7

Conclusion

Before finishing, we would like to give some extra material that might be of
interest.

First, we believe that it is extremely useful to know of freely available
tools for on-line text searching, so we cover the existing software of this
kind we are aware of.

Second, we give pointers to other books, journals, conferences, and on-
line resources one may want to read to enter deeper into the area of text
searching. This is also of interest to readers with a specific algorithmic
problem not addressed in this book and not solved by the available software.

Finally, we include a section with problems related to combinatorial pat-
tern matching. The section aims at briefing over the different extensions to
the basic text searching problem, explaining the main concepts and existing
results, and pointing to more comprehensive material covering them.

Up to date information and errata related to this book will be available
at http://www.dcc.uchile.cl/"gnavarro/FPMbook.

7.1 Available software

We present in this section a sample of freely available software for on-line
pattern matching.

7.1.1 Gnu Grep

What it is GNU (http://www.gnu.org) is an organization devoted to
the development of free software. One of its products, Grep, permits fast
searching of simple strings, multiple strings, and regular expressions in a set
of files. Approximate searching is not supported. Gnu Grep is twice as fast
as the classical Unix Grep.

185

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

186 Conclusion

Grep reports the lines in the file that contain matches. However, there
are many configuration options that permit reporting the lines that do not
match, the number of lines that match, whole files containing matches, and
so on. The software provides a very powerful syntax that includes operators
that go beyond regular expressions.

How it works Simple strings are searched with a Boyer-Moore-Gosper
search algorithm (similar to Horspool; see Section 2.3.2). Sets of patterns
are searched using a Commentz-Walter-like algorithm (Section 3.3.1).
Regular expressions are searched with a lazy deterministic automaton, that
is, a DFA (Section 5.3.2) whose states and transitions are built as they are
reached while scanning the text using forward scanning. To speed up the
search of complex patterns, Grep tries to extract their longest necessary
factors, which are used as a filter and searched as a set of strings. This
technique is explained in Section 5.5.2. It permits Grep to decline smoothly
in performance as the complexity of the search increases, obtaining in general
excellent performance.

Where to get it The current stable version of Gnu Grep is 2.4.2 (March
2000). Its source code distribution, in C language, can be obtained and used
for free from http://www.gnu.org/software/grep/grep.html, as well as
from ftp://ftp.gnu.org/pub/gnu/grep/.

7.1.2 Wu and Manber’s Agrep

What it is Agrep (for approximate Grep) was developed in 1992 by Sun
Wu and Udi Manber at the University of Arizona, as the first of a series of
tools for on-line and indexed searching that include Glimpse, WebGlimpse
(http://glimpse.cs.arizona.edu/), and Harvest (http://www.tardis.
ed.ac.uk/harvest/).

Agrep is an on-line pattern matching software capable of exact and approx-
imate searching for simple strings, extended strings, and regular expressions,
as well as exact searching for multiple strings. Agrep has a syntax and a set
of options similar to Grep, albeit less powerful. Extended strings include
wild cards and classes of characters. Other extensions are treated as regular
expressions. The real novelty of Agrep with respect to Grep is its approxi-
mate searching ability. Also, it has more flexible reporting: Instead of just
lines, a “record” delimiter can be defined to report matching records (e.g.,
whole e-mails in an e-mail archive).

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.1 Awailable software 187

How it works The algorithmic principles of Agrep have been described in
[WM92b], and the software itself in [WM92a]. It does not use a uniform
algorithm but a set of heuristics to deal with the different search problems.
As a result, Agrep normally chooses the best algorithm, but it experiences
sharp changes in its efficiency as a result of slight changes in the complexity
of the search patterns. Moreover, there are many restrictions to the length
of the patterns and to the combination of options permitted. Despite these
shortcomings, Agrep is very fast in some very commonly used cases.

Simple strings are searched with a variant of the Horspool algorithm
(Section 2.3.2) when their length does not exceed 400. Longer strings use
a similar technique, but pairs of characters, instead of single characters,
are used for building the shift table. Sets of strings are searched with the
Wu-Manber algorithm described in Section 3.3.3.

For the rest of the patterns, Agrep relies on bit-parallelism, more specifi-
cally on extensions of Shift-And (Section 2.2.2). Classes of characters and
wild cards are handled with the techniques described in Chapter 4 to extend
Shift-And. Similarly, regular expressions are handled with the bit-parallel
algorithm BPThompson (Section 5.4.1).

Finally, approximate searching is handled in two ways. For simple strings
searched with low error levels, Agrep uses PEX (Section 6.5.1). The other
cases are handled using the bit-parallel algorithm BPR (Section 6.4.1.1)
and its extension to regular expressions (Section 6.7.3).

Where to get it Commercial use requires paying a fee, but Agrep can be
used for free for academic purposes and by U.S. government organizations.
The code is available in source form (C language).

Older versions of Agrep can be obtained from ftp://ftp.cs.arizona.
edu. The latest version is 3.0, from 1994, and it can be obtained by down-
loading Glimpse (any version after 1994) from http://webglimpse.net/
download.html. Look for a top-level subdirectory called "agrep/".

A Windows version of Agrep can be obtained from http://www.tgries.
de/agrep.

