
CHAPTER 6

Rule models

R
ULE MODELS ARE the second major type of logical machine learning models. Generally

speaking, they offer more flexibility than tree models: for instance, while decision tree

branches are mutually exclusive, the potential overlap of rules may give additional in-

formation. This flexibility comes at a price, however: while it is very tempting to view a

rule as a single, independent piece of information, this is often not adequate because

of the way the rules are learned. Particularly in supervised learning, a rule model is

more than just a set of rules: the specification of how the rules are to be combined to

form predictions is a crucial part of the model.

There are essentially two approaches to supervised rule learning. One is inspired

by decision tree learning: find a combination of literals – the body of the rule, which is

what we previously called a concept – that covers a sufficiently homogeneous set of ex-

amples, and find a label to put in the head of the rule. The second approach goes in the

opposite direction: first select a class you want to learn, and then find rule bodies that

cover (large subsets of) the examples of that class. The first approach naturally leads to

a model consisting of an ordered sequence of rules – a rule list – as will be discussed in

Section 6.1. The second approach treats collections of rules as unordered rule sets and

is the topic of Section 6.2. We shall see how these models differ in the way they han-

dle rule overlap. The third section of the chapter covers discovery of subgroups and

association rules.
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Figure 6.1. ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index

and minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing empirical

probability ṗ) and its mirror image below the symmetry line (where impurity is proportional to

ṗ). If these impurity measures are used as search heuristic, as they are in rule learning, only

the shape of the isometrics matters but not the associated impurity values, and hence all three

impurity measures are equivalent.

6.1 Learning ordered rule lists

The key idea of this kind of rule learning algorithm is to keep growing a conjunctive rule

body by adding the literal that most improves its homogeneity. That is, we construct

a downward path through the hypothesis space, of the kind discussed in Section 4.2,

and we stop as soon as some homogeneity criterion is satisfied. It is natural to mea-

sure homogeneity in terms of purity, as we did with decision trees. You might think

that adding a literal to a rule body is much the same as adding a binary split to a deci-

sion tree, as the added literal splits the instances covered by the original rule body in

two groups: those instances for which the new literal is true, and those for which the

new literal is false. However, one key difference is that in decision tree learning we are

interested in the purity of both children, which is why we use the weighted average im-

purity as our search heuristic when constructing the tree. In rule learning, on the other

hand, we are only interested in the purity of one of the children: the one in which the

added literal is true. It follows that we can directly use any of the impurity measures

we considered in the previous chapter (see Figure 5.2 on p.134 if you want to remind

yourself which they are), without the need for averaging.
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6.1 Learning ordered rule lists 159

In fact, it doesn’t even matter which of those impurity measures we use to guide the

search, since they will all give the same result. To see this, notice that the impurity of a

concept decreases with the empirical probability ṗ (the relative frequency of covered

positives) if ṗ > 1/2 and increases with ṗ if ṗ < 1/2; see Figure 6.1. Whether this in-

crease or decrease is linear or not matters if we are averaging the impurities of several

concepts, as in decision tree learning, but not if we are evaluating single concepts. In

other words, the difference between these impurity measures vanishes in rule learn-

ing, and we might as well take the proportion of the minority class min(ṗ,1− ṗ) (or, if

you prefer, 1/2−|ṗ−1/2|), which is arguably the simplest, as our impurity measure of

choice in this section. Just keep in mind that if other authors use entropy or Gini index

to compare the impurity of literals or rule bodies this will give the same results (not in

terms of impurity values but in terms of which one is best).

We introduce the main algorithm for learning rule lists by means of an example.

Example 6.1 (Learning a rule list). Consider again our small dolphins data set

with positive examples

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The nine possible literals are shown with their coverage counts in Figure 6.2 (top).

Three of these are pure; in the impurity isometrics plot in Figure 6.2 (bottom)

they end up on the x-axis and y-axis. One of the literals covers two positives and

two negatives, and therefore has the same impurity as the overall data set; this

literal ends up on the ascending diagonal in the coverage plot.

Although impurity in itself does not distinguish between pure literals (we will re-

turn to this point later), one could argue that Gills= yes is the best of the three as it

covers more examples, so let’s formulate our first rule as:

·if Gills= yes then Class=�·
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Figure 6.2. (top) All literals with their coverage counts on the data in Example 6.1. The ones

in green (red) are pure for the positive (negative) class. (bottom) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics (away from

the ascending diagonal is better). Impurity values are colour-coded: towards green if ṗ > 1/2,

towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree isometric). The violet arrow indicates

the selected literal, which excludes all five positives and one negative.

The corresponding coverage point is indicated by the arrow in Figure 6.2 (bottom). You

can think of this arrow as the right-most bit of the coverage curve that results if we keep

on following a downward path through the hypothesis space by adding literals. In this

case we are not interested in following the path further because the concept we found

is already pure (we shall see examples later where we have to add several literals before

we hit one of the axes). One new thing that we haven’t seen before is that this coverage

curve lies below the diagonal – this is a consequence of the fact that we haven’t fixed the

class in advance, and therefore we are just as happy diving deep beneath the ascending
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Figure 6.3. (left) Revised coverage counts after removing the four negative examples covered by

the first rule found (literals not covering any examples are omitted). (right) We are now operating

in the right-most ‘slice’ of Figure 6.2 on p.160.

diagonal as we would be flying high above it. Another way of thinking about this is that

if we swap the labels this affects the heads but not the bodies of the learned rules.

Most rule learning algorithms now proceed as follows: they remove the examples

covered by the rule just learned from consideration, and proceed with the remaining

examples. This strategy is called separate-and-conquer, in analogy with the divide-

and-conquer strategy of decision trees (the difference is that in separate-and-conquer

we end up with one remaining subproblem rather than several as in divide-and-conquer).

So we are left with five positive examples and one negative, and we again search for lit-

erals with minimum impurity. As is shown in Figure 6.3, we can understand this as

working in a smaller coverage space. After going through the numbers, we find the

next rule learned is

·if Teeth=many then Class=⊕·

As I mentioned earlier, we should be cautious when interpreting this rule on its own, as

against the original data set it actually covers more negatives than positives! In other

words, the rule implicitly assumes that the previous rule doesn’t ‘fire’; in the final rule

model we will precede it with ‘else’.

