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VII

Probabilistic Models for Information
Extraction

Several common themes frequently recur in many tasks related to processing and ana-
lyzing complex phenomena, including natural language texts. Among these themes
are classification schemes, clustering, probabilistic models, and rule-based systems.

This section describes some of these techniques generally, and the next section
applies them to the tasks described in Chapter VI.

Research has demonstrated that it is extremely fruitful to model the behavior
of complex systems as some form of a random process. Probabilistic models often
show better accuracy and robustness against the noise than categorical models. The
ultimate reason for this is not quite clear and is an excellent subject for a philosophical
debate.

Nevertheless, several probabilistic models have turned out to be especially useful
for the different tasks in extracting meaning from natural language texts. Most promi-
nent among these probabilistic approaches are hidden Markov models (HMMs),
stochastic context-free grammars (SCFG), and maximal entropy (ME).

VII.1 HIDDEN MARKOV MODELS

An HMM is a finite-state automaton with stochastic state transitions and symbol
emissions (Rabiner 1990). The automaton models a probabilistic generative process.
In this process, a sequence of symbols is produced by starting in an initial state,
emitting a symbol selected by the state, making a transition to a new state, emitting
a symbol selected by the state, and repeating this transition–emission cycle until a
designated final state is reached.

Formally, let O = {o1, . . . oM} be the finite set of observation symbols and Q =
{q1, . . . qN} be the finite set of states. A first-order Markov model λ is a triple (π , A, B),
where π : Q → [0, 1] defines the starting probabilities, A : Q × Q → [0, 1] defines
the transition probabilities, and B : Q × O → [0, 1] denotes the emission probabil-
ities. Because the functions π , A, and B define true probabilities, they must satisfy

�q∈Q π(q) = 1,

�q′∈Q A(q, q′) = 1 and �o∈OB(q, o) = 1 for all states q.
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132 Probabilistic Models for Information Extraction

A model λ together with the random process described above induces a proba-
bility distribution over the set O* of all possible observation sequences.

VII.1.1 The Three Classic Problems Related to HMMs

Most applications of hidden Markov models can be reduced to three basic problems:

1. Find P(T | λ) – the probability of a given observation sequence T in a given
model λ.

2. Find argmaxS∈Q
|T | P(T, S | λ) – the most likely state trajectory given λ and T.

3. Find argmaxλ P(T, | λ) – the model that best accounts for a given sequence.

The first problem allows us to compute the probability distribution induced by the
model. The second finds the most probable states sequence for a given observation
sequence. These two tasks are typically used for analyzing a given observation.

The third problem, on the other hand, adjusts the model itself to maximize
the likelihood of the given observation. It can be viewed as an HMM training
problem.

We now describe how each of these three problems can be solved. We will start by
calculating P(T | λ), where T is a sequence of observation symbols T = t1t2 . . . tk ∈
O∗. The most obvious way to do that would be to enumerate every possible state
sequence of length |T |. Let S = s1s2 . . . s|T| ∈ Q|T| be one such sequence. Then we can
calculate the probability P(T | S, λ) of generating T knowing that the process went
through the states sequence S. By Markovian assumption, the emission probabilities
are all independent of each other. Therefore,

P(T | S, λ) = πi=1..|T| B(si , ti ).

Similarly, the transition probabilities are independent. Thus the probability P(S|λ)
for the process to go through the state sequence S is

P(S | λ) = π(s1) · πi=1..|T|−1 A(si , si+1).

Using the above probabilities, we find that the probability P(T|λ) of generating the
sequence can be calculated as

P(T | λ) = �
|T|
S∈QP(T | S, λ) · P(S | λ).

This solution is of course infeasible in practice because of the exponential number
of possible state sequences. To solve the problem efficiently, we use a dynamical
programming technique. The resulting algorithm is called the forward–backward
procedure.