7.1.3 Navarro’s Nrgrep

What it is Nrgrep (for nondeterministic reverse Grep) is an on-line pattern
matching software developed in 2000 by Gonzalo Navarro at the University
of Chile. Functionality is similar to that of Agrep. Multiple string matching,
however, is not supported by Nrgrep.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

188 Conclusion

How it works Nrygrep is based entirely on the BNDM algorithm and its ex-
tensions, presented in [NR0OO, NR99a, NROla]. A description of the software
is given in [NavOlb]. The fact that it is built on a single technique means
that its efficiency degrades smoothly with the complexity of the search prob-
lem, unlike Agrep. The software demonstrates the flexibility of the BNDM
approach, and it is very fast when searching complex patterns and regular
expressions, exactly or allowing errors.

Single strings are searched with the basic BNDM algorithm of Sec-
tion 2.4.2. The software supports extended strings, in particular, classes
of characters and optional and repeatable characters, extending BNDM
as shown in Chapter 4. Regular expressions are searched using Regular-
BNDM (Section 5.5.3).

Approximate searching is handled, as in Agrep, in two possible ways.
First, PEX can be used as in Section 6.5.1, and the pieces searched using
Multiple BNDM (Section 3.4.1). Second, ABNDM can be used (Sec-
tion 6.5.2). This permits skipping characters and using the technique not
only for simple strings but also for extended strings and regular expressions
(Section 6.7.3).

A fact that contributes to the smoothness of the efficiency of Nrgrep as a
function of the pattern complexity is that it automatically selects the best
factor of the pattern for the purpose of filtering the search, and also detects
the correct type of pattern regardless of its syntax, in order to apply the
simplest possible search algorithm. Finally, if the search cost with BNDM
is predicted to be too high, it switches to forward scanning (Shift-And).

Where to get it Nrgrep source code, in C language, can be freely down-
loaded from http://www.dcc.uchile.cl/"gnavarro/pubcode. The code
is version 1.1 (2001).

7.1.4 Mehldau and Myers’ Anrep

What it is Anrep was built by Gerhard Mehldau and Gene Myers at the
University of Arizona in 1993. It is an interactive application for DNA
and protein searching, finding exact and approximate matches of patterns
ranging from simple strings to network expressions and spacers (Sections 6.7
and 4.3). This includes most patterns of interest in biosequence comparisons.
The user specifies such patterns with a declarative, free-format, and strongly
typed language called A.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.1 Awailable software 189

How it works Anrep is described in [MM91] and its algorithmic principles
can be found in [Mye96]. The language is very powerful, as is needed in
biological applications, so simple algorithms cannot be used. Anrep is based
on the algorithm mentioned in Section 6.7.2 for approximate searching with
arbitrary costs of network expressions with spacers. This combines dynamic
programming for matching network expressions allowing errors and an op-
timized backtracking procedure to determine which occurrences are at the
correct distances from the others.

There is little point in comparing Anrep with the previous programs.
Anrep is much slower because it can search for much more complex patterns.

Where to get it The C language source code of Anrep can be freely ob-
tained at http://www.cs.arizona.edu/people/gene/CODE/anrep.tar.Z.

7.1.5 Other resources for computatlional biology

Apart from Anrep, there are lots of resources available for computational
biology applications. We do not cover them all in detail because they focus
less on string matching than on statistical problems related to determin-
ing relevant subsequences, and use very specific knowledge from computa-
tional biology. The algorithms are generally complex variants of approxi-
mate searching, with complicated cost functions, gap penalties, and so on.
The searching is done with a combination of dynamic programming and fil-
tering approaches (Chapter 6), plus heuristics for handling the gaps. We
brielfly review two of the best known systems of this type.

BLAST is an acronym for Basic Local Alignment Search Tool. It was cre-
ated in 1990 by Altschul et al. It consists of a set of similarity search pro-
grams for exploring sequence databases for protein or DNA queries. Its main
aims are high speed with minimal sacrifice of sensitivity to detect interest-
ing occurrences and a well-defined statistical interpretation of the matches
reported. BLAST uses a heuristic algorithm that seeks local as opposed
to global alignments and is therefore able to detect relationships among se-
quences that share only isolated regions of similarity. Its algorithmic princi-
ples are presented in [AGM190]. Software executables for different architec-
tures can be freely obtained from http://www.ncbi.nlm.nih.gov/BLAST/,
where it is also possible to test the system on-line. Its current version is 2.0
(1997).

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

190 Conclusion

FASTA was created by Pearson and Lipman in 1988. FASTA is another
system for searching sequence homology in biosequence databanks, finding
optimal local alignment scores. It includes several programs that provide dif-
ferent speed/accuracy trade-offs. FASTA has similar aims as BLAST, their
main differences being in the way they assign significance to the matches
[Pea91]. The algorithmic principles behind FASTA are presented in [SW81,
PL88]. The system sources can be freely obtained from ftp://ftp.virginia
.edu/pub/fasta/. Its current version is 3.2 (1998).

7.2 Other books
7.2.1 Books on string matching

We present here all the books we are aware of that attempt to cover a
reasonably wide area of string matching.

Handbook of algorithms and data structures by G. Gonnet and R.
Baeza-Yates, Addison-Wesley, second edition, 1991

This book deals with algorithms in general, but it includes a chapter
devoted to exact string matching. The book is organized as a set of recipes.
For each algorithm it gives a short explanation of the main idea and then
the code and analytical results.