We are now left with two positives and one negative (Figure 6.4). This time it makes

sense to choose the rule that covers the single remaining negative, which is

·if Length= 4 then Class=�·

Since the remaining examples are all positive, we can invoke a default rule to cover

those examples for which all other rules fail. Put together, the learned rule model is
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Figure 6.4. (left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.

then as follows:
·if Gills= yes then Class=�·
·else if Teeth=many then Class=⊕·
·else if Length= 4 then Class=�·
·else Class=⊕·

Organising rules in a list is one way of dealing with overlaps among rules. For ex-

ample, we know from the data that there are several examples with both Gills= yes and

Teeth=many, but the rule list above tells us that the first rule takes precedence in such

cases. Alternatively, we could rewrite the rule list such that the rules are mutually ex-

clusive. This is useful because it means that we can use each rule without reference to

the other rules, and also ignore their ordering. The only slight complication is that we

need negated literals (or internal disjunction) for those features that have more than

two values, such as ‘Length’:

·if Gills= yes then Class=�·
·if Gills= no ∧ Teeth=many then Class=⊕·
·if Gills= no ∧ Teeth= few ∧ Length= 4 then Class=�·
·if Gills= no ∧ Teeth= few ∧ Length 
= 4 then Class=⊕·

In this example we rely on the fact that this particular set of rules has a single literal

in each rule – in the general case we would need non-conjunctive rule bodies. For

example, consider the following rule list:

·if P ∧Q then Class=⊕·
·else if R then Class=�·

If we wanted to make these mutually exclusive the second rule would become

·if ¬(P ∧Q) ∧ R then Class=�·

or equivalently,

·if (¬P ∨ ¬Q) ∧ R then Class=�·
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6.1 Learning ordered rule lists 163

Clearly, making rules mutually exclusive leads to less compact rules, which explains

why rule lists are a powerful and popular format.

Algorithm 6.1 specifies the separate-and-conquer rule learning strategy in more

detail. While there are still training examples left, the algorithm learns another rule

and removes all examples covered by the rule from the data set. This algorithm, which

is the basis for the majority of rule learning systems, is also called the covering algo-

rithm. The algorithm for learning a single rule is given in Algorithm 6.2. Similar to

decision trees, it uses the functions Homogeneous(D) and Label(D) to decide whether

further specialisation is needed and what class to put in the head of the rule, respec-

tively. It also employs a function BestLiteral(D,L) that selects the best literal to add to

the rule from the candidates in L given data D ; in our example above, this literal would

be selected on purity.

Many variations on these algorithms exist in the literature. The conditions in the

while-loops are often relaxed to other stopping criteria in order to deal with noisy data.

For example, in Algorithm 6.1 we may want to stop when no class has more than a

certain number of examples left, and include a default rule for the remaining examples.

Likewise, in Algorithm 6.2 we may want to stop if D drops below a certain size.

Rule lists have much in common with decision trees. We can therefore analyse the

construction of a rule list in the same way as we did in Figure 5.3 on p.137. This is shown

for the running example in Figure 6.5. For example, adding the first rule is depicted in

coverage space by splitting the ascending diagonal A into a horizontal segment B rep-

resenting the new rule and another diagonal segment C representing the new coverage

space. Adding the second rule causes segment C to split into vertical segment D (the

second rule) and diagonal segment E (the third coverage space). Finally, E is split into

a horizontal and a vertical segment (the third rule and the default rule, respectively).

The remaining segments B, D, F and G are now all horizontal or vertical, signalling that

the rules we learned are pure.

Algorithm 6.1: LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .

Output : rule list R.

1 R ←�;

2 while D 
= � do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 D ←D \ {x ∈D|x is covered by r };

6 end

7 return R
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Figure 6.5. (left) A right-branching feature tree corresponding to a list of single-literal rules.

(right) The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves on their

empirical probability results in the blue coverage curve. As the rule list separates the classes this

is a perfect coverage curve.

Rule lists for ranking and probability estimation

Turning a rule list into a ranker or probability estimator is as easy as it was for deci-

sion trees. Due to the covering algorithm we have access to the local class distributions

Algorithm 6.2: LearnRule(D) – learn a single rule.

Input : labelled training data D .

Output : rule r .

1 b ←true;

2 L ←set of available literals;

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r
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6.1 Learning ordered rule lists 165

associated with each rule. We can therefore base our scores on the empirical proba-

bilities. In the case of two classes we can rank the instances on decreasing empirical

probability of the positive class, giving rise to a coverage curve with one segment for

each rule. It is important to note that the ranking order of the rules is different from

their order in the rule list, just as the ranking order of the leaves of a tree is different

from their left-to-right order.

Example 6.2 (Rule lists as rankers). Consider the following two concepts:

(A) Length= 4 p2 n2,n4–5

(B) Beak= yes p1–5 n1–2,n5

Indicated on the right is each concept’s coverage over the whole training set. Us-

ing these concepts as rule bodies, we can construct the rule list AB:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is given in Figure 6.6. The first segment of the

curve corresponds to all instances which are covered by B but not by A, which

is why we use the set-theoretical notation B \A. Notice that while this segment

corresponds to the second rule in the rule list, it comes first in the coverage curve

because it has the highest proportion of positives. The second coverage segment

corresponds to rule A, and the third coverage segment denoted ‘-’ corresponds

to the default rule. This segment comes last, not because it represents the last

rule, but because it happens to cover no positives.

We can also construct a rule list in the opposite order, BA:

·if Beak= yes then Class=⊕· [5+,3−]

·else if Length= 4 then Class=�· [0+,1−]

·else Class=�· [0+,1−]

The coverage curve of this rule list is also depicted in Figure 6.6. This time, the

first segment corresponds to the first segment in the rule list (B), and the second

and third segment are tied between rule A (after the instances covered by B are

taken away: A\B) and the default rule.

Which of these rule lists is a better ranker? We can see that AB makes fewer ranking

errors than BA (4.5 vs. 7.5), and thus has better AUC (0.82 vs. 0.70). We also see that,
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Figure 6.6. Coverage curves of two rule lists consisting of the rules from Example 6.2, in differ-

ent order (AB in blue and BA in violet). B \A corresponds to the coverage of rule B once the

coverage of rule A is taken away, and ‘-’ denotes the default rule. Neither curve dominates the

other, and thus each has operating conditions under which it is superior. The dotted segment

in red connecting the two curves corresponds to the overlap of the two rules A∧B, which is not

accessible by either rule list.

if accuracy is our performance criterion, AB would be optimal, achieving 0.80 accu-

racy (tpr = 0.80 and tnr = 0.80) where BA only manages 0.70 (tpr = 1 and tnr = 0.40).

However, if performance on the positives is 3 times as important as performance on

the negatives, then BA’s optimal operating point outperforms AB’s. Hence, each rule

list contains information not present in the other, and so neither is uniformly better.

The main reason for this is that the segment A∧B – the overlap of the two rules –

is not accessible by either rule list. In Figure 6.6 this is indicated by the dotted segment

connecting the segment B from rule list BA and the segment B\A from rule list AB. It

follows that this segment contains exactly those examples that are in B but not in B\A,

hence in A∧B. In order to access the rule overlap, we need to either combine the two

rule lists or go beyond the power of rule lists. This will be investigated further at the

end of the next section.

There are thus several connections between rule lists and decision trees. Further-

more, rule lists are similar to decision trees in that the empirical probabilities associated

with each rule yield convex ROC and coverage curves on the training data. We have ac-

cess to those empirical probabilities because of the coverage algorithm, which removes

all training instances covered by one rule before learning the next (Algorithm 6.1). As a
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result, rule lists produce probabilities that are well-calibrated on the training set. Some

rule learning algorithms in the literature reorder the rule list after all rules have been

constructed. In this case, convexity cannot be guaranteed unless we re-evaluate the

coverage of each rule in the reordered rule list.