VII.1.2 The Forward–Backward Procedure

Let αm(q), the forward variable, denote the probability of generating the initial seg-
ment t1t2 . . . tm of the sequence T and finishing at the state q at time m. This forward
variable can be computed recursively as follows:

1. α1(q) = π(q) · B(q, t1),
2. αn+1(q) = �q′∈Q αn(q′) · A(q′, q) · B(q, tn+1).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.008


P1: Oyk
0521836573c07 CB1028/Feldman 0 521 83657 3 May 29, 2006 19:17

VII.1 Hidden Markov Models 133

Then, the probability of the whole sequence T can be calculated as

P(T | λ) = �q∈Qα|T|(q).

In a similar manner, one can define βm (q), the backward variable, which denotes the
probability of starting at the state q and generates the final segment tm+1 . . . t|T| of
the sequence T. The backward variable can be calculated starting from the end and
going backward to the beginning of the sequence:

1. β|T|(q) = 1,

2. βn−1(q) = �q′∈Q A(q, q′) · B(q′, tn) · βn(q′).

The probability of the whole sequence is then

P(T | λ) = �q∈Q π(q) · B(q, t1) · β1(q).

VII.1.3 The Viterbi Algorithm

We now proceed to the solution of the second problem – finding the most likely state
sequence for a given sequence T. As with the previous problem, enumerating all
possible state sequences S and choosing the one maximizing P(T, S | λ) is infeasible.
Instead, we again use dynamical programming, utilizing the following property of the
optimal states sequence: if T ′ is some initial segment of the sequence T = t1t2 . . . t|T|
and S = s1s2 . . . s|T| is a state sequence maximizing P(T, S | λ), then S′ = s1s2 . . . s|T ′|
maximizes P(T ′, S′ | λ) among all state sequences of length |T ′| ending with s|T|. The
resulting algorithm is called the Viterbi algorithm.

Let γ n(q) denote the state sequence ending with the state q, which is optimal for
the initial segment Tn = t1t2 . . . tn among all sequences ending with q, and let δn(q)
denote the probability P(Tn, γ n(q) | λ) of generating this initial segment following
those optimal states. Delta and gamma can be recursively calculated as follows:

1. 1.δ1(q) = π(q) · B(q, t1), γ1(q) = q,

2. δn+1(q) = maxq′∈Q δn(q′) · A(q′, q) · B(q, tn+1), γn+1(q) = γ1(q′)q,

where q′ = argmaxq′∈Qδn(q′) · A(q′, q) · B(q, tn+1).

Then, the best states sequence among {γ |T|(q) : q ∈ Q} is the optimal one:

argmaxS∈Q
|T| P(T, S | λ) = γ|T|(argmaxq∈Qδ|T|(q)).

Example of the Viterbi Computation
Using the HMM described in Figure VII.1 with the sequence (a, b, a), one would
take the following steps in using the Viterbi algorithm:

πi = (
0.5 0 0.5

)
, Ai j =

⎛
⎜⎝

0.1 0.4 0.4
0.4 0.1 0.5
0.4 0.5 0.1

⎞
⎟⎠ ,

Bi (a) = (
0.5 0.8 0.2

)
, Bi (b) = (

0.5 0.2 0.8
)

First Step (a):

� δ1(S 1) = π(S 1) · B(S 1, a) = 0.5 · 0.5 = 0.25
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Figure VII.1. A sample HMM.

� δ1(S 2) = π(S 2) · B(S 2, a) = 0
� δ1(S 3) = π(S 3) · B(S 3, a) = 0.5 · 0.2 = 0.1

Second Step (b):

� δ2(S1) = maxq′∈Qδ1(q′) · A(q′, S1) · B(S1, b)
= max(δ1(S1) · A(S1, S1) · B(S1, b),

δ1(S2) · A(S2, S1) · B(S1, b),
δ1(S3) · A(S3, S1) · B(S1, b))

= max(0.25 · 0.1 · 0.5,

0,

0.1 · 0.4 · 0.5)
= max(0.0125, 0, 0.02) = 0.02

� γ2(S1) = S3

In a similar way, we continue to calculate the other δ and γ factors. Upon reaching
t3 we can see that S1 and S3 have the highest probabilities; hence, we trace back
our steps from both states using the γ variables. We have in this case two optimal
paths: {S1, S3, S1} and {S3, S2, S3}. The diagram of the computation of the Viterbi
Algorithm is shown in Figure VII.2.

