussian with small variance. In particular, if you set F̂ = G ∗ N (0, σ 2) and
choose the parameters and number of samples appropriately, what you get will
satisfy dTV(F, F̂) ≤ ε with high probability. This scheme doesn’t use much
about the distribution F, but it pays the price in high dimensions. The issue is
that you just won’t get enough samples that are close to each other. In general,
kernel density estimates need the number of samples to be exponential in the
dimension in order to work.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.3 Discussion of Density Estimation 117

(b) Proper Density Estimation

Proper density estimation is the same but stronger, in that it requires F̂ ∈ C.
Sometimes you can interpolate between improper and proper density estima-
tion by constraining F̂ to be in some larger class that contains C. It’s also worth
noting that sometimes you can just take a kernel density estimate or anything
else that solves the improper density estimation problem and look for the F̂ ∈ C
that is closest to your improper estimate. This would definitely work, but the
trouble is that algorithmically, it’s usually not clear how to find the closest
distribution in some class to some other unwieldy target distribution. Finally,
we reach the strongest type of goal:

(c) Parameter Learning

Here we not only require that dTV(F, F̂) ≤ ε and that F̂ ∈ C, but we want F̂ to
be a good estimate for F on a component-by-component basis. For example,
our goal specialized to the case of mixtures of two Gaussians is:

Definition 7.3.3 We will say that a mixture F̂ = ŵ1F̂1 + ŵ2F̂2 is ε-close (on
a component-by-component basis) to F if there is a permutation π : {1, 2} →
{1, 2} so that for all i ∈ {1, 2}∣∣∣wi − ŵπ(i)

∣∣∣, dTV(Fi, F̂π(i)) ≤ ε.

Note that F and F̂ must necessarily be close as mixtures too: dTV(F, F̂) ≤
4ε. However, we can have mixtures F and F̂ that are both mixtures of k
Gaussians and are close as distributions, but are not close on a component-
by-component basis. So why should we aim for such a challenging goal? It
turns out that if F̂ is ε-close to F, then given a typical sample, we can estimate
the posterior accurately [94]. What this means is that even if you can’t cluster
all of your samples into which component they came from, you can still figure
out which ones it’s possible to be confident about. This is one of the main
advantages of parameter learning over some of the weaker learning goals.

It’s good to achieve the strongest types of learning goals you can hope for,
but you should also remember that lower bounds for these strong learning goals
(e.g., parameter learning) do not imply lower bounds for weaker problems
(e.g., proper density estimation). We will give algorithms for learning the
parameters of a mixture of k Gaussians that run in polynomial time for any
k = O(1) but have an exponential dependence on k. But this is necessary, in
that there are pairs of mixtures of k Gaussians F and F̂ that are not close on
a component-by-component basis but have dTV(F, F̂) ≤ 2−k [114]. So any
algorithm for parameter learning would be able to tell them apart, but that

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

118 7 Gaussian Mixture Models

takes at least 2k samples, again by a coupling argument. But maybe for proper
density estimation it’s possible to get an algorithm that is polynomial in all of
the parameters.

Open Question 1 Is there a poly(n, k, 1/ε) time algorithm for proper density
estimation for mixtures of k Gaussians in n dimensions? What about in one
dimension?

7.4 Clustering-Free Algorithms

Our goal is to learn F̂ that is ε-close to F. Let’s first generalize the definition
to mixtures of k Gaussians:

Definition 7.4.1 We will say that a mixture F̂ = ∑k
i=1 ŵiF̂i is ε-close

(on a component-by-component basis) to F if there is a permutation π :
{1, 2, . . . , k} → {1, 2, . . . , k} so that for all i ∈ {1, 2, . . . , k},∣∣∣wi − ŵπ(i)

∣∣∣, dTV(Fi, F̂π(i)) ≤ ε.

When can we hope to learn an ε close estimate in poly(n, 1/ε) samples?
There are two situations where it just isn’t possible. Eventually our algorithm
will show that these are the only things that go wrong:

(a) If wi = 0, we can never learn F̂i that is close to Fi, because we never get
any samples from Fi.

In fact, we need a quantitative lower bound on each wi, say wi ≥ ε, so that if
we take a reasonable number of samples, we will get at least one sample from
each component.

(b) If dTV(Fi, Fj) = 0, we can never learn wi or wj, because Fi and Fj entirely
overlap.