6.2 Learning unordered rule sets

We next consider the alternative approach to rule learning, where rules are learned for

one class at a time. This means we can further simplify our search heuristic: rather than

minimising min(ṗ,1− ṗ), we can maximise ṗ, the empirical probability of the class

we are learning. This search heuristic is conventionally referred to by its ‘evaluation

measure name’ precision (see Table 2.3 on p.57).

Example 6.3 (Learning a rule set for one class). We continue the dolphin ex-

ample. Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned. We

now encounter a new situation, as none of the candidates is pure (Figure 6.8). We

thus start a second-level search, from which the following pure rule emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·

To cover the remaining positive, we again need a rule with two conditions (Figure

6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers

positive examples (since each of them is pure) and so there is no need to organise

them in an if-then-else list.

We now have a rule set for the positive class. With two classes this might be con-

sidered sufficient, as we can classify everything that isn’t covered by the positive rules

as negative. However, this might introduce a bias towards the negative class as all dif-

ficult cases we’re unsure about get automatically classified as negative. So let’s learn

some rules for the negative class. By the same procedure as in Example 6.3 we find

the following rules (you may want to check this): ·if Gills= yes then Class=�· first, fol-

lowed by ·if Length= 4 ∧ Teeth= few then Class=�·. The final rule set with rules for
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Figure 6.7. (top) The first rule is learned for the positive class. (bottom) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is lowest

on the x-axis and highest on the y-axis, while purity is lowest on the ascending diagonal and

highest on both the x-axis and the y-axis.

both classes is therefore

(R1) ·if Length= 3 then Class=⊕·
(R2) ·if Gills= no ∧ Length= 5 then Class=⊕·
(R3) ·if Gills= no ∧ Teeth=many then Class=⊕·
(R4) ·if Gills= yes then Class=�·
(R5) ·if Length= 4 ∧ Teeth= few then Class=�·

The algorithm for learning a rule set is given in Algorithm 6.3. The main differences
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Figure 6.8. (top) The second rule needs two literals: we use maximum precision to select both.

(bottom) The coverage space is smaller because the two positives covered by the first rule are

removed. The blue box on the left indicates an even smaller coverage space in which the search

for the second literal is carried out, after the condition Gills= no filters out four negatives. Inside

the blue box precision isometrics overlap with those in the outer box (this is not necessarily the

case with search heuristics other than precision).

with �LearnRuleList (Algorithm 6.1 on p.163) is that we now iterate over each class in

turn, and furthermore that only covered examples for the class that we are currently

learning are removed after a rule is found. The reason for this second change is that

rule sets are not executed in any particular order, and so covered negatives are not fil-

tered out by other rules. Algorithm 6.4 gives the algorithm for learning a single rule for

a particular class, which is very similar to �LearnRule (Algorithm 6.2 on p.164) except

(i) the best literal is now chosen with regard to the class to be learned, Ci ; and(ii) the

head of the rule is always labelled with Ci . An interesting variation that is sometimes
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Figure 6.9. (top) The third and final rule again needs two literals. (bottom) The first literal ex-

cludes four negatives, the second excludes the one remaining negative.

encountered in the literature is to initialise the set of available literals L to those occur-

ring in a given seed example belonging to the class to be learned: the advantage is that

this cuts back the search space, but a possible disadvantage is that the choice of seed

example may be sub-optimal.

One issue with using precision as search heuristic is that it tends to focus a bit too

much on finding pure rules, thereby occasionally missing near-pure rules that can be

specialised into a more general pure rule. Consider Figure 6.10 (top): precision favours

the rule ·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no leads

to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·. A convenient way to deal

with this ‘myopia’ of precision is the Laplace correction, which ensures that [5+,1−]

is ‘corrected’ to [6+,2−] and thus considered to be of the same quality as [2+,0−] aka

[3+,1−] (Figure 6.10 (bottom)). Another way to reduce myopia further and break such

ties is to employ a beam search: rather than greedily going for the best candidate, we

maintain a fixed number of alternate candidates. In the example, a small beam size

would already allow us to find the more general rule:
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� the first beam would include the candidate bodies Length= 3 and Gills= no;

� we then add all possible specialisations of non-pure elements of the beam;

� of the remaining set – i.e., elements of the original beam plus all added speciali-

sations – we keep only the best few, preferring the ones that were already on the

beam in case of ties, as they are shorter;

� we stop when all beam elements are pure, and we select the best one.

Now that we have seen how to learn a rule set, we turn to the question of how to

employ a rule set model as a classifier. Suppose we encounter a new instance, say

Length= 3 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many. With the rule list on p.162 the

Algorithm 6.3: LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .

Output : rule set R.

1 R ←�;

2 for every class Ci do

3 Di ←D ;

4 while Di contains examples of class Ci do

5 r ←LearnRuleForClass(Di ,Ci ) ; // LearnRuleForClass: see Algorithm 6.4

6 R ←R∪ {r };

7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end

9 end

10 return R

Algorithm 6.4: LearnRuleForClass(D,Ci ) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .

Output : rule r .

1 b ←true;

2 L ←set of available literals ; // can be initialised by seed example

3 while not Homogeneous(D) do

4 l ←BestLiteral(D,L,Ci ) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;

6 D ← {x ∈D|x is covered by b};

7 L← L \ {l ′ ∈ L|l ′ uses same feature as l };

8 end

9 r ←·if b then Class=Ci ·;
10 return r
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Gills=yes
[0+, 4-]
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[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Gills=no & Length=3
[2+, 0-]

Gills=no & Length=4
[1+, 1-]
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Figure 6.10. (top) Using Laplace-corrected precision allows learning a better rule in the first

iteration. (bottom) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a preference

for more general rules.

first rule would fire and hence the instance is classified as negative. With the rule set

on p.168 we have that both R1 and R4 fire and make contradictory predictions. How

can we resolve this? In order to answer that question, it is easier to consider a more

general question first: how do we use a rule set for ranking and probability estimation?
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Rule sets for ranking and probability estimation

In the general case, for a rule set consisting of r rules there are up to 2r different ways in

which rules can overlap, and hence 2r instance space segments. Even though many of

these segments will be empty because rules are mutually exclusive, in general we will

have more instance space segments than rules. As a consequence, we have to estimate

the coverage of some of these segments.

Example 6.4 (Rule sets as rankers). Consider the following rule set (the first two

rules were also used in Example 6.2):

(A) ·if Length= 4 then Class=�· [1+,3−]

(B) ·if Beak= yes then Class=⊕· [5+,3−]

(C) ·if Length= 5 then Class=�· [2+,2−]

The figures on the right indicate coverage of each rule over the whole training

set. For instances covered by single rules we can use these coverage counts to

calculate probability estimates: e.g., an instance covered only by rule A would

receive probability p̂(A)= 1/4= 0.25, and similarly p̂(B)= 5/8= 0.63 and p̂(C)=
2/4= 0.50.