The book is a good reference for somebody in a hurry to find an algorithm
to solve a string matching problem, since one can look at the analysis and
copy the code. But it probably is not enough for learning why and how
an algorithm works. The other problem is that it lacks developments since
1992, as well as approximate search algorithms.

Indeed, there are many books on algorithms that devote one chapter
to string matching, for example, [Knu73, AHU83, Meh84, Baa88, Sed88,
Man89, CLR90], but in general they cover only KMP and BM. We chose
this book because, among those dealing with general algorithms, it has
the best coverage. Some books on compilers or formal languages, such as
[ASU86, HU79], explain the classical DFA approach to regular expression
searching.

Text algorithms by M. Crochemore and W. Rytter, Oxford University
Press, 1994

This book is a good survey of the main techniques used in text searching
algorithms. The focus of the book is definitely theoretical; for example, it

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.2 Other books 191

does not present any bit-parallel algorithms, and it presents many algorithms
that we have omitted in this book because they are inefficient in practice.
The book is mainly devoted to exact searching.

This book is a good choice for those interested in the theoretical and com-
binatorial aspects underlying string matching algorithms, but it is definitely
not recommended if one needs a practical string matching algorithm and
does not want to enter so deep into the field.

String searching algorithms by G. Stephen, World Scientific Press, 1994

This is a fairly complete book on exact and approximate string match-
ing. For exact string matching, it covers more than the usual algorithms,
paying special attention to the Boyer-Moore family. Yet it lacks coverage
of the BDM family and of bit-parallel algorithms. Multiple and extended
string matching are not covered. The coverage of approximate string match-
ing algorithms is quite good, with a long chapter devoted to the different
string similarity measures and another chapter with a very complete sur-
vey (for 1994) of approximate string matching algorithms. This particular
area, however, has evolved a lot since then, so the fastest algorithms today
are missing. The book also covers some data structures for indexed text
searching, such as suffix trees.

String pattern matching strategies by J. Aoe (Editor), IEEE Computer
Science Press, 1994

This book covers the most basic string searching algorithms for single,
multiple, approximate, and multidimensional string matching. It lacks cov-
erage of the newer algorithms, which are the fastest.

Pattern matching algorithms by A. Apostolico and Z. Galil (Editors),
Oxford University Press, 1997

This book is a collection of chapters written by several researchers. The
chapters are well chosen to cover a wide range of issues from on-line exact and
approximate pattern matching, to parallel and indexed searching of strings,
trees, and matrices. It is highly theoretical, and the same recommendations
as for Text algorithms apply.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

192 Conclusion

Modern information retrieval by R. Baeza-Yates and B. Ribeiro-Neto,
Addison-Wesley, 1999

This book is mainly on information retrieval, but it is one of the few
that pays attention to the algorithmic problems involved, and even includes
a chapter devoted to on-line string matching. The chapter is intended to
give a reader interested in information retrieval some insight into the string
matching problems that lie behind, but it is not enough to solve a string
matching problem.

7.2.2 Books on computational biology

A book that lies at the intersection of string matching and computational
biology is the following.

Algorithms on strings, trees and sequences: Computer science and
computational biology by D. Gusfield, Cambridge University Press, 1997

This book is a survey of the main algorithmic techniques used in compu-
tational biology when using data structures like sequences and trees, which
actually represent a large part of the field. It gives a complete general view
of these techniques, including a large section on indexing, and in particular
on the suffix tree and the algorithms built on it.

There are many other books on computational biology that are less related
to string matching, so we have chosen three that we consider representative.

Computational molecular biology: An algorithmic approach by
P. A. Pevzner, MIT Press, 2000

This recent book presents the main topics in computational molecular bi-
ology that involve algorithmic developments. This includes computational
gene hunting, restriction mapping, map assembly, sequencing, DNA arrays,
sequence comparison, multiple alignment, finding signals in DNA, gene re-
strictions, genome rearrangements, and computational proteomics.

Introduction to computational biology by M. S. Waterman, Chapman
& Hall, 1995

This book presents well-established topics in computational biology on

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.8 Other resources 193

which much research has been performed. Many of those results are now
considered as “classical.”

Time warps, string edits, and macromolecules: The theory and
practice of sequence comparison by D. Sankoff and J. B. Kruskal,
Addison-Wesley, 1983

This was one of the first books published in computational biology. It is
a collection of texts on different topics, most of them presenting a precise
problem in computational biology and the algorithms to solve it. The algo-
rithmic solutions presented are generally too old now to be of real interest,
but the problems they solve are still of interest and their presentation is
usually clear.

7.3 Other resources
7.3.1 Journals

Articles on pattern matching tend to appear sparsely in different journals.
The most commonly chosen are; for tutorials: ACM Computing Surveys; for
algorithms: Algorithmica, Journal of the ACM, Journal of Algorithms, Com-
munications of the ACM (but not recently), Information and Computation,
Information and Control, Information Processing Letters, Information Sci-
ence, Journal of Computer Systems Science, Nordic Journal of Computing,
Random Structures and Algorithms, SIAM Journal on Computing, Theo-
retical Computer Science, and the new Journal of Discrete Algorithms; for
implementations: Software Practice & Experience, IEEE Trans. on Software
Engineering, Information Processing and Management, and ACM Journal
of Erperimental Algorithmics. In this list we have not considered articles
on combinatorial pattern matching, which is a wide area with deep theo-
retical roots. Indeed, string matching is one of the simplest branches of
combinatorial pattern matching.