Note that, unlike the forward–backward algorithm described in Section VII.1.2
the Viterbi algorithm does not use summation of probabilities. Only multiplica-
tions are involved. This is convenient because it allows the use of logarithms of
probabilities instead of the probabilities themselves and to use summation instead
of multiplication. This can be important because, for large sequences, the proba-
bilities soon become infinitesimal and leave the range of the usual floating-point
numbers.
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Figure VII.2. Computation of the optimal path using the Viterbi algorithm.

VII.1.4 The Training of the HMM

The most difficult problem of the three involves training the HMM. In this section,
only the problem of estimating the parameters of HMM is covered, leaving the
topology of the finite-state automaton fixed.

The training algorithm is given some initial HMM and adjusts it so as to maximize
the probability of the training sequence. However, the set of states is given in advance,
and the transition and emission probabilities, which are initially zero, remain zero.
The adjustment formulas are called Baum–Welsh reestimation formulas.

Let µn(q) be the probability P(sn = q | T, λ) of being in the state q at time n
while generating the observation sequence T. Then µn(q) · P(T | λ) is the probability
of generating T passing through the state q at time n. By definition of the forward
and backward variables presented in Section VII.1.2, this probability is equal to
αn(q) · βn(q). Thus,

µn(q) = αn(q) · βn(q) / P(T | λ).

Also letϕn(q, q ′) be the probability P(sn = q, sn+1 = q ′ | T, λ) of passing from state q
to state q ′ at time n while generating the observation sequence T. As in the preceding
equation,

ϕn(q, q ′) = αn(q) · A(q, q ′) · B(q ′, on+1) · βn(q)/P(T | λ).

The sum of µn(q) over all n = 1 . . . | T | can be seen as the expected number of
times the state q was visited while generating the sequence T. Or, if one sums
over n = 1 . . . | T | −1, the expected number of transitions out of the state q results
because there is no transition at time |T|. Similarly, the sum of ϕn(q, q′) over all n =
1 . . . | T | −1 can be interpreted as the expected number of transitions from the state
q to q ′.
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The Baum–Welsh formulas reestimate the parameters of the model λ according
to the expectations

π ′(q) : = µ1(q),

A ′(q, q ′) : = �n=1..|T|−1ϕn(q, q ′)/�n=1..|T|−1µn(q),

B ′(q, o) : = �n:Tn=oµn(q)/�n=1..|T|µn(q).

It can be shown that the model λ′ = (π ′, A ′, B ′) is equal either to λ, in which case the
λ is the critical point of the likelihood function P(T | λ), or λ′, which better accounts
for the training sequence T than the original model λ in the sense that P(T | λ′) >

P(T | λ). Therefore, the training problem can be solved by iteratively applying the
reestimation formulas until convergence.

VII.1.5 Dealing with Training Data Sparseness

It is often the case that the amount of training data – the length of the training
sequence T – is insufficient for robust estimation of parameters of a complex HMM.
In such cases, there is often a trade-off between constructing complex models with
many states and constructing simple models with only a few states.

The complex model is better able to represent the intricate structure of the task
but often results in a poor estimation of parameters. The simpler model, on the other
hand, yields a robust parameter estimation but performs poorly because it is not
sufficiently expressive to model the data.

Smoothing and shrinkage (Freitag and McCallum 1999) are the techniques typi-
cally used to take the sting out of data sparseness problems in probabilistic modeling.
This section describes the techniques with regard to HMM, although they apply in
other contexts as well such as SCFG.

Smoothing is the process of flattening a probability distribution implied by a
model so that all reasonable sequences can occur with some probability. This often
involves broadening the distribution by redistributing weight from high-probability
regions to zero-probability regions. Note that smoothing may change the topology
of an HMM by making some initially zero probability nonzero.

The simplest possible smoothing method is just to pretend that every possible
training event occurrs one time more than it actually does. Any constant can be used
instead of “one.” This method is called Laplace smoothing. Other possible methods
may include back-off smoothing, deleted interpolation, and others.1

Shrinkage is defined in terms of some hierarchy representing the expected
similarity between parameter estimates. With respect to HMMs, the hierarchy
can be defined as a tree with the HMM states for the leaves – all at the same
depth.