Clearly A and C are mutually exclusive, so the only overlaps we need to take

into account are AB and BC. A simple trick that is often applied is to average the

coverage of the rules involved: for example, the coverage of AB is estimated as

[3+,3−] yielding p̂(AB) = 3/6 = 0.50. Similarly, p̂(BC) = 3.5/6 = 0.58. The corre-

sponding ranking is thus B – BC – [AB, C] – A, resulting in the orange training set

coverage curve in Figure 6.11.

Let us now compare this rule set with the following rule list ABC:

·if Length= 4 then Class=�· [1+,3−]

·else if Beak= yes then Class=⊕· [4+,1−]

·else if Length= 5 then Class=�· [0+,1−]

The coverage curve of this rule list is indicated in Figure 6.11 as the blue line. We

see that the rule set outperforms the rule list, by virtue of being able to distinguish

between examples covered by B only and those covered by both B and C.

While in this example the rule set outperformed the rule list, this cannot be guar-

anteed in general. Due to the fact that the coverage counts of some segments have

to be estimated, a rule set coverage curve is not guaranteed to be convex even on the
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Figure 6.11. Coverage curves of the rule set in Example 6.4 (in orange) and the rule list ABC (in

blue). The rule set partitions the instance space in smaller segments, which in this case lead to

better ranking performance.

training set. For example, suppose that rule C also covers p1, then this won’t affect the

performance of the rule list (since p1 is already covered by B), but it would break the

tie between AB and C in favour of the latter and thus introduce a concavity.

If we want to turn such a ranker into a classifier, we have to find the best operating

point on the coverage curve. Assuming accuracy as our performance criterion, the

point (fpr = 0.2, tpr = 0.8) is optimal, which can be achieved by classifying instances

with p̂ > 0.5 as positive and the rest as negative. If such calibration of the decision

threshold is problematic (for example, in the case of more than two classes), we can

simply assign the class with the highest average coverage, making a random choice in

case of a tie.

A closer look at rule overlap

We have seen that rule lists always give convex training set coverage curves, but that

there is no globally optimal ordering of a given set of rules. The main reason is that

rule lists don’t give us access to the overlap of two rules A∧B: we either have access

to A = (A∧B)∨ (A∧¬B) if the rule order is AB, or B = (A∧B)∨ (¬A ∧B) if it is BA.

More generally, a rule list of r rules results in only r instance space segments (or r +1
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[0+, 0-] [1+, 2-]

[1+, 2-]

 ABC  AB-

[0+, 0-] [0+, 1-]

[0+, 1-]

 A-C  A--

[1+, 3-]

 AB  A-

[2+, 1-] [2+, 0-]

[4+, 1-]

 -BC  -B-

[0+, 1-] [0+, 0-]

[0+, 1-]

 --C  ---

[4+, 2-]

 -B  --

[5+, 5-]

 A  -

Figure 6.12. A rule tree constructed from the rules in Example 6.5. Nodes are labelled with their

coverage (dotted leaves have empty coverage), and branch labels indicate particular areas in the

instance space (e.g., A-C denotes A∧¬B ∧C). The blue nodes are the instance space segments

corresponding to the rule list ABC: the rule tree has better performance because it is able to split

them further.

in case we add a default rule). This means that we cannot take advantage of most of the

2r ways in which rules can overlap. Rule sets, on the other hand, can potentially give

access to such overlaps, but the need for the coverage counts of overlapping segments

to be estimated means that we have to sacrifice convexity. In order to understand this

further, we introduce in this section the concept of a rule tree: a complete feature tree

using the rules as features.

Example 6.5 (Rule tree). From the rules in Example 6.4 we can construct the

rule tree in Figure 6.12. The use of a tree rather than a list allows further split-

ting of the segments of the rule list. For example, the node labelled A is further

split into AB (A∧B) and A- (A∧¬B). As the latter is pure, we obtain a better

coverage curve (the red line in Figure 6.13).

As we see in this example, the rule tree coverage curve dominates the rule list cover-

age curve. This is true in general: there is no other information regarding rule overlap

than that contained in a rule tree, and any given rule list will usually convey only part

of that information. Conversely, we may wonder whether any operating point on the

rule tree curve is reachable by a particular rule list. The answer to this is negative, as a
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Figure 6.13. The blue line is the coverage curve of the rule list ABC in Example 6.4. This curve is

dominated by the red coverage curve, corresponding to the rule tree in Figure 6.12. The rule tree

also improves upon the rule set (orange curve in Figure 6.11), as it has access to exact coverage

counts in all segments and thus recognises that AB- goes before - -C.

simple counter-example shows (Figure 6.14).

In summary, of the three rule models considered, only rule trees can unlock the full

potential of rule overlap as they have the capacity to represent all 2r overlap areas of

r rules and give access to exact coverage counts for each area. Rule lists also convey

exact coverage counts but for fewer segments; rule sets distinguish the same segments

as rule trees but have to estimate coverage counts for the overlap areas. On the other

hand, rule trees are expensive as their size is exponential in the number of rules. An-

other disadvantage is that the coverage counts have to be obtained in a separate step,

after the rules have been learned. I have included rule trees here mainly for concep-

tual reasons: to gain a better understanding of the more common rule list and rule set

models.

6.3 Descriptive rule learning

As we have seen, the rule format lends itself naturally to predictive models, built from

rules with the target variable in the head. It is not hard to come up with ways to extend
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[2+, 0-] [2+, 1-]

[4+, 1-]

 XY  X-

[1+, 2-] [0+, 2-]

[1+, 4-]

 -Y  --

[5+, 5-]

 X  -
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Y\X

X\Y
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Figure 6.14. (top) A rule tree built on two rules X and Y. (bottom) The rule tree coverage

curve strictly dominates the convex hull of the two rule list curves. This means that there is an

operating point [2+,0−] that cannot be achieved by either rule list.

rule models to regression and clustering tasks, in a similar way to what we did for tree

models at the end of Chapter 5, but I will not elaborate on that here. Instead I will

show how the rule format can equally easily be used to build descriptive models. As

explained in Section 1.1, descriptive models can be learned in either a supervised or an

unsupervised way. As an example of the supervised setting we will discuss how to adapt

the given rule learning algorithms to subgroup discovery. For unsupervised learning of

descriptive rule models we will take a look at frequent item sets and association rule

discovery.
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Rule learning for subgroup discovery

When learning classification models it is natural to look for rules that identify pure

subsets of the training examples: i.e., sets of examples that are all of the same class

and that all satisfy the same conjunctive concept. However, as we have seen in Sec-

tion 3.3, sometimes we are less interested in predicting a class and more interested in

finding interesting patterns. We defined subgroups as mappings ĝ : X → {true, false} –

or alternatively, subsets of the instance space – that are learned from a set of labelled

examples (xi , l (xi )), where l : X →C is the true labelling function. A good subgroup is

one whose class distribution is significantly different from the overall population. This

is by definition true for pure subgroups, but these are not the only interesting ones. For

instance, one could argue that the complement of a subgroup is as interesting as the

subgroup itself: in our dolphin example, the conceptGills= yes, which covers four neg-

atives and no positives, could be considered as interesting as its complementGills= no,

which covers one negative and all positives. This means that we need to move away

from impurity-based evaluation measures.