Again, we need a quantitative lower bound on dTV(Fi, Fj), say dTV(Fi, Fj) ≥ ε,
for each i �= j so that if we take a reasonable number of samples, we will
get at least one sample from the nonoverlap region between various pairs of
components.

Theorem 7.4.2 [94], [114] If wi ≥ ε for each i and dTV(Fi, Fj) ≥ ε for each
i �= j, then there is an efficient algorithm that learns an ε-close estimate F̂ to F
whose running time and sample complexity are poly(n, 1/ε, log 1/δ) and that
succeeds with probability 1− δ.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.4 Clustering-Free Algorithms 119

Note that the degree of the polynomial depends polynomially on k. Kalai,
Moitra, and Valiant [94] gave the first algorithm for learning mixtures of two
Gaussians with no separation conditions. Subsequently, Moitra and Valiant
[114] gave an algorithm for mixtures of k Gaussians, again with no separation
conditions.

In independent and concurrent work, Belkin and Sinha [28] gave a poly-
nomial time algorithm for mixtures of k Gaussians too; however, there is no
explicit bound given on the running time as a function of k (since their work
depends on Hilbert’s basis theorem, which is fundamentally ineffective). Also,
the goal in [94] and [114] is to learn F̂ so that its components are close in
total variation distance to those of F, which is in general a stronger goal than
requiring that the parameters be additively close, which is the goal in [28]. The
benefit is that the algorithm in [28] works for more general learning problems
in the one-dimensional setting, and we will explain the ideas of their algorithm
at the end of this chapter.

Throughout this section we will focus on the k= 2 case, since this algorithm
is conceptually much simpler. In fact, we will aim for a weaker learning goal:
We will say that F̂ is additively ε-close to F if |wi − ŵπ(i)|, ‖μi − μ̂π(i)‖,
‖�i− �̂π(i)‖F ≤ ε for all i. We want to find such an F̂. It turns out that we will
be able to assume that F is normalized in the following sense:

Definition 7.4.3 A distribution F is in isotropic position if

(a) Ex←F[x] = 0 and
(b) Ex←F[xxT] = I.

The second condition means that the variance is one in every direction.
Actually, it’s easy to put a distribution in isotropic position, provided that
there’s no direction where the variance is zero. More precisely:

Claim 7.4.4 If Ex←F[xxT] is full rank, then there is an affine transformation
that places F in isotropic position.

Proof: Let μ = Ex←F[x]. Then

Ex←F[(x− μ)(x− μ)T] = M = BBT

which follows because M is positive semidefinite and hence has a Cholesky
decomposition. By assumption, M has full rank, and hence B does too. Now if
we set

y = B−1(x− μ)

it is easy to see that E[y] = 0 and E[yyT] = B−1M(B−1)T = I as desired. �

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

120 7 Gaussian Mixture Models

Our goal is to learn an additive ε approximation to F, and we will assume that
F has been preprocessed so that it is in isotropic position.

Outline
We can now describe the basic outline of the algorithm, although there will be
many details to fill in:

(a) Consider a series of projections down to one dimension.
(b) Run a univariate learning algorithm.
(c) Set up a system of linear equations on the high-dimensional parameters

and back-solve.

Isotropic Projection Lemma

We will need to overcome a number of obstacles to realize this plan, but let’s
work through the details of this outline. First let’s understand what happens to
the parameters of a Gaussian when we project it along some direction r:

Claim 7.4.5 projr[N (μ, �)] = N (rTμ, rT�r)

This simple claim already tells us something important: Suppose we want to
learn the parameters μ and � of a high-dimensional Gaussian. If we project
it onto direction r and learn the parameters of the resulting one-dimensional
Gaussian, then what we’ve really learned are linear constraints on μ and �.
If we do this many times for many different directions r, we could hope to get
enough linear constraints on μ and � that we could simply solve for them.
Moreover, it’s natural to hope that we need only about n2 directions, because
there are that many parameters of �. But now we’re coming up to the first
problem we’ll need to find a way around. Let’s introduce some notation:

Definition 7.4.6 dp(N (μ1, σ 2
1),N (μ2, σ 2

2)) = |μ1 − μ2| + |σ 2
1 − σ 2

2 |
We will refer to this as the parameter distance. Ultimately, we will give a
univariate algorithm for learning mixtures of Gaussians, and we would like
to run it on projr[F].