This hierarchy is created as follows. First, the most complex HMM is built and its
states are used for the leaves of the tree. Then the states are separated into disjoint
classes within which the states are expected to have similar probability distributions.
The classes become the parents of their constituent states in the hierarchy. Note that
the HMM structure at the leaves induces a simpler HMM structure at the level of

1 Full details outlining the smoothing technique can be found in Manning and Schutze (1999).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.008


P1: Oyk
0521836573c07 CB1028/Feldman 0 521 83657 3 May 29, 2006 19:17

VII.2 Stochastic Context-Free Grammars 137

the classes. It is generated by summing the probabilities of emissions and transitions
of all states in a class. This process may be repeated until only a single-state HMM
remains at the root of the hierarchy.

Training such a hierarchy is straightforward. The emission and transition proba-
bilities of the states in the internal levels of the hierarchy are calculated by summing
the corresponding probabilities of their descendant leaves. Modeling using the hier-
archy is also simple. The topology of the most complex HMM is used. However,
the transition and emission probabilities of a given state are calculated by linearly
interpolating between the corresponding probabilities for all ancestors of the state
in the shrinkage hierarchy. The weights of the different models in the interpolation
can be fixed at some reasonable value, like 1/2, or can be optimized using held-out
training data.

VII.2 STOCHASTIC CONTEXT-FREE GRAMMARS

An SCFG is a quintuple G = (T, N, S, R, P), where T is the alphabet of terminal
symbols (tokens), N is the set of nonterminals, S is the starting nonterminal, R is the
set of rules, and P : R → [0.1] defines their probabilities. The rules have the form

n → s1s2 . . . sk,

where n is a nonterminal and each si is either a token or another nonterminal.
As can be seen, SCFG is a usual context-free grammar with the addition of the P
function.

As is true for a canonical (nonstochastic) grammar, SCFG is said to generate (or
accept) a given string (sequence of tokens) if the string can be produced starting from
a sequence containing just the starting symbol S and expanding nonterminals one by
one in the sequence using the rules from the grammar. The particular way the string
was generated can be naturally represented by a parse tree with the starting symbol
as a root, nonterminals as internal nodes, and the tokens as leaves.

The semantics of the probability function P are straightforward. If r is the rule
n → s1s2 . . . sk, then P(r) is the frequency of expanding n using this rule, or, in
Bayesian terms, if it is known that a given sequence of tokens was generated by
expanding n, then P(r) is the a priori likelihood that n was expanded using the
rule r. Thus, it follows that for every nonterminal n the sum

∑
P(r) of probabilities

of all rules r headed by n must be equal to one.

VII.2.1 Using SCFGs

Usually, some of the nonterminal symbols of a grammar correspond to meaning-
ful language concepts, and the rules define the allowed syntactic relations between
these concepts. For instance, in a parsing problem, the nonterminals may include
S, NP, VP, and others, and the rules would define the syntax of the language. For
example, S → NP VP. Then, when the grammar is built, it is used for parsing new
sentences.

In general, grammars are ambiguous in the sense that a given string can be gener-
ated in many different ways. With nonstochastic grammars there is no way to compare
different parse trees, and thus the only information we can gather for a given sentence
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is whether or not it is grammatical – that is whether it can be produced by any parse.
With SCFG, different parses have different probabilities; therefore, it is possible to
find the best one, resolving the ambiguity.

In designing preprocessing systems around SCFGs, it has been found neither
necessary nor desirable (for performance reasons) to perform a full syntactic parsing
of all sentences in the document. Instead, a very basic “parsing” can be employed for
the bulk of a text, but within the relevant parts the grammar is much more detailed.
Thus, the extraction grammars can be said to define sublanguages for very specific
domains.

In the classical definition of SCFG it is assumed that the rules are all independent.
In this case it is possible to find the (unconditional) probability of a given parse tree
by simply multiplying the probabilities of all rules participating in it. Then the usual
parsing problem is formulated as follows: Given a sequence of tokens (a string), find
the most probable parse tree that could generate the string. A simple generalization
of the Viterbi algorithm is able to solve this problem efficiently.