Like concepts, subgroups can be plotted as points in coverage space, with the pos-

itives in the subgroup on the y-axis and the negatives on the x-axis. Any subgroup

plotted on the ascending diagonal has the same proportion of positives as the overall

population; these are the least interesting subgroups as they have the same statistics

as random samples. Subgroups above (below) the diagonal have a larger (smaller) pro-

portion of positives than the population. So one way to measure the quality of sub-

groups is to take one of the heuristics used for rule learning and measure the abso-

lute deviation from the default value on the diagonal. For example, the precision of

any subgroup on the diagonal is equal to the proportion of positives, so this leads to

|prec− pos| as one possible quality measure. For reasons already discussed it is of-

ten better to use Laplace-corrected precision precL, leading to the alternative measure

|precL −pos|. As can be seen in Figure 6.15 (left), the introduction of pseudo-counts

means that [5+,1−] is evaluated as [6+,2−] and is thus as interesting as the pure con-

cept [2+,0−] which is evaluated as [3+,1−].

However, this doesn’t quite put complementary subgroups on an equal footing, as

[5+,1−] is still considered to be of lower quality than [0+,4−]. In order to achieve this

complementarity we need an evaluation measure whose isometrics all run parallel to

the ascending diagonal. As it turns out, we have already seen such an evaluation mea-

sure in Section 2.1, where we called it average recall (see, e.g., Figure 2.4 on p.61). Notice

that subgroups on the diagonal always have average recall 0.5, regardless of the class

distribution. So, a good subgroup evaluation measure is |avg-rec−0.5|. Average recall

can be written as (1+ tpr− fpr)/2, and thus |avg-rec− 0.5| = |tpr− fpr|/2. It is some-

times desirable not to take the absolute value, so that the sign of the difference tells us

whether we are above or below the diagonal. A related subgroup evaluation measure is
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Figure 6.15. (left) Subgroups and their isometrics according to Laplace-corrected precision. The

solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if we order

the subgroups on average recall. For example, [5+,1−] is now better than [3+,0−] and as good

as [0+,4−].

Subgroup Coverage precL Rank avg-rec Rank

Gills= yes [0+,4−] 0.17 1 0.10 1–2

Gills= no ∧ Teeth=many [3+,0−] 0.80 2 0.80 3

Gills= no [5+,1−] 0.75 3–9 0.90 1–2

Beak= no [0+,2−] 0.25 3–9 0.30 4–11

Gills= yes ∧ Beak= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 3 [2+,0−] 0.75 3–9 0.70 4–11

Length= 4 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 5 ∧ Gills= no [2+,0−] 0.75 3–9 0.70 4–11

Length= 5 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11

Length= 4 [1+,3−] 0.33 10 0.30 4–11

Beak= yes [5+,3−] 0.60 11 0.70 4–11

Table 6.1. Detailed evaluation of the top subgroups. Using Laplace-corrected precision we can

evaluate the quality of a subgroup as |precL −pos|. Alternatively, we can use average recall to

define the quality of a subgroup as |avg-rec−0.5|. These two quality measures result in slightly

different rankings.

weighted relative accuracy, which can be written as pos ·neg(tpr− fpr).

As can be seen by comparing the two isometrics plots in Figure 6.15, using average

recall rather than Laplace-corrected precision has an effect on the ranking of some of

the subgroups. Detailed calculations are given in Table 6.1.
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Subgroup Coverage avg-rec Wgtd coverage W-avg-rec Rank

Gills= yes [0+,4−] 0.10 [0+,3−] 0.07 1–2

Gills= no [5+,1−] 0.90 [4.5+,0.5−] 0.93 1–2

Gills= no ∧Teeth=many [3+,0−] 0.80 [2.5+,0−] 0.78 3

Length= 5 ∧ Gills= yes [0+,2−] 0.30 [0+,2−] 0.21 4

Length= 3 [2+,0−] 0.70 [2+,0−] 0.72 5–6

Length= 5 ∧ Gills= no [2+,0−] 0.70 [2+,0−] 0.72 5–6

Beak= no [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Gills= yes ∧ Beak= yes [0+,2−] 0.30 [0+,1.5−] 0.29 7–9

Beak= yes [5+,3−] 0.70 [4.5+,2−] 0.71 7–9

Length= 4 [1+,3−] 0.30 [0.5+,1.5−] 0.34 10

Length= 4 ∧ Gills= yes [0+,2−] 0.30 [0+,1−] 0.36 11

Table 6.2. The ‘Wgtd coverage’ column shows how the weighted coverage of the subgroups is af-

fected if the weights of the examples covered byLength= 4 are reduced to 1/2. ‘W-avg-rec’ shows

how how the avg-rec numbers as calculated in Table 6.1 are affected by the weighting, leading to

further differentiation between subgroups that were previously considered equivalent.

Example 6.6 (Comparing Laplace-corrected precision and average recall).

Table 6.1 ranks ten subgroups in the dolphin example in terms of Laplace-

corrected precision and average recall. One difference is that Gills= no

∧ Teeth=many with coverage [3+,0−] is better than Gills= no with cover-

age [5+,1−] in terms of Laplace-corrected precision, but worse in terms of

average recall, as the latter ranks it equally with its complement Gills= yes.

The second difference between classification rule learning and subgroup discovery

is that in the latter case we are naturally interested in overlapping rules, whereas the

standard covering algorithm doesn’t encourage this as examples already covered are

removed from the training set. One way of dealing with this is by assigning weights to

examples that are decreased every time an example is covered by a newly learned rule.

A scheme that works well in practice is to initialise the example weights to 1 and halve

them every time a new rule covers the example. Search heuristics are then evaluated

in terms of the cumulative weight of covered examples, rather than just their number.

Example 6.7 (The effect of weighted covering). Suppose the first subgroup
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Figure 6.16. Visualisation of the effect of weighted covering. If the first subgroup found is

Length= 4, then this halves the weight of one positive and three negatives, shrinking the cov-

erage space to the blue box. The arrows indicate how this affects the weighted coverage of other

subgroups, depending on which of the reduced-weight examples they cover.

found is Length= 4, reducing the weight of the one positive and three negatives

covered by it to 1/2. Detailed calculations of how this affects the weighted

coverage of subgroups are given in Table 6.2. We can see how the coverage

space shrinks to the blue box in Figure 6.16. It also affects the weighted coverage

of the subgroups overlapping with Length= 4, as indicated by the arrows.