Problem 2 But what if dp(projr[F1], projr[F2]) is exponentially small?

This would be a problem, since we would need to run our univariate algorithm
with exponentially fine precision just to see that there are two components
and not one! How can we get around this issue? We’ll prove that this problem
essentially never arises when F is in isotropic position. For intuition, consider
two cases:

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.4 Clustering-Free Algorithms 121

(a) Suppose ‖μ1 − μ2‖ ≥ poly(1/n, ε).

You can think of this condition as just saying that ‖μ1 − μ2‖ is not
exponentially small. In any case, we know that projecting a vector onto a
random direction typically reduces its norm by a factor of

√
n and that its

projected length is concentrated around this value. This tells us that with high
probability ‖rTμ1 − rTμ2‖ is at least poly(1/n, ε) too. Hence projr[F1] and
projr[F2] will have noticeably different parameters just due to the difference in
their means.

(b) Otherwise, ‖μ1 − μ2‖ ≤ poly(1/n, ε).

The key idea is that if dTV(F1, F2) ≥ ε and their means are exponentially
close, then their covariances �1 and �2 must be noticeably different when
projected on a random direction r. In this case, projr[F1] and projr[F2] will
have noticeably different parameters due to the difference in their variances.
This is the intuition behind the following lemma:

Lemma 7.4.7 If F is in isotropic position and wi ≥ ε and dTV(F1, F2) ≥ ε,
then with high probability for a direction r chosen uniformly at random

dp(projr[F1], projr[F2]) ≥ ε3 = poly(1/n, ε).

This lemma is false when F is not in isotropic position (e.g., consider the
parallel pancakes example)! It also fails when generalizing to mixtures of
k > 2 Gaussians even when the mixture is in isotropic position. What goes
wrong is that there are examples where projecting onto almost all directions r
essentially results in a mixture with strictly fewer components! (The approach
in [114] is to learn a mixture of fewer Gaussians as a proxy for the true
mixture, and later on find a direction that can be used to separate out pairs
of components that have been merged.)

Pairing Lemma

Next we will encounter the second problem: Suppose we project onto direction
r and s and learn F̂r = 1

2 F̂r
1 + 1

2 F̂r
2 and F̂s = 1

2 F̂s
1 + 1

2 F̂s
2, respectively. Then

the mean and variance of F̂r
1 yield a linear constraint on one of the two high-

dimensional Gaussians, and similarly for F̂s
1.

Problem 3 How do we know that they yield constraints on the same high-
dimensional component?

Ultimately we want to set up a system of linear constraints to solve for
the parameters of F1, but when we project F onto different directions (say,

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

122 7 Gaussian Mixture Models

s

r

s

r

Figure 7.2: The projected mean and projected variance vary continuously as we
sweep from r to s.

r and s), we need to pair up the components from these two directions. The
key observation is that as we vary r to s, the parameters of the mixture vary
continuously. (See Figure 7.2). Hence when we project onto r, we know
from the isotropic projection lemma that the two components will have either
noticeably different means or variances. Suppose their means are different by
ε3; then if r and s are close (compared to ε1), the parameters of each component
in the mixture do not change much and the component in projr[F] with larger
mean will correspond to the same component as the one in projs[F] with
larger mean. A similar statement applies when it is the variances that are at
least ε3 apart.

Lemma 7.4.8 If ‖r − s‖ ≤ ε2 = poly(1/n, ε3), then:

(a) If |rTμ1 − rTμ2| ≥ ε3, then the components in projr[F] and projs[F] with
the larger mean correspond to the same high-dimensional component.

(b) Else if |rT�1r − rT�2r| ≥ ε3, then the components in projr[F] and
projs[F] with the larger variance correspond to the same
high-dimensional component.

Hence if we choose r randomly and only search over directions s with
‖r − s‖ ≤ ε2, we will be able to pair up the components correctly in the
different one-dimensional mixtures.

Condition Number Lemma

Now we encounter the final problem in the high-dimensional case: Suppose
we choose r randomly, and for s1, s2,, sp we learn the parameters of the

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.5 A Univariate Algorithm 123

projection of F onto these directions and pair up the components correctly.
We can only hope to learn the parameters on these projections up to some
additive accuracy ε1 (and our univariate learning algorithm will have running
time and sample complexity poly(1/ε1)).