In practical applications of SCFGs, it is rarely the case that the rules are truly
independent. Then, the easiest way to cope with this problem while leaving most
of the formalism intact is to let the probabilities P(r) be conditioned on the context
where the rule is applied. If the conditioning context is chosen reasonably, the Viterbi
algorithm still works correctly even for this more general problem.

VII.3 MAXIMAL ENTROPY MODELING

Consider a random process of an unknown nature that produces a single output value
y, a member of a finite set Y of possible output values. The process of generating
y may be influenced by some contextual information x – a member of the set X of
possible contexts. The task is to construct a statistical model that accurately represents
the behavior of the random process. Such a model is a method of estimating the
conditional probability of generating y given the context x.

Let P(x, y) be denoted as the unknown true joint probability distribution of the
random process, and let p(y | x) be the model we are trying to build taken from
the class ℘ of all possible models. To build the model we are given a set of training
samples generated by observing the random process for some time. The training
data consist of a sequence of pairs (xi, yi) of different outputs produced in different
contexts.

In many interesting cases the set X is too large and underspecified to be used
directly. For instance, X may be the set of all dots “.” in all possible English texts. For
contrast, the Y may be extremely simple while remaining interesting. In the preceding
case, the Y may contain just two outcomes: “SentenceEnd” and “NotSentenceEnd.”
The target model p(y | x) would in this case solve the problem of finding sentence
boundaries.

In such cases it is impossible to use the context x directly to generate the output y.
There are usually many regularities and correlations, however, that can be exploited.
Different contexts are usually similar to each other in all manner of ways, and similar
contexts tend to produce similar output distributions.
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To express such regularities and their statistics, one can use constraint func-
tions and their expected values. A constraint function f : X × Y → R can be any
real-valued function. In practice it is common to use binary-valued trigger functions
of the form

f (x, y) =
{

1, if C(x) and y = yi ,

0, otherwise.

Such a trigger function returns one for pair (x, y) if the context x satisfies the condition
predicate C and the output value y is yi. A common short notation for such a trigger
function is C → yi. For the example above, useful triggers are

previous token is “Mr” → NotSentenceEnd,
next token is capitalized → SentenceEnd.

Given a constraint function f, we express its importance by requiring our target
model to reproduce f ’s expected value faithfully in the true distribution:

p( f ) = �x,y p(x, y) f (x, y) = P( f ) = �x,y P(x, y) f (x, y).

In practice we cannot calculate the true expectation and must use an empirical
expected value calculated by summing over the training samples:

pE( f ) = �i=1..N�y∈Y p(y | xi ) f (xi , y)/N = PE( f ) = �i=1..N f (xi , yi )/N.

The choice of feature functions is of course domain dependent. For now, let us
assume the complete set of features F = { fk} is given. One can express the complete-
ness of the set of features by requiring that the model agree with all the expected
value constraints

pE( fk) = PE( fk) for all fk ∈ F

while otherwise being as uniform as possible. There are of course many models satis-
fying the expected values constraints. However, the uniformity requirement defines
the target model uniquely. The degree of uniformity of a model is expressed by its
conditional entropy

H(p) = −
∑
x,y

p(x) · p(y | x) · log p(y | x).

Or, empirically,

HE(p) = −�i=1..N�y∈Y p(y | xi ) · log p(y | xi )/N.

The constrained optimization problem of finding the maximal-entropy target
model is solved by application of Lagrange multipliers and the Kuhn–Tucker theo-
rem. Let us introduce a parameter λk (the Lagrange multiplier) for every feature.
Define the Lagrangian �(p, λ) by

�(p, λ) ≡ HE(p) + �kλk(pE( fk) − PE( fk)).