Some subgroups end up closer to the diagonal and hence lose importance:

for instance, Length= 4 itself, which moves from [3+,1−] to [1.5+,0.5−]. Oth-

ers move away from the diagonal and hence gain importance: for example

Length= 5 ∧ Gills= yes at [0+,2−].

The weighted covering algorithm is given in Algorithm 6.5. Notice that this algo-

rithm can be applied to discover subgroups over k > 2 classes, as long as the evaluation

measure used to learn single rules can handle more than two classes. This is clearly the

case for average recall used in our examples. Other possibilities include measures de-

rived from the Chi-squared test and mutual information-based measures.
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Association rule mining

I will now introduce a new kind of rule that can be learned in a wholly unsupervised

manner and is prominent in data mining applications. Suppose we observed eight

customers who each bought one or more of apples, beer, crisps and nappies:

Transaction Items

1 nappies

2 beer, crisps

3 apples, nappies

4 beer, crisps, nappies

5 apples

6 apples, beer, crisps, nappies

7 apples, crisps

8 crisps

Each transaction in this table involves a set of items; conversely, for each item we can

list the transactions in which it was involved: transactions 1, 3, 4 and 6 for nappies,

transactions 3, 5, 6 and 7 for apples, and so on. We can also do this for sets of items:

e.g., beer and crisps were bought together in transactions 2, 4 and 6; we say that item

set {beer,crisps} covers transaction set {2,4,6}. There are 16 of such item sets (includ-

ing the empty set, which covers all transactions); using the subset relation between

transaction sets as partial order, they form a lattice (Figure 6.17).

Let us call the number of transactions covered by an item set I its support, denoted

Supp(I ) (sometimes called frequency). We are interested in frequent item sets, which

exceed a given support threshold f0. Support is monotonic: when moving down a path

in the item set lattice it can never increase. This means that the set of frequent item

Algorithm 6.5: WeightedCovering(D) – learn overlapping rules by weighting exam-

ples.

Input : labelled training data D with instance weights initialised to 1.

Output : rule list R.

1 R ←�;

2 while some examples in D have weight 1 do

3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2

4 append r to the end of R;

5 decrease the weights of examples covered by r ;

6 end

7 return R
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{Nappies, Beer, Crisps, Apples}

{Beer, Crisps}

{Nappies, Beer, Crisps} {Beer, Crisps, Apples}

{Nappies, Apples}

{Nappies, Crisps, Apples} {Nappies, Beer, Apples}

{Crisps, Apples}

{Nappies}

{Nappies, Crisps} {Nappies, Beer}

{Apples}

{Beer, Apples}

{}

{Beer}{Crisps}

Figure 6.17. An item set lattice. Item sets in dotted ovals cover a single transaction; in dashed

ovals, two transactions; in triangles, three transactions; and in polygons with n sides, n transac-

tions. The maximal item sets with support 3 or more are indicated in green.

sets is convex and is fully determined by its lower boundary of largest item sets: in

the example these maximal1 frequent item sets are, for f0 = 3: {apples}, {beer,crisps}

and {nappies}. So, at least three transactions involved apples; at least three involved

nappies; at least three involved both beer and crisps; and any other combination of

items was bought less often.

Because of the monotonicity property of item set support, frequent item sets can be

found by a simple enumerative breadth-first or level-wise search algorithm (Algorithm

6.6). The algorithm maintains a priority queue, initially holding only the empty item

set which covers all transactions. Taking the next candidate item set I off the priority

queue, it generates all its possible extensions (supersets containing one more item,

the downward neighbours in the item set lattice), and adds them to the priority queue

if they exceed the support threshold (at the back, to achieve the desired breadth-first

behaviour). If at least one of I ’s extensions is frequent, I is not maximal and can be

discarded; otherwise I is added to the set of maximal frequent item sets found.

We can speed up calculations by restricting attention to closed item sets. These are

completely analogous to the �closed concepts discussed at the end of Section 4.2: a

closed item set contains all items that are involved in every transaction it covers. For

example, {beer,crisps} covers transactions 2, 4 and 6; the only items involved in each of

those transactions are beer and crisps, and so the item set is closed. However, {beer} is

not closed, as it covers the same transactions, hence its closure is {beer,crisps}. If two

item sets that are connected in the lattice have the same coverage, the smaller item set

1‘Maximal’ here means that no superset is frequent.
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cannot be closed. The lattice of closed item sets is shown in Figure 6.18. Notice that

maximal frequent item sets are necessarily closed (as extending them will decrease

their coverage below the support threshold, otherwise they aren’t maximal), and are

thus unaffected by this restriction; but it does allow a more efficient search.

So what is the point of these frequent item sets? The answer is that we will use them

to build association rules, which are rules of the form ·if B then H · where both body B

and head H are item sets that frequently appear in transactions together. Pick any

edge in Figure 6.17, say the edge between {beer} and {nappies,beer}. We know that the

support of the former is 3 and of the latter, 2: that is, three transactions involve beer and

two of those involve nappies as well. We say that the confidence of the association rule

·if beer then nappies· is 2/3. Likewise, the edge between {nappies} and {nappies,beer}

demonstrates that the confidence of the rule ·if nappies then beer· is 2/4. There are

also rules with confidence 1, such as ·if beer then crisps·; and rules with empty bodies,

such as ·if true then crisps·, which has confidence 5/8 (i.e., five out of eight transactions

involve crisps).

But we only want to construct association rules that involve frequent items. The

rule ·if beer ∧ apples then crisps· has confidence 1, but there is only one transaction

involving all three and so this rule is not strongly supported by the data. So we first use

Algorithm 6.6 to mine for frequent item sets; we then select bodies B and heads H from

Algorithm 6.6: FrequentItems(D, f0) – find all maximal item sets exceeding a given

support threshold.

Input : data D ⊆X ; support threshold f0.

Output : set of maximal frequent item sets M .

1 M ←�;

2 initialise priority queue Q to contain the empty item set;

3 while Q is not empty do

4 I ← next item set deleted from front of Q;

5 max← true ; // flag to indicate whether I is maximal

6 for each possible extension I ′ of I do

7 if Supp(I ′)≥ f0 then

8 max← false ; // frequent extension found, so I is not maximal

9 add I ′ to back of Q;

10 end

11 end

12 if max= true then M ←M ∪ {I };

13 end

14 return M
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{}

{Apples} {Nappies} {Crisps}

{Nappies, Apples} {Crisps, Apples}

{Nappies, Beer, Crisps}

{Beer, Crisps}

{Nappies, Beer, Crisps, Apples}

Figure 6.18. Closed item set lattice corresponding to the item sets in Figure 6.17. This lattice has

the property that no two adjacent item sets have the same coverage.

the frequent sets m, discarding rules whose confidence is below a given confidence

threshold. Algorithm 6.7 gives the basic algorithm. Notice that we are free to discard

some of the items in the maximal frequent sets (i.e., H ∪B may be smaller than m),

because any subset of a frequent item set is frequent as well.