We also mention a few of the many journals on computational biology:
Bioinformatics (and its former version, CABIOS), Nucleic Acids Research,
Journal of Computational Biology, Genome Research, and Journal of Molec-
ular Biology.

7.3.2 Conferences

There are a few conferences devoted to the field. Among the best are
Combinatorial Pattern Matching (CPM), Computing and Combinatorics

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

194 Conclusion

(COCOON), ACM Computational Molecular Biology (RECOMB), String
Processing and Information Retrieval (SPIRE), and Intelligent Systems for
Molecular Biology (ISMB).

Other conferences that publish articles on pattern matching are Data
Compression Conference (DCC), European Symposium on Algorithms (ESA),
IEEE Foundations on Computer Science (FOCS), Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), Automata, Lan-
guages and Programming (ICALP), IFIP World Computer Congress, Algo-
rithms and Computation (ISAAC), Mathematical Foundations of Computer
Science (MFCS), Discrete Algorithms (SODA), Theoretical Aspects of Com-
puter Science (STACS), ACM Theory of Computing (STOC), Scandinavian
Workshop on Algorithmic Theory (SWAT), Workshop on Algorithm Engi-
neering (WAE), and Workshop on Algorithms and Data Structures (WADS).

7.3.3 On-line resources

Definitely one of the best Web pages on string matching is Pattern Matching
Pointers, an invaluable directory for searching people, references, books,
software, journals, news groups, and discussion boards related to pattern
matching in general. The page is maintained by Stefano Lonardi at http:
//www.cs.purdue.edu/homes/stelo/pattern.html.

Other pages are Pattern Matching and Data Mining Research, main-
tained by Mika Klemettinen at http://www.cs.helsinki.fi/research/
pmdm, and The Bioinformatics Resources at http://hgmp.mrc.ac.uk/CCP11.
Some discussion boards on the subject are available at http://www.purdue.
c¢s.edu/homes/stelo/pmdb. Related news groups are comp.theory, comp.
theory.info-retrieval, comp.text, and comp.infosystems. Finally, rel-
evant mailing lists are theorynet, dbworld and dmanet.

Beware that on-line references may change over time.

7.4 Related topics

We consider finally some topics related to the focus of our book. Any of
the related topics cited below could be the subject of an entire volume. We
give the main current references for each subject. This list is obviously not
exhaustive.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 195
7.4.1 Indexing

Our book is devoted to on-line searching in text and sequences, which means
that we do not build any structure on the text. For a single search this is an
optimal strategy, but for many search operations on the same text we can
save time by first building a structure on the text, called an index, to speed
up queries later.

Typical reasons for preferring on-line searching are (1) size of the text,
that is, if the text is too small, an index is not worth maintaining; (2)
volatility of the text with respect to the query frequency, that is, there is a
cost to build and maintain the index, which to be amortized requires that
changes to the text be much less frequent than queries made on it; (3) space
unavailability, that is, an index needs extra space on top of the text, which
may be too costly or not available. Even when indexes are used, on-line
searching is of interest because many indexing techniques use some form of
on-line searching inside.

7.4.1.1 General indexes

Indexes permit exact searching of a string of length m in a text of length
n in O(m) or O(mlogn) time, after a construction that usually takes O(n)
but sometimes O(n logn) time, and O(n) extra space, with a constant factor
that may range from 2 to 30 times the text size. There exist many indexing
structures depending on the type of search and the memory available. The
most usual ones build on the concept of a suffix trie [AG85], which is a
trie data structure (Chapter 3) built over all the suffixes of the text. Every
text factor is found by descending in this trie following the characters of the
pattern.

The most efficient data structures are compacted versions of the suffix
trie: the compact suffix tree [AG85, Gus97]; the suffix automaton or DAWG
(an automaton that recognizes all text suffixes [CR94]); the compact suffix
automaton or CDAWG [CV97a, CV97b, THST01]; and the suffix array, an
array storing all text suffixes in lexicographical order [MM93, GBYS92].

These structures can also be used for searching extended strings, regular
expressions, and for approximate searching [MBY91, BYG96, NBY00]. The
search time is either O(mn?) with 0 < XA < 1 or exponential in m (or k&
for approximate searching with k errors), sometimes multiplied by an extra
O(logn) factor, depending on the data structure.

7.4.1.2 Indexes for natural language

When it comes to natural language texts, a very popular index is the inverted
file or inverted index, which is normally just able to retrieve complete words

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

196 Conclusion

and phrases of the text, not any factor. Inverted indexes consist in general of
the set of different words of the text (the vocabulary) and for each such word
the list of positions where it appears in the text. This structure is also useful
for information retrieval, which involves pattern matching but also concepts
such as computing the relevance of a document with respect to a query. Some
books dealing extensively with inverted indexes are [WMB99, BYRN99].
There are many variants on this structure, but if we consider the problem
of finding words, the most important issue is the addressing granularity of
the index. The indexes with the finest granularity store the exact positions
of each word, and they need about 30% extra space over the text size. Others
divide the text collection into documents and point just to the documents
where each word appears, needing about 15% extra space. An interesting
implementation capable of producing an index as small as 2%—4% over the
text size is Glimpse [MW94] (http://glimpse.cs.arizona.edu/), which
divides the text into equal size blocks and points to blocks instead of exact
" The search on these indexes
has to be complemented with sequential searching. An analysis in [BYN0Oa]

positions. This is called “block addressing.’

shows that the index size can be made sublinear with respect to the text
size while keeping the search time sublinear as well. Glimpse also introduces
techniques for searching extended strings, regular expressions, and approx-
imate searching at the intraword level by scanning the vocabulary of the
text, which is of sublinear size.