Holding λ fixed, we compute the unconstrained maximum of the Lagrangian over
all p ∈ ℘. Denote by pλ the p where �(p, λ) achieves its maximum and by �(λ) the
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value of � at this point. The functions pλ and �(λ) can be calculated using simple
calculus:

pλ(y | x) = 1
Zλ(x)

exp

(∑
k

λk fk(x, y)

)
,

�(λ) = − ∑
i=1..N

log Zλ(x)/N + ∑
k

λkPE( fk),

where Zλ(x) is a normalizing constant determined by the requirement that
�y∈Y pλ(y | x) = 1. Finally, we pose the dual optimization problem

λ∗ = argmaxλ�(λ).

The Kuhn–Tucker theorem asserts that, under certain conditions, which include
our case, the solutions of the primal and dual optimization problems coincide. That
is, the model p, which maximizes HE(p) while satisfying the constraints, has the
parametric form pλ*.

It is interesting to note that the function �(λ) is simply the log-likelihood of the
training sample as predicted by the model pλ. Thus, the model pλ* maximizes the
likelihood of the training sample among all models of the parametric form pλ.

VII.3.1 Computing the Parameters of the Model

The function�(λ) is well behaved from the perspective of numerical optimization, for
it is smooth and concave. Consequently, various methods can be used for calculating
λ*. Generalized iterative scaling is the algorithm specifically tailored for the problem.
This algorithm is applicable whenever all constraint functions are non-negative: fk(x,
y) ≥ 0.

The algorithm starts with an arbitrary choice of λ’s – for instance λk = 0 for all
k. At each iteration the λ’s are adjusted as follows:

1. For all k, let �λk be the solution to the equation

PE( fk) = �i=1..N�y∈Y pλ(y | xi ) · fk(xi , y) · exp(�λk f #(xi , y))/N,

where f #(x, y) = �k fk(x, y).
2. For all k, let λk := λk + �λk.

In the simplest case, when f # is constant, �λk is simply (1/f #) ·
log PE( fk)/pλE( fk). Otherwise, any numerical algorithm for solving the equation
can be used such as Newton’s method.

VII.4 MAXIMAL ENTROPY MARKOV MODELS

For many tasks the conditional models have advantages over generative models like
HMM. Maximal entropy Markov models (McCallum, Freitag, and Pereira 2000), or
MEMM, is one class of such a conditional model closest to the HMM.

A MEMM is a probabilistic finite-state acceptor. Unlike HMM, which has sep-
arate transition and emission probabilities, MEMM has only transition probabili-
ties, which, however, depend on the observations. A slightly modified version of the
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Viterbi algorithm solves the problem of finding the most likely state sequence for a
given observation sequence.

Formally, a MEMM consists of a set Q = {q1, . . . , qN} of states, and a set of
transition probabilities functions Aq : X × Q → [0, 1], where X denotes the set of
all possible observations. Aq(x, q′) gives the probability P(q′ | q, x) of transition
from q to q′, given the observation x. Note that the model does not generate x but
only conditions on it. Thus, the set X need not be small and need not even be fully
defined. The transition probabilities Aq are separate exponential models trained
using maximal entropy.

The task of a trained MEMM is to produce the most probable sequence of states
given the observation. This task is solved by a simple modification of the Viterbi
algorithm. The forward–backward algorithm, however, loses its meaning because
here it computes the probability of the observation being generated by any state
sequence, which is always one. However, the forward and backward variables are still
useful for the MEMM training. The forward variable [Ref->HMM] αm(q) denotes
the probability of being in state q at time m given the observation. It is computed
recursively as

αn+1(q) = �q′∈Qαn(q′) · Aq(x, q′).

The backward variable β denotes the probability of starting from state q at time m
given the observation. It is computed similarly as

βn−1(q) = �q′∈Q Aq(x, q′) · βn(q′).

The model Aq for transition probabilities from a state is defined parametrically using
constraint functions. If fk : X × Q → R is the set of such functions for a given state
q, then the model Aq can be represented in the form

Aq(x, q′) = Z(x, q)−1exp(�kλk fk(x, q′)),

where λk are the parameters to be trained and Z(x, q) is the normalizing factor
making probabilities of all transitions from a state sum to one.

VII.4.1 Training the MEMM

If the true states sequence for the training data is known, the parameters of the
models can be straightforwardly estimated using the GIS algorithm for training ME
models.