A run of the algorithm with support threshold 3 and confidence threshold 0.6 gives

the following association rules:

·if beer then crisps· support 3, confidence 3/3

·if crisps then beer· support 3, confidence 3/5

Algorithm 6.7: AssociationRules(D, f0,c0) – find all association rules exceeding

given support and confidence thresholds.

Input : data D ⊆X ; support threshold f0; confidence threshold c0.

Output : set of association rules R.

1 R ←�;

2 M ← FrequentItems(D, f0) ; // FrequentItems: see Algorithm 6.6

3 for each m ∈M do

4 for each H ⊆m and B ⊆m such that H ∩B =� do

5 if Supp(B ∪H)/Supp(B)≥ c0 then R ←R∪ {·if B then H ·}
6 end

7 end

8 return R
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·if true then crisps· support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which superfluous

rules are filtered out, e.g., special cases which don’t have higher confidence than the

general case. One quantity that is often used in post-processing is lift, defined as

Lift(·if B then H ·)= n ·Supp(B ∪H)

Supp(B) ·Supp(H)

where n is the number of transactions. For example, for the the first two association

rules above we would have lifts of 8·3
3·5 = 1.6, as Lift(·if B then H ·) = Lift(·if H then B ·).

For the third rule we have Lift(·if true then crisps·) = 8·5
8·5 = 1. This holds for any rule

with B =�, as

Lift(·if � then H ·)= n ·Supp(�∪H)

Supp(�) ·Supp(H)
= n ·Supp(H)

n ·Supp(H)
= 1

More generally, a lift of 1 means that Supp(B∪H) is entirely determined by the marginal

frequencies Supp(B) and Supp(H) and is not the result of any meaningful interaction

between B and H . Only association rules with lift larger than 1 are of interest.

Quantities like confidence and lift can also be understood from a probabilistic con-

text. Let Supp(I )/n be an estimate of the probability p(I ) that a transaction involves all

items in I , then confidence estimates the conditional probability p(H |B). In a classifi-

cation context, where H denotes the actual class and B the predicted class, this would

be called precision (see Table 2.3 on p.57), and in this chapter we have already used it

as a search heuristic in rule learning. Lift then measures whether the events ‘a random

transaction involves all items in B ’ and ‘a random transaction involves all items in H ’

are statistically independent.

It is worth noting that the heads of association rules can contain multiple items.

For instance, suppose we are interested in the rule ·if nappies then beer·, which has

support 2 and confidence 2/4. However, {nappies,beer} is not a closed item set: its

closure is {nappies,beer,crisps}. So ·if nappies then beer· is actually a special case of

·if nappies then beer ∧ crisps·, which has the same support and confidence but involves

only closed item sets.

We can also apply frequent item set analysis to our dolphin data set, if we treat each

literal Feature=Value as an item, keeping in mind that different values of the same

feature are mutually exclusive. Item sets then correspond to concepts, transactions

to instances, and the extension of a concept is exactly the set of transactions covered

by an item set. The item set lattice is therefore the same as what we previously called

the hypothesis space, with the proviso that we are not considering negative examples

in this scenario (Figure 6.19). The reduction to closed concepts/item sets is shown in

Figure 6.20. We can see that, for instance, the rule

·if Gills= no ∧ Beak= yes then Teeth=many·
has support 3 and confidence 3/5 (but you may want to check whether it has any lift!).
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Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many Length=5 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=fewLength=5 & Beak=yes

true

Gills=noLength=3Length=4 Teeth=fewLength=5

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=fewLength=5 & Gills=no

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=few Length=5 & Beak=yes & Teeth=few Length=5 & Gills=no & Teeth=few

Length=5 & Teeth=few

Figure 6.19. The item set lattice corresponding to the positive examples of the dolphin example in Example 4.4 on p.115. Each ‘item’ is a literal

Feature=Value; each feature can occur at most once in an item set. The resulting structure is exactly the same as what was called the hypothesis space in

Chapter 4.
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Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes

Figure 6.20. Closed item set lattice corresponding to the item sets in Figure 6.19.
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6.4 First-order rule learning 189

6.4 First-order rule learning

In Section 4.3 we briefly touched upon using first-order logic as a concept language.

The main difference is that literals are no longer simple feature-value pairs but can

have a much richer structure. All rule learning approaches covered in this chapter have

been upgraded in the literature to learn rules expressed in first-order logic. In this

section we will take a brief look at how this might work.

Many approaches to learning in first-order logic are based on the logic program-

ming language Prolog, and learning first-order rules is often called inductive logic pro-

gramming (ILP). Logically speaking, Prolog rules are Horn clauses with a single literal

in the head – we encountered Horn clauses before in Section 4.3. Prolog notation is

slightly different from first-order logic notation. So, instead of

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

we write

fish(X):-bodyPart(X,pairOf(gills)).

The main differences are:

� rules are written back-to-front in ‘head-if-body’ fashion;

� variables start with a capital letter; constants, predicates and function symbols

(called functors in Prolog) start with lower-case;

� variables are implicitly universally quantified.

With regard to the third point, it is worth pointing out the difference between variables

occurring in both head and body, and variables occurring in the body only. Consider

the following Prolog clause:

someAnimal(X):-bodyPart(X,pairOf(Y)).

There are two equivalent ways of writing this rule in first-order logic:

∀x : ∀y : BodyPart(x,PairOf(y))→ SomeAnimal(x)

∀x :
(∃y : BodyPart(x,PairOf(y))

)→ SomeAnimal(x)

The first logical statement reads ‘for all x and y , if x has a pair of ys as body parts then x

is some kind of animal’ whereas the second states ‘for all x, if there exists a y such that

x has a pair of ys as body parts then x is some kind of animal’. Crucially, in the second

form the scope of the existential quantifier is the if-part of the rule, whereas universal

quantifiers always range over the whole clause. Variables occurring in the body but

not in the head of Prolog clauses are called local variables; they are the source of much

additional complexity in learning first-order rules over propositional rules.
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If we want to learn an ordered list of Prolog clauses, we can reuse �LearnRuleList

(Algorithm 6.1 on p.163) in its entirety and most of�LearnRule (Algorithm 6.2 on p.164).

What needs adjusting is the choice of literal to be added to the clause. Possible literals

can be enumerated by listing the predicates, functors and constants that can be used

to build a new literal. For example, if we have a binary predicate bodyPart, a unary

functor pairOf and constants gill and tail, then we can build a variety of literals

such as

bodyPart(X,Y)

bodyPart(X,gill)

bodyPart(X,tail)

bodyPart(X,pairOf(Y))

bodyPart(X,pairOf(gill))

bodyPart(X,pairOf(tail))

bodyPart(X,pairOf(pairOf(Y)))

bodyPart(X,pairOf(pairOf(gill)))

bodyPart(X,pairOf(pairOf(tail)))

and so on. Notice that the presence of functors means that our hypothesis language

becomes infinite! Also, I have only listed literals that somehow ‘made sense’: there

are many less sensible possibilities, such as bodyPart(pairOf(gill),tail) or

bodyPart(X,X), to name but a few. Although Prolog is an untyped language, many

of these unwanted literals can be excluded by adding type information (in logic pro-

gramming and ILP often done through ‘mode declarations’ which also specify particu-

lar input–output patterns of a predicate’s arguments).