Problem 4 How do these errors in our univariate estimates translate to errors
in our high-dimensional estimates for μ1, �1, μ2, �2?

Recall that the condition number controls this. The final lemma we need in the
high-dimensional case is:

Lemma 7.4.9 The condition number of the linear system to solve for μ1, �1

is poly(1/ε2, n) where all pairs of directions are ε2 apart.

Intuitively, as r and s1, s2,, sp are closer together, the condition number
of the system will be worse (because the linear constraints are closer to
redundant), but the key fact is that the condition number is bounded by a fixed
polynomial in 1/ε2 and n, and hence if we choose ε1 = poly(ε2, n)ε, then our
estimates of the high-dimensional parameters will be within an additive ε. Note
that each parameter ε, ε3, ε2, ε1 is a fixed polynomial in the earlier parameters
(and 1/n), and hence we need only run our univariate learning algorithm with
inverse polynomial precision on a polynomial number of mixtures to learn an
ε-close estimate F̂!

But we still need to design a univariate algorithm, and next we return to
Pearson’s original problem!

7.5 A Univariate Algorithm

Here we will give a univariate algorithm for learning the parameters of a
mixture of two Gaussians up to additive accuracy ε whose running time
and sample complexity is poly(1/ε). Our first observation is that all of the
parameters are bounded:

Claim 7.5.1 Let F = w1F1 + w2F2 be a mixture of two Gaussians that is in
isotropic position. Suppose that w1, w2 ≥ ε. Then

(a) μ1, μ2 ∈ [−1/
√

ε, 1/
√

ε] and
(b) σ 2

1 , σ 2
2 ∈ [0, 1/ε].

The idea is that if either of the conditions is violated, it would imply that the
mixture has variance strictly larger than one. Once we know that the parameters
are bounded, the natural approach is to try a grid search:

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

124 7 Gaussian Mixture Models

Grid Search

Input: Samples from F(�)

Output: Parameters �̂ = (ŵ1, μ̂1, σ̂ 2
1 , μ̂2, σ̂ 2

2)

For all valid �̂ where the parameters are multiples of εC

Test �̂ using the samples, if it passes output �̂

End

There are many ways we could think about testing the closeness of our
estimate with the true parameters of the model. For example, we could
empirically estiamte the first six moments of F(�) from our samples, and pass
�̂ if its first six moments are each within some additive tolerance τ of the
empirical moments. (This is really a variant on Pearson’s sixth moment test.)
It is easy to see that if we take enough samples and set τ appropriately, then if
we round the true parameters � to any valid grid point whose parameters are
multiples of εC, the resulting �̂ will with high probability pass our test. This
is called the completeness. The much more challenging part is establishing the
soundness; after all, why is there no other set of parameters �̂ except for ones
close to � that pass our test?

Alternatively, we want to prove that any two mixtures F and F̂ whose
parameters do not match within an additive ε must have one of their first six
moments noticeably different. The main lemma is:

Lemma 7.5.2 (Six Moments Suffice) For any F and F̂ that are not ε-close in
parameters, there is an r ∈ {1, 2, . . . , 6} where∣∣∣Mr(�)−Mr(�̂)

∣∣∣ ≥ εO(1)

where � and �̂ are the parameters of F and F̂, respectively, and Mr is the rth

raw moment.

Let M̃r be the empirical moments. Then∣∣∣Mr(�̂)−Mr(�)

∣∣∣ ≤ ∣∣∣M̃r(�̂)− M̃r

∣∣∣︸ ︷︷ ︸
≤τ

+
∣∣∣M̃r −Mr(�)

∣∣∣︸ ︷︷ ︸
≤τ

≤ 2τ

where the first term is at most τ because the test passes, and the second term
is small because we can take enough samples (but still poly(1/τ)) so that the
empirical moments and the true moments are close. Hence we can apply the
above lemma in the contrapositive, and conclude that if the grid search outputs

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.5 A Univariate Algorithm 125

1

p(x)

f(x) = F(x) − F(x)
^

F (x)

F (x)

F (x)
F (x)

^
^

2

1
2

Figure 7.3: If f (x) has at most six zero crossings, we can find a polynomial of
degree at most six that agrees with its sign.