7.4.2 Searching compressed text

The problem of searching compressed text is that of finding the occurrences
of a pattern in a compressed text without decompressing it. The subject
has been an active area of research since 1992, motivated by the fact that
CPU speed increases much faster than the speed of I/O devices and by the
discovery that in some cases it is possible to search the compressed text
faster than the uncompressed one.

7.4.2.1 Compression algorithms

Compression is a large and active area in computer science and of course
we do not attempt to cover it here. Text compression is a subfield that
deals with the best algorithms to compress text files. A good book on text
compression is [BCW90]. More focused than text compression is the field of
compressed text databases, which aims at text compression techniques that
permit efficient searching of the compressed text. We briefly cover this area.

Compression formats for text databases must permit efficient decompres-

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 197

sion and random access to the text. Some of the most popular text compres-
sion formats for compressed text databases are Huffman [Huf51] (where each
text symbol is replaced by a variable length code, trying to assign shorter
codes to more frequent symbols), Ziv-Lempel (where the coder replaces text
strings by pointers to previous occurrences already found in the text, with-
out restriction in the LZ77 variant [ZL77] and only permitting a previous
repetition plus an extra letter in the LZ78 variant [ZL78]), and Byte-Pair
encoding or BPE [Gag94] (where pairs of characters are joined under a new
unused code iteratively until no unused codes remain). An important feature
of a compression method is the compression ratio achieved, which we define
as the ratio of the compressed file size to the uncompressed file size. For
example, on DNA, Huffman obtains about 25% compression, Ziv-Lempel
25%-30%, and BPE 30%, while on typical natural language text Huffman
obtains about 60%, Ziv-Lempel 30%-40%, and BPE 70%.

7.4.2.2 On-line pattern matching in compressed text

The compressed matching problem was first defined in the work of Amir and
Benson [AB92a)] as the task of performing string matching in a compressed
text without decompressing it. Given a text T" = ¢;...1,, a corresponding
compressed string Z = z; ... z,, and a pattern P = p; ... p,,, the compressed
matching problem consists in finding all occurrences of P in T, using only
P and Z. A naive algorithm, which first decompresses the string Z and
then performs standard string matching, takes time O(m + u). An optimal
algorithm takes worst-case time O(m + n).

The most practical methods for on-line pattern matching are based on
the BPE algorithm and its variants [Man97, SMT+00, TSM*01]. They are
able to search the compressed text faster than the original text. This may
be a reason by itself to compress the text. Given the characteristics of the
format, however, the compression ratio obtained is poor.

A large line of research is based on Ziv-Lempel compression, which obtains
much better compression ratios. The first algorithm for exact searching was
[ABF96]. They search LZ78 compressed text in O(m? + n) time and space.
One of the few techniques for the LZ77 format is [FT98], a randomized
algorithm to determine in O(m + nlog?(u/n)) time whether a pattern is
present or not in the text.

Later practical improvements appeared in [NR99b, KTSA99, NT00]. Rou-
ghly speaking, it is possible to search the compressed text in about half the
time necessary for decompressing and then searching it.

Some extensions of the search problem have been pursued for the Ziv-
Lempel format. An extension of [ABF96] to multipattern searching was

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

198 Conclusion

presented in [KTST98], where they achieved O(m? + n) time and space,
where m is the total length of all the patterns. Approximate string match-
ing on compressed text was an open problem advocated in [AB92b], and
the first theoretical [KNU00O, MKT"00] and practical [NK'T"01] algorithms
for handling it have appeared only recently. All are for the LZ78 format.
Regular expression searching over LZ78 was considered in [NavOlc].

A useful search-oriented abstraction of the compression formats used for
pattern matching, called “collage systems,” was proposed in [KTSA99]. Al-
gorithms designed for collage systems can be implemented for many differ-
ent formats. In the same paper they design a KMP algorithm on collage
systems. Later papers of the same group (referenced in the previous para-
graphs) develop this concept.

Finally, it is interesting to mention that there are very efficient algo-
rithms able to find complete words and phrases in natural language texts.
In [MNZBYO00], a word-oriented Huffman coding where the symbols are the
text words and separators, not the characters, is used as the basis for very
fast algorithms that are able of exact and approximate searching for simple
and extended strings. The compression ratio is very good, about 25%—-30%
on English texts of at least 10 megabytes, and the search on compressed
text is as fast as on uncompressed text for simple searching, while it is up to
eight times faster when searching for complex patterns and for approximate
searching.

7.4.2.8 Indexed pattern matching in compressed text

Building compressed indexes over compressed text is a natural goal on large
text databases. Compressed data structures for text searching have been
sought for some time [KU96, Kir99, KS98, GVO00], but they always used
the text in uncompressed form as an integral part of the data structure.