If the sequence is not known – for instance, if there are several states with the
same label in a fully connected MEMM – the parameters must be estimated using
a combination of the Baum–Welsh procedure and iterative scaling. Every iteration
consists of two steps:

1. Using the forward–backward algorithm and the current transition functions
to compute the state occupancies for all training sequences.

2. Computing the new transition functions using GIS with the feature frequencies
based on the state occupancies computed in step 1.

It is unnecessary to run GIS to convergence in step 2; a single GIS iteration is
sufficient.
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VII.5 CONDITIONAL RANDOM FIELDS

Conditional random fields (CRFs) (Lafferty, McCallum, et al. 2001) constitute
another conditional model based on maximal entropy. Like MEMMs, which are
described in the previous section, CRFs are able to accommodate many possibly
correlated features of the observation. However, CRFs are better able to trade off
decisions at different sequence positions. MEMMs were found to suffer from the
so-called label bias problem.

The problem appears when the MEMM contains states with different output
degrees. Because the probabilities of transitions from any given state must sum to
one, transitions from lower degree states receive higher probabilities than transitions
from higher degree states. In the extreme case, transition from a state with degree
one always gets probability one, effectively ignoring the observation.

CRFs do not have this problem because they define a single ME-based distribu-
tion over the whole label sequence. On the other hand, the CRFs cannot contain
“hidden” states – the training data must define the sequence of states precisely. For
most practical sequence labeling problems this limitation is not significant.

In the description of CRFs presented here, attention is restricted to their sim-
plest form – linear chain CRFs, which generalize finite-state models like HMMs and
MEMMs. Such CRFs model the conditional probability distribution of sequences
of labels given the observation sequences. More general formulations are possible
(Lafferty et al. 2001; McCallum and Jensen 2003).

Let X be a random variable over the observation sequences and Y a random
variable over the label sequences. All components Yi of Y are assumed to range over
a finite set L of labels. The labels roughly correspond to states in finite-state models.
The variables X and Y are jointly distributed, but CRF constructs a conditional model
p(Y | X) without explicitly modeling the margin p(X ).

A CRF on (X, Y) is specified by a vector f = ( f1, f2, . . . fm) of local features
and a corresponding weight vector λ = (λ1, λ2, . . . λm). Each local feature fj(x, y, i)
is a real-valued function of the observation sequence x, the labels sequence y =
(y1, y2, . . . yn), and the sequence position i. The value of a feature function at any given
position i may depend only on yi or on yi and yi+1 but not on any other components
of the label sequence y. A feature that depends only on yi at any given position i is
called a state feature, and if it depends on yi and yi+1 it is called a transition feature.

The global feature vector F(x, y) is a sum of local features at all positions:

F(x, y) = �i=1..nf(x, y, i).

The conditional probability distribution defined by the CRF is then

pλ(y | x) = Zλ(x)−1exp(λ · F(x, y)),

where

Zλ(x) = �y exp (λ · F(x, y)).

It is a consequence of a fundamental theorem about random Markov fields
(Kindermann and Snell 1980; Jain and Chellappa 1993) that any conditional distri-
bution p(y/x) obeying the Markov property p(yi | x, {yj } j �=i ) = p(yi | x, yi−1, yi+1)
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can be written in the exponential form above with a suitable choice of the feature
functions and the weights vector.

Notice also that any HMM can be represented in the form of CRF if its set of
states Q coincide with the set of labels L. If A : L × L → [0, 1] denotes the transition
probability and B : L × O → [0, 1] denotes is the emission probability functions, the
corresponding CRF can be defined by the set of state features

fyo(x, y, k) ≡ (yk = y) and (xk = o)

and transition features

fyy′(x, y, k) ≡ (yk = y) and (yk+1 = y′)

with the weights λyo = log B(y, o) and λyy′ = log A(y, y′).

VII.5.1 The Three Classic Problems Relating to CRF

As with HMMs, three main problems are associated with CRFs:

1. Given a CRF λ, an observation sequence x, and a label sequence y, find the
conditional probability pλ(y | x).

2. Given a CRF λ and an observation sequence x, find the most probable label
sequence y = argmaxy pλ(y | x).

3. Given a set of training samples (x(k), y(k)), find the CRF parameters λ that
maximize the likelihood of the training data.