�̂, then � and �̂ must be ε-close in parameters, which gives us an efficient
univariate algorithm!

So our main goal is to prove that if F and F̂ are not ε-close, one of their
first six moments is noticeably different. In fact, even the case of ε = 0 is
challenging: If F and F̂ are different mixtures of two Gaussians, why is one
of their first six moments necessarily different? Our main goal is to prove this
statement using the heat equation.

In fact, let us consider the following thought experiment. Let f (x) = F(x)−
F̂(x) be the pointwise difference between the density functions F and F̂. Then
the heart of the problem is: Can we prove that f (x) crosses the x-axis at most
six times? (See Figure 7.3.)

Lemma 7.5.3 If f (x) crosses the x-axis at most six times, then one of the first
six moments of F and F̂ is different.

Proof: In fact, we can construct a (nonzero) degree at most six polynomial
p(x) that agrees with the sign of f (x); i.e., p(x)f (x) ≥ 0 for all x. Then

0 <

∣∣∣ ∫
x

p(x)f (x)dx
∣∣∣ = ∣∣∣ ∫

x

6∑
r=1

prxrf (x)dx
∣∣∣

≤
6∑

r=1

|pr|
∣∣∣Mr(�)−Mr(�̂)

∣∣∣.
And if the first six moments of F and F̂ match exactly, the right-hand side is
zero, which is a contradiction. �

So all we need to prove is that F(x) − F̂(x) has at most six zero crossings.
Let us prove a stronger lemma by induction:

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

126 7 Gaussian Mixture Models

Lemma 7.5.4 Let f (x) = ∑k
i=1 αiN (μi, σ 2

i , x) be a linear combination of k
Gaussians (αi can be negative). Then if f (x) is not identically zero, f (x) has at
most 2k − 2 zero crossings.

We will rely on the following tools:

Theorem 7.5.5 Given f (x) : R→ R that is analytic and has n zero crossings,
then for any σ 2 > 0, the function g(x) = f (x) ∗ N (0, σ 2) has at most n zero
crossings.

This theorem has a physical interpretation. If we think of f (x) as the heat
profile of an infinite one-dimensional rod, then what does the heat profile look
like at some later time? In fact, it is precisely g(x) = f (x) ∗ N (0, σ 2) for an
appropriately chosen σ 2. Alternatively, the Gaussian is the Green’s function of
the heat equation. And hence many of our physical intuitions for diffusion have
consequences for convolution – convolving a function by a Gaussian has the
effect of smoothing it, and it cannot create new local maxima (and relatedly, it
cannot create new zero crossings).

Finally, we recall the elementary fact:

Fact 7.5.6 N (0, σ 2
1) ∗N (0, σ 2

2) = N (0, σ 2
1 + σ 2

2)

Now, we are ready to prove the above lemma and conclude that if we knew
the first six moments of a mixture of two Gaussians, exactly, then we would
know its parameters exactly too. Let us prove the above lemma by induction,
and assume that for any linear combination of k = 3 Gaussians, the number
of zero crossings is at most four. Now consider an arbitrary linear combination
of four Gaussians, and let σ 2 be the smallest variance of any component. (See
Figure 7.4a.) We can consider a related mixture where we subtract σ 2 from the
variance of each component. (See Figure 7.4b.)

Now, if we ignore the delta function, we have a linear combination of three
Gaussians, and by induction we know that it has at most four zero crossings.
But how many zero crossings can we add when we add back in the delta
function? We can add at most two, one on the way up and one on the way
down (here we are ignoring some real analysis complications of working with
delta functions for ease of presentation). (See Figure 7.4c.) And now we can
convolve the function by N (0, σ 2) to recover the original linear combination
of four Gaussians, but this last step does not increase the number of zero
crossings! (See Figure 7.4d.)

This proves that {
Mr(�̂) = Mr(�)

}
, r = 1, 2, . . . , 6

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.6 A View from Algebraic Geometry 127

(a) (b)

(d) (c)

Figure 7.4: (a) Linear combination of four Gaussians; (b) subtracting σ 2 from
each variance; (c) adding back in the delta function; (d) convolving by N (0, σ 2)

to recover the original linear combination.

has only two solutions (the true parameters, and we can also interchange
which is component is which). In fact, this system of polynomial equations
is also stable, and there is an analogue of condition numbers for systems
of polynomial equations that implies a quantitative version of what we have
just proved: if F and F̂ are not ε-close, then one of their first six moments is
noticeably different. This gives us our univariate algorithm.