Recently, some very promising structures have appeared which compress
the text together with the structure. These data structures are compressed
versions of the suffix array [Sad99, Sad00, FM00, FMO01], and in some cases
they are able to represent index and text in less space than that of the
original uncompressed text.

For inverted indexes for word retrieval in natural language text, the text
and the index are compressed separately in general. Index compression takes
advantage of the fact that the list of occurrences of each word is increasing.
Differences are encoded with a coding method that favors small numbers.
The larger the addressing granularity, the more effective the compression
of the lists of occurrences. A system combining block addressing with in-
dex compression on word-based Huffman text compression is described in

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 199

[NMNT*00]. With respect to file-addressing indexes, the book [WMB99] de-
scribes extensively the MG system, a compressed inverted index over com-
pressed text (freely available at ftp://munnari.oz.au/pub/mg).

7.4.3 Repeats and repetitions

Much research has been untertaken to study and search for repetitions in
texts or sequences, since many of them have a biological role. There exist
many definitions of a repeat or a repetition. Moreover, it is not clear how
to define and take into account the approximate repetitions that are needed
in computational biology. Here is a short summary.

7.4.3.1 Ezact repetitions

The first notion of a repetition is simply a factor u that is contiguously
repeated more than twice, that is, u*v, where £ > 2 and v is a prefix of .
Clearly, a text may contain a quadratic number of repetitions, for example,
T = o". A first form of repetition that has been extensively studied is
the square 2. Many algorithms exist for finding all the square locations
(see [CR94] or [KK99] for a survey). If we consider complete repetitions,
the notion of a maximal repetition (sometimes called a run or a mazimal
periodicity) represents them all it in a compact way. A repetition is maximal
if it cannot be extended in the text to the left or to the right without
breaking it. There are at most O(n) factors of the text that can be maximal
repetitions, and they can be found in O(n) time [KK99].

A second notion is used when considering noncontiguous repetitions. A
repeat is a factor of the text that occurs at least twice. A mazimal repeat is
a repeat that cannot be extended to the left or to the right without breaking
it. There exist at most a linear number of maximal repeats, and they can
be cnumerated in O(n) time [Gus97]. However, these definitions do not take
into account the relative positions of the repeats. A pair v is an occurrence
of wvu in the text, and a mazimal pair cannot be extended, similarly to
a maximal repeat or a maximal repetition. The most interesting pairs are
usually those such that the two occurrences of 4 are not too close or not too
far away, that is, |v| is bounded between §; < |v| < d2. An O(nlogn+nocc)
time algorithm has been proposed to enumerate such a pair (maximal or
not) in a text, where nocc is the number of resulting occurrences [BLPS99].
If the upper bound d; is removed, the time reduces to O(n+mnocc) [BLPS99].

7.4.8.2 Approzimate repetitions

Approximate repetitions are required, for instance, in computational biology,
when a sequence rarely matches exactly, and also in musicology, where the

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

200 Conclusion

problem is to retrieve repeating themes. The concepts are however more
fuzzy since the notions used for exact repetitions can be extended in various
ways, depending on the approximate relation we want between the repeated
parts.

The approximate concept of repetition is usually called tandem repeat.
Originally, this expression was used for two continuous repetitions wv, where
v matches approximately u. The algorithmic problem is to find all these fac-
tors in a text. An algorithm taking O(n?logn) time and O(n?) space exists
[Sch98]. If the maximal number of errors is bounded by k, then all the
nonoverlapping tandem repeats can be found in O(knlogklog(n/k)) time
[KM93]. These algorithms are mainly of theoretical interest, since O(n?) is
generally too large to be of real use on genomic sequences. Moreover, search-
ing for only two repetitions is a strong limitation, for the computational
biologist usually looks for more than two continuous parts. One algorithm
for this problem permits finding small satellites [SM98], with a more flexible
notion of repetitions (some parts can be missing), but with a strong length
limitation (less than 40 bases). The idea is to filter the text, and, with
an efficient verification algorithm [FLSS92], this idea leads in [Ben98] to a
very fast algorithm/software, called Tandem repeats finder [Ben99]. The ex-
ecutable files are available on-line for many operating systems (the software
is source protected) at http://c3.biomath.mssm.edu/trf.html.

The approximate concept of a pair is usually called a nontandem repeat.
When we are interested in nonoverlapping ones, the same algorithm as for
tandem repeats can be used [Sch98], but the real problem becomes managing
the huge number of occurrences.

Approximate repetitions in computational biology is a recent and moving
topic that evolves rapidly. One of the sofware products most used currently
is RepeatMasker (part of the Phrap package, http://www.phrap.org/),
which masks some repetitive regions of DNA sequences.

7.4.4 Pattern matching in two and more dimensions

Pattern matching in two-dimensional texts, for instance, in images, is a
direct extension of string matching. Many of the most efficient algorithms
are extensions of those we presented for one-dimensional text. However,
many problems are specific to this field. Books partially covering this issue
are [Aoe94, AGIT7].

In this area we speak of a text of O(n?) size (i.e., n x n cells), where a
pattern of O(m?) size (m x m cells) is sought. This is done for simplicity.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 201

Many algorithms can handle general rectangular and even nonrectangular
texts and patterns.