At least a basic attempt will be made here to explain the typical approaches for
each of these problems.

VII.5.2 Computing the Conditional Probability

For a given x and a given position i define a |L| × |L| transition matrix Mi(x) by

Mi (x)[y, y′] = exp (λ · f(x, {yi = y, yi+1 = y′}, i)).

Then, the conditional probability pλ(y | x) can be decomposed as

pλ(y | x) = Zλ(x)−1πi=1..n Mi (x)[yi , yi+1].

The normalization factor Zλ(x) can be computed by a variant of the forward–
backward algorithm. The forward variables αi(x, y) and the backward variables β i(x,
y), for y ∈ L, can be computed using the recurrences

α0(x, y) = 1,

αi+1(x, y) = �y′∈Lαi (x, y′)Mi (y′, y, x),

βn(x, y) = 1,

βi−1(x, y) = �y′∈LMi−1(y, y′, x)βi (x, y′).

Finally, Zλ(x) = �y∈Lαn(x, y).
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VII.5.3 Finding the Most Probable Label Sequence

The most probable label sequence y = argmaxy pλ(y | x) can be found by a suitable
adaptation of the Viterbi algorithm. Note that

argmaxy pλ(y | x) = argmaxy (λ · F(x, y))

because the normalizer Zλ(x) does not depend on y. F(x, y) decomposes into a sum
of terms for consecutive pairs of labels, making the task straightforward.

VII.5.4 Training the CRF

CRF is trained by maximizing the log-likelihood of a given training set {(x(k), y(k))}:

L(λ) = �k log pλ(y(k) | x(k)) = �k[λ · F(x(k), y(k)) − log Zλ(x(k))].

This function is concave in λ, and so the maximum can be found at the point
where the gradient L is zero:

0 = ∇L = �k[F(x(k), y(k)) − �yF(x(k), y)pλ(y | x(k))].

The left side is the empirical average of the global feature vector, and the right
side is its model expectation. The maximum is reached when the two are equal:

(∗)�kF(x(k), y(k)) = �k�yF(x(k), y)pλ(y | x(k)).

Straightforwardly computing the expectations on the right side is infeasible,
because of the necessity of summing over an exponential number of label sequences
y. Fortunately, the expectations can be rewritten as

�yF(x, y)pλ(y | x) = �i=1,n�y,y′∈Lpλ(yi = y, yi+1 = y′ | x)f(x, y, i),

which brings the number of summands down to polynomial size. The probabilities
pλ(yi = y, yi+1 = y′ | x) can be computed using the forward and backward variables:

pλ(yi = y, yi+1 = y′ | x) = Z(x)−1αi (x, y)Mi (y′, y, x)βi+1(x, y′).

GIS can be used to solve the equation (*). A particularly simple form of it further
requires that the total count of all features in any training sequence be constant. If
this condition does not hold, a new slack feature can be added, making the sum equal
to a predefined constant S:

s(x, y, i) = S − �i� j f j (x, y, i).

If the condition holds, the parameters λ can be adjusted by

λ: = λ + �λ,

where the ∆λ are calculated by

�λ j = S−1 log (empirical average of f j/ modelexpectation of f j ).
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VII.6 FURTHER READING

Section VII.1
For a great introduction on hidden Markov models, refer to Rabiner (1986) and
Rabiner (1990).

Section VII.2
Stochastic context-free grammars are described in Collins (1997) and Collins and
Miller (1998).

Section VII.3
The following papers elaborate more on maximal entropy with regard to text
processing: Reynar and Ratnaparkhi (1997); Borthwick (1999); and Charniak (2000).

Section VII.4
Maximal entropy Markov models are described in McCallum et al. (2000).

Section VII.5
Random markov fields are described in Kindermann and Snell (1980) and Jain and
Chellappa (1993). Conditional random fields are described in Lafferty et al. (2001)
and Sha and Pereira (2003).
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