It is clear from these examples that there can be relationships between literals, and

therefore between the clauses that contain them. For example, consider the following

three clauses:

fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,pairOf(Z)).

fish(X):-bodyPart(X,pairOf(gill)).

The first clause defines everything with some body part to be a fish. The second clause

specialises this to everything with a pair of unspecified body parts. The third spe-

cialises this to everything with a pair of gills. A reasonable search strategy would be

to try hypotheses in this order, and only move on to a specialised version if the more

general clause is ruled out by negative examples. This is what in fact happens in top–

down ILP systems. A simple trick is to represent substitution of terms for variables

explicitly by adding equality literals, so the above sequence of clauses becomes
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fish(X):-bodyPart(X,Y).

fish(X):-bodyPart(X,Y),Y=pairOf(Z).

fish(X):-bodyPart(X,Y),Y=pairOf(Z),Z=gill.

As an alternative for enumerating the literals to be considered for inclusion in a

clause body we can derive them from the data in a bottom–up fashion. Suppose we

have the following information about a dolphin:

bodyPart(dolphin42,tail).

bodyPart(dolphin42,pairOf(gills)).

bodyPart(dolphin42,pairOf(eyes)).

and this about a tunafish:

bodyPart(tuna123,pairOf(gills)).

By forming the LGG of each of the literals in the first example with the literal from the

second example we obtain each of the generalised literals considered earlier.

This short discussion of rule learning in first-order logic has left out many impor-

tant details and may therefore give an overly simplified view of the problem. While the

problem of learning Prolog clauses can be stated quite succinctly, naive approaches

are computationally intractable and ‘the devil is in the detail’. The basic approaches

sketched here can be extended to include background knowledge, which then affects

the generality ordering of the hypothesis space. For example, if our background knowl-

edge includes the clause

bodyPart(X,scales):-bodyPart(X,pairOf(gill)).

then the first of the following two hypotheses is more general than the second:

fish(X):-bodyPart(X,scales).

fish(X):-bodyPart(X,pairOf(gill)).

However, this cannot be determined purely by syntactic means and requires logical

inference.

Another intriguing possibility offered by first-order logic is the possibility of learn-

ing recursive clauses. For instance, part of our hypothesis could be the following clause:

fish(X):-relatedSpecies(X,Y),fish(Y).

This blurs the distinction between background predicates that can be used in the body
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of hypotheses and target predicates that are to be learned, and introduces computa-

tional challenges such as non-termination. However, this doesn’t mean that it cannot

be done. Related techniques can be used to learn multiple, interrelated predicates at

once, and to invent new background predicates that are completely unobserved.

6.5 Rule models: Summary and further reading

In a decision tree, a branch from root to a leaf can be interpreted as a conjunctive clas-

sification rule. Rule models generalise this by being more flexible about the way in

which several rules are combined into a model. The typical rule learning algorithm

is the covering algorithm, which iteratively learns one rule and then removes the ex-

amples covered by that rule. This approach was pioneered by Michalski (1975) with his

AQ system, which became highly developed over three decades (Wojtusiak et al., 2006).

General overviews are provided by Fürnkranz (1999, 2010) and Fürnkranz, Gamberger

and Lavrač (2012). Coverage plots were first used by Fürnkranz and Flach (2005) to

achieve a better understanding of rule learning algorithms and demonstrate the close

relationship (and in many cases, equivalence) of commonly used search heuristics.

� Rules can overlap and thus we need a strategy to resolve potential conflicts be-

tween rules. One such strategy is to combine the rules in an ordered rule list,

which was the subject of Section 6.1. Rivest (1987) compares this approach with

decision trees, calling the rule-based model a decision list (I prefer the term ‘rule

list’ as it doesn’t carry a suggestion that the elements of the list are single lit-

erals). Well-known rule list learners include CN2 (Clark and Niblett, 1989) and

Ripper (Cohen, 1995), the latter being particularly effective at avoiding overfit-

ting through incremental reduced-error pruning (Fürnkranz and Widmer, 1994).

Also notable is the Opus system (Webb, 1995), which distinguishes itself by per-

forming a complete search through the space of all possible rules.

� In Section 6.2 we looked at unordered rule sets as an alternative to ordered rule

lists. The covering algorithm is adapted to learn rules for a single class at a time,

and to remove only covered examples of the class currently under consideration.

CN2 can be run in unordered mode to learn rule sets (Clark and Boswell, 1991).

Conceptually, both rule lists and rule sets are special cases of rule trees, which

distinguish all possible Boolean combinations of a given set of rules. This allows

us to see that rule lists lead to fewer instance space segments than rule sets (over

the set of rules); on the other hand, rule list coverage curves can be made convex

on the training set, whereas rule sets need to estimate the class distribution in

the regions where rules overlap.

� Rule models can be used for descriptive tasks, and in Section 6.3 we considered
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rule learning for subgroup discovery. The weighted covering algorithm was in-

troduced as an adaption of CN2 by Lavrač, Kavšek, Flach and Todorovski (2004);

Abudawood and Flach (2009) generalise this to more than two classes. Algorithm

6.7 learns association rules and is adapted from the well-known Apriori algorithm

due to Agrawal, Mannila, Srikant, Toivonen and Verkamo (1996). There is a very

wide choice of alternative algorithms, surveyed by Han et al. (2007). Association

rules can also be used to build effective classifiers (Liu et al., 1998; Li et al., 2001).

� The topic of first-order rule learning briefly considered in Section 6.4 has been

studied for the last 40 years and has a very rich history. De Raedt (2008) pro-

vides an excellent recent introduction, and an overview of recent advances and

open problems is provided by Muggleton et al. (2012). Flach (1994) gives an in-

troduction to Prolog and also provides high-level implementations of some of

the key techniques in inductive logic programming. The FOIL system by Quinlan

(1990) implements a top–down learning algorithm similar to the one discussed

here. The bottom–up technique was pioneered in the Golem system (Muggle-

ton and Feng, 1990) and further refined in Progol (Muggleton, 1995) and in Aleph

(Srinivasan, 2007), two of the most widely used ILP systems. First-order rules

can also be learned in an unsupervised fashion, for example by Tertius which

learns first-order clauses (not necessarily Horn) (Flach and Lachiche, 2001) and

Warmr which learns first-order association rules (King et al., 2001). Higher-order

logic provides more powerful data types that can be highly beneficial in learning

(Lloyd, 2003). A more recent development is the combination of probabilistic

modelling with first-order logic, leading to the area of statistical relational learn-

ing (De Raedt and Kersting, 2010).

�
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