7.4.4.1 Two-dimensional pattern matching

Two-dimensional exact string matching was first considered by Bird and
Baker [Bir77, Bak78], who obtained O(n?) worst-case time. Good average-
case results are presented by Zhu and Takaoka [ZT89] and Baeza-Yates and
Régnier [BYR93]. Karkkiinen and Ukkonen [KU94] achieved O(n?log, m
/m?) average-case time, which is optimal.

Two-dimensional approximate string matching usually considers only sub-
stitutions for rectangular patterns, which is much simpler than the general
case with insertions and deletions, because in this case rows and/or columns
of the pattern can match pieces of the text of different length.

If we consider matching the pattern with at most k& substitutions, one
of the best results for the worst case, due to Amir and Landau [AL91],
is O((k + logo)n?) time using O(n?) space. A similar algorithm is pre-
sented by Crochemore and Rytter [CR94]. Ranka and Heywood [RH91],
on the other hand, solve the problem in O((k + m)n2) time and O(kn)
space. Amir and Landau also present a different algorithm running in
O(n?lognloglognlogm) time. On average, the best algorithm is due to
Karkkéinen and Ukkonen [KU94, Par96]. The expected time is O(n?k log, m
/m?) for k < m?/(4log, m), using O(m?) space (O(k) space on average).
This expected complexity is optimal.

The extension of the classic notion of edit distance is difficult. Krithivasan
and Sitalakshmi [KS87] defined the edit distance in two dimensions as the
sum of the edit distances of the corresponding row images. Let us call
it the KS model. Using this notion they obtain O(m?n?) search time.
Krithivasan [Kri87] presents for the same model an O(m(k + logm)n?)
time algorithm that uses O(mn) space. Amir and Landau [AL91] give
an O(k?n?) worst-case time algorithm using O(n?) space (note that &k can
be larger than m, so this is not necessarily better than the previous algo-
rithms). Amir and Farach [AF91] also considered nonrectangular patterns,
achieving O(k(k + v/mlog m+/klog k)n?) time. Finally, Navarro and Baeza-
Yates obtain O(n2klog, m /m?) average case time for the KS model, for
kE <m(m+1)/(5log, m), using O(m?) space.

For many two-dimensional matching problems, the KS distance does not
reflect well simple cases of approximate matching in different settings. New
distances and search algorithms have been introduced recently [BYNOOD].
In the new models the errors can occur along rows or columns.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

202 Conclusion

7.4.4.2 Other multidimensional matching problems

Other problems related to comparing images are searching allowing rotations
[FNUO1] and scaling [ABLO0O].

There are other approaches to matching images that are very different
from those cited above (which belong to what is called combinatorial pat-
tern matching). Among them we can mention techniques used in pattern
matching related to artificial intelligence, for example, image processing and
neural networks, and techniques used in databases, for example, extracting
features of the image such as color histograms.

All the previous problems can be generalized to more than two dimensions,
and many algorithms running on two-dimensional texts can be extended to
run in more dimensions [AL91, KU94, GG97, FU98, BYNOOb].

7.4.5 Tree pattern matching

Tree pattern matching is another extension of pattern matching in text. The
problem arises in computational biology when we need to compare RNA
structures. It also arises when a program is represented during compilation
as an instruction tree in which we want to find special patterns, usually to
perform some optimizations. Hierarchically structured text databases also
require this form of matching.

For exact tree pattern matching there are two ordered trees called the text
and the pattern by extension of string pattern matching, and the problem is
to find all the occurrences of the pattern in the text, that is, all nodes of the
text rooting a subtree that matches the pattern. We denote by n and m the
sizes (in number of nodes) of the text and the pattern. The naive algorithm,
which consists of verifying each text node, runs in O(mn) worst-case time.

Several algorithms exist that improve the worst-case bound, but they are
mainly theoretical. An O(nm®7 logm) time algorithm has been proposed
in [Kos89], using a connection between this problem and that of search-
ing strings with “don’t care” symbols. This in turn has been improved
in [DGM94] to O(nm’?logm), using the periodicitics of the paths of the
pattern tree. A major improvement over this has been obtained in several
articles by the same authors, leading to an O(nlog®n) time algorithm in
[CHI9Y]. A survey on this topic can be found in [ZS97].

The approximate tree pattern matching problem arises in computational
biology when comparing and aligning trees. It implies a notion of distance
on trees [ZSW94, SZ97]. Many algorithms exist, but this topic is still in
development since the notion has to fit exacly the biological properties of

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 203

the objects that the trees represent, which are generally secondary structures
[ZWM99].

A related notion dealing with trees and matching is the maximum subtree
agreement problem. Given two rooted trees whose leaves are taken from the
same set of items, which for instance represent two phylogenetic trees, the
problem is to find the largest subset so that the portions of the two trees
restricted to these items are isomorphic. When the two trees are binary,
which is usually the case in practice, an O(nlogn) time algorithm exists
[CFCH'01].

Finally, structured text databases introduce a concept of tree pattern
matching similar to the “extended strings” considered in this book. In this
case the pattern is a tree, but each pattern edge can match an arbitrary
path in the text tree. It is also possible to force the occurrence to honor the
intersibling ordering given in the pattern. Depending on these options, the
search complexity goes from polynomial time to NP-complete [Kil92, KM92].