7.6 A View from Algebraic Geometry

Here we will present an alternative univariate learning algorithm of Belkin and
Sinha [28] that also makes use of the method of moments, but gives a much
more general analysis using tools from algebraic geometry.

Polynomial Families

We will analyze the method of moments for the following class of
distributions:

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

128 7 Gaussian Mixture Models

Definition 7.6.1 A class of distributions F(�) is called a polynomial family if

∀r, EX∈F(�)

[
Xr] = Mr(�)

where Mr(�) is a polynomial in � = (θ1, θ2,, θk).

This definition captures a broad class of distributions, such as mixture models
whose components are uniform, exponential, Poisson, Gaussian, or gamma
functions. We will need another (tame) condition on the distribution that
guarantees it is characterized by all of its moments.

Definition 7.6.2 The moment-generating function (mgf) of a random variable
X is defined as

f (t) =
∞∑

n=0

E
[
Xn] tn

n!
.

Fact 7.6.3 If the moment-generating function of X converges in a neighbor-
hood of zero, it uniquely determines the probability distribution; i.e.,

∀r, Mr(�) = Mr(�̂) �⇒ F(�) = F(�̂).

Our goal is to show that for any polynomial family, a finite number of its
moments suffice. First we introduce the relevant definitions:

Definition 7.6.4 Given a ring R, an ideal I generated by g1, g2, · · · , gn ∈ R
denoted by I = 〈g1, g2, · · · , gn〉 is defined as

I =
{∑

i

rigi where ri ∈ R

}
.

Definition 7.6.5 A Noetherian ring is a ring such that for any sequence of
ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

there is N such that IN = IN+1 = IN+2 = · · · .
Theorem 7.6.6 [Hilbert’s Basis Theorem] If R is a Noetherian ring, then R[X]
is also a Noetherian ring.

It is easy to see that R is a Noetherian ring, and hence we know that R[x]
is also Noetherian. Now we can prove that for any polynomial family, a
finite number of moments suffice to uniquely identify any distribution in
the family:

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.6 A View from Algebraic Geometry 129

Theorem 7.6.7 Let F(�) be a polynomial family. If the moment-generating
function converges in a neighborhood of zero, there exists N such that

F(�) = F(�̂) if and only if Mr(�) = Mr(�̂) ∀r ∈ 1, 2, · · · , N.

Proof: Let Qr(�, �̂) = Mr(�)−Mr(�̂). Let I1 = 〈Q1〉 , I2 = 〈Q1, Q2〉 , · · · .
This is our ascending chain of ideals in R[�, �̂]. We can invoke Hilbert’s basis
theorem and conclude that R[X] is a Noetherian ring, and hence there is N such
that IN = IN+1 = · · · . So for all N + j, we have

QN+j(�, �̂) =
N∑

i=1

pij(�, �̂)Qi(�, �̂)

for some polynomial pij ∈ R[�, �̂]. Thus, if Mr(�) = Mr(�̂) for all
r ∈ 1, 2, · · · , N, then Mr(�) = Mr(�̂) for all r, and from Fact 7.6.3 we
conclude that F(�) = F(�̂).

The other side of the theorem is obvious. �

The theorem above does not give any finite bound on N, since the basis
theorem does not either. This is because the basis theorem is proved by
contradiction, but more fundamentally, it is not possible to give a bound on N
that depends only on the choice of the ring. Consider the following example:

Example 2 Consider the Noetherian ring R[x]. Let Ii = 〈
xN−i

〉
for

i = 0, · · · , N. It is a strictly ascending chain of ideals for i = 0, · · · , N.
Therefore, even if the ring R[x] is fixed, there is no universal bound on N.

Bounds such as those in Theorem 7.6.7 are often referred to as ineffective.
Consider an application of the above result to mixtures of Gaussians: from the
above theorem, we have that any two mixtures F and F̂ of k Gaussians are
identical if and only if these mixtures agree on their first N moments. Here
N is a function of k and N is finite, but we cannot write down any explicit
bound on N as a function of k using the above tools. Nevertheless, these tools
apply much more broadly than the specialized ones based on the heat equation
that we used in the previous section to prove that 4k − 2 moments suffice for
mixtures of k Gaussians.