7.4.6 Sequence comparison

Sequence comparison is about determining similarities and correspondences
between two or more strings. It is related to approximate searching (Chap-
ter 6) and has many applications in computational biology, speech recogni-
tion, computer science, coding theory, chromatography, and so on. These
applications look for similarities between sequences of symbols. The general
goal is to perform basic operations over the strings until they become equal.
Those basic operations have an associated cost, and we seek the minimum-
cost sequence of operations that achieves the goal. The reason for preferring
the minimum cost is different in each application, but the general idea is
that the sequences differ by a series of alterations on one or both of them,
and the cheapest series are those of maximum likelihood.

A concept of “distance” between two strings can be defined according to
the minimum cost of making them equal. The basic operations considered
depend on the application, but the most typical are supressing characters,
inserting characters, substituting characters by others, swapping adjacent or
nonadjacent characters, reversing substrings, moving substrings to another
place of the string, compressing a run of equal characters, expanding a single
character to a run of them, and so on. FEach operation has a rationale in the
model where it is used. The application also gives a rationale for assigning
costs to the different operations, for example, the most likely operations
cost less. A simple case is to assign a cost that is the logarithm of the
probability of this operation occurring in the process that made the strings

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

204 Conclusion

differ. Hence the sum of the costs corresponds to the logarithm of the
product of the probabilities of the operations, which is a good model if they
are independent.

Two of the most popular similarity measures are the Levenshtein dis-
tance and the “indel” distance. The first one permits character insertions,
deletions, and substitutions, all at cost 1. The second one permits only
insertions and deletions and is related to the longest common subsequence
(LCS) between the two strings. The popularity of these models lies in their
simplicity, in the efficiency of the algorithms that handle them, and in the
simplicity of their mathematical properties. We devoted Chapter 6 almost
entirely to the Levenshtein distance.

In many applications it is also interesting to know how the two sequences
differ. In general we speak about aligning the two sequences (recall Sec-
tion 6.2.1). There are several ways to express an alignment. One is to put
the strings one on top of the other and space their characters so that similar
characters are in the same column. The amount of spacing needed gives
an idea of how different the strings are. Another method is to draw a set
of traces, where lines connect the aligned characters in both strings (Fig-
ure 6.1). Yet a third way, less popular but very useful mathematically, is to
list the operations made on the strings.

In some cases it is useful to measure the degree of similarity rather than
of dissimilarity (i.e., a distance). One example is the LCS, a heavily studied
measure. Other examples are the shortest common supersequence (SCS),
longest common substring (LCG, different from the LCS because the com-
mon string has to be a contiguous substring of both sequences), and short-
est common superstring (SCG), as well as their versions on more than two
strings.

Most algorithms for sequence comparison rely on dynamic programming,
since it is useful to have all previous results precomputed in order to use
them. However, backtracking has also been used. The simplest distances
such as Levenshtein or indel, even with arbitrary costs for the operations,
can be computed in O(n?) time for two strings of length n. The same holds
for computing the LCS or SCS of two strings. For N strings the cost raises
to O(n") and is NP-complete for arbitrary N. The cost for LCG and SCG is
O(n) for two strings. There exist complicated algorithms that improve over
the quadratic complexity under diverse assumptions. On the other hand,
computing the distance when block moves are involved is NP-complete in
some cases. This shows that the nature of the problem depends on the type
of distance used.

Another issue in sequence comparison is statistics. How significant is it

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

7.4 Related topics 205

that the LCS between two binary strings is 80% of their length? Does it
mean that they are close, or could it happen perfectly well to two random
sequences? There has been much research on the expected length of the
LCS between two random strings. It is known that it grows linearly with n,
but the exact constant is not yet known; only tight upper and lower bounds
exist.

We refer the reader to good books on the subject [SK83] or to the section
of books of computational biology (7.2.2).

7.4.7 Meaningful string occurrences

The problem of finding factors that are “unusual” in sequences is a topic
that has led to many studies. There are four main underlying points.

First, the sequences have to be considered under a specific probability
model, for instance, under a Markov model, to get a comparison point for
what should be considered normal.

Next, a formula to get the “normal” occurrence probability or other in-
teresting parameters, for instance, the expected distance between two oc-
currences, has to be obtained. The expected probability of the approximate
occurrences of a string has recently been obtained [RS97]. An algorithm to
compute the expected frequency of occurrence of a string, a set of strings,
or a regular expression under both the Bernoulli or Markov models exists
[NSF01], but evaluating the formula is complicated and computationally
time-consuming (the same is true for [RS97]). A Maple package implement-
ing the evaluation, called Algolib, is available at http://algo.inria.fr/
libraries/software.html.

Third, given a certain model and a way to compute the interesting pa-
rameters of a given factor in that model, one has to decide which factor of
the text should be considered as unusual.

Finally, when the three previous problems have been solved for a certain
type of sequence, model, and pattern, the algorithmic problem is to find and
visualize the unusual factors in an efficient and usable way (for that there
could be O(n?) such factors).

A short survey on these questions can be found in [Pev00], but, to our
knowledge, there is no complete survey grouping these questions together. A
sofware product called Verbumculus [ABLX00] permits visualizing unusual
factors under a restricted definition of what a usual factor is. The binaries
are available at http://www.cs.purdue.edu/homes/stelo/Verbumculus.

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

https://doi.org/10.1017/CBO9781316135228.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.007