Systems of Polynomial Inequalities

In general, we do not have exact access to the moments of a distribution, but
only noisy approximations. Our main goal is to prove a quantitative version
of the previous result that shows that any two distributions F and F̂ that are
close on their first N moments are close in their parameters too. The key fact is

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

130 7 Gaussian Mixture Models

that we can bound the condition number of systems of polynomial inequalities;
there are a number of ways to do this, but we will use quantifier elimination.
Recall:

Definition 7.6.8 A set S is semialgebraic if there exist multivariate polynomi-
als p1, . . . , pn such that

S = {x1, . . . , xr|pi(x1, . . . , xr) ≥ 0}

or if S is a finite union or intersection of such sets.

When a set can be defined through polynomial equalities, we call it
algebraic.

Theorem 7.6.9 [Tarski] The projection of a semialgebraic set is semialgebraic.

Interestingly, the projection of an algebraic set is not necessarily algebraic.
Can you come up with an example? A projection corresponds to defining a set
not just through polynomial inequalities, but also a ∃ operator. It turns out that
you can even take a sequence of ∃ and ∀ operators and the resulting set is still
semialgebraic.

With this tool in hand, we define the following helper set:

H(ε, δ) =
{
∀(�, �̂) : |Mr(�)−Mr(�̂)| ≤ δ for r = 1, 2, . . . N �⇒ dp(�, �̂) ≤ ε

}
Here dp(�, �̂) is some parameter distance between � and �̂. It is not
important exactly what we choose, just that it can be expressed through
polynomials in the parameters and that it treats parameters that produce
the same distribution as the same; e.g., by taking the minimum over all
matchings of components in F(�) to components in F(�̂) and summing the
componentwise parameter distances.

Now let ε(δ) be the smallest ε as a function of δ. Using Tarski’s theorem,
we can prove the following stability bound for the method of moments:

Theorem 7.6.10 There are fixed constants C1, C2, s such that if δ ≤ 1/C1,
then ε(δ) ≤ C2δ

1/s.

Proof: It is easy to see that we can define H(ε, δ) as the projection of a
semialgebraic set, hence using Tarski’s theorem, we conclude that H(ε, δ)
is also semialgebraic. The crucial observation is that because H(ε, δ) is
semialgebraic, the smallest we can choose ε to be as a function of δ is itself
a polynomial function of δ. There are some caveats here, because we need
to prove that for a fixed δ we can choose ε to be strictly greater than zero

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

7.7 Exercises 131

and, moreover, the polynomial relationship between ε and δ only holds if δ

is sufficiently small. However, these technical issues can be resolved without
much more work (see [28]). �

Now we arrive at the main result:

Corollary 7.6.11 If |Mr(�)−Mr(�̂)| ≤
(

ε
C2

)s
, then dp(�, �̂) ≤ ε.

Hence there is a polynomial time algorithm to learn the parameters of any
univariate polynomial family (whose mgf converges in a neighborhood of zero)
within an additive accuracy of ε whose running time and sample complexity is
poly(1/ε); we can take enough samples to estimate the first N moments within
εs and search over a grid of the parameters, and any set of parameters that
matches each of the moments is necessarily close in parameter distance to the
true parameters.

7.7 Exercises

Problem 7-1: Suppose we are given a mixture of two Gaussians where the
variances of each component are equal:

F(x) = w1N (μ1, σ 2, x)+ (1− w1)N (μ2, σ 2, x)

Show that four moments suffice to uniquely determine the parameters of the
mixture.

Problem 7-2: Suppose we are given access to an oracle that, for any direction r,
returns the projected means and variances; i.e., rTμ1 and rT�1r for one
component and rTμ2 and rT�2r. The trouble is that you do not know which
parameters correspond to which component.

(a) Design an algorithm to recover μ1 and μ2 (up to permuting which
component is which) that makes at most O(d2) queries to the oracle
where d is the dimension. Hint: Recover the entries of
(μ1 − μ2)(μ1 − μ2)

T .
(b) Challenge: Design an algorithm to recover �1 and �2 (up to permuting

which component is which) that makes O(1) queries to the oracle when
d = 2.

Note that here we are not assuming anything about how far apart the projected
means or variances are on some direction r.

https://doi.org/10.1017/9781316882177.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.008

