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108 Binary Pascal Words

Pascal’s triangle displays binomial coefficients following Pascal’s rule:

(7)=02)+ ()

The regular structure of the triangle permits fast access to coefficients. In the
problem, the nth binary Pascal word P, is the nth row of Pascal’s triangle
modulo 2, that is, for 0 <i < n:

P,li] = ( ’Z > mod 2.

Here are the resulting words P, for0 <n < 6:

Py 1
|
i)
P3
Py
Ps
Pg

LA | 1 | /A O [}
H R R R R R
oOroRroOR
HoOoORr R
coomRr

[

Question. Given the binary representations rgry_j---rg of n and
CkCk—1 -+ -co of i, show how to compute in time O (k) the letter P,[i] and
the number of occurrences of 1 in P,.

[Hint: Possibly use Lucas’s Theorem.]

Theorem [Lucas, 1852]. If p is a prime number and rgrg_g---ro,
cxck—1---co are the based p representations of the respective integers r
and ¢ with r > ¢ > 0, then

k

r ri
<c )modp_lj([)< o )modp.
Solution

The following property leads to a O (k)-time algorithm for computing letters
in P,.

Property 1. Pli]=1 <= Vj1<j<k(rj=0=c¢; =0).

Proof The equivalence is a consequence of Lucas’s Theorem. In our situation
p=2andrj,c; € {0,1}. Then
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108 Binary Pascal Words 277

<Z] )modZ:l = (rj=0=¢c;=0),
J

which directly implies the property. ]

Example. Ps[4] = ( 2 ) mod 2 = 1, since the binary representations of 6

and 4 are 110 and 010 respectively.

To answer the second part of the question let g(n) denote the number of
occurrences of 1 in the binary representation of the non-negative integer n.
The following fact provides a simple algorithm to compute the number of
occurrences of 1 in P, in the required time.

Property 2. The number of ones in P, is 28",
Proof Letryry_1---rgand ckci—1 - - - co be the respective binary representa-
tions of n and i. Let

R={j:rj=1}and C ={j : ¢; = 1}.

According to property 1 we have
(’7)mod2=1 — CCR
i

Hence the sought number equals the number of subsets C of R, which is 28,
due to the definition of g(n). This completes the proof. ]

Notes
An easy description of Lucas’s theorem is by Fine [114].

Among the many interesting properties of Pascal words let us consider the
following. For a word w = w[0.. k] and a set X of natural numbers, define

Filter(w, X) = wlij wliz] - - - w[i;],

where i; < iy < --- < i;and{iy,i2,...,i;} = XNJ[O..k]. Then, for a positive
integer n and the set Y of powers of 2, we get the equality

Filter(P,,Y) = reverse binary representation of n.

A simple proof follows from the structure of the ith diagonal of Pascal triangle
modulo 2, counting diagonals from left to right and starting with 0. The Oth
diagonal consists of 1’s, the next one consists of a repetition of 10, and so on.
Now considering the table whose rows are consecutive numbers, the columns
of this table show similar patterns.
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109 Self-Reproducing Words

Word morphisms are frequently used to produce finite or infinite words
because they are defined by the images of single letters. In the problem we
consider another type of function that may be regarded as context dependent
and is a kind of sequential transducer.

The working alphabet is A = {0,1,2}. The image by & of a word w € A™
is the word

h(w) = (0 @ w(0]) (w[0] ® w[1]) (w[1] & w[2])--- (w[n — 1] & 0),

where @ is the addition modulo 3. Iterating & from an initial word of A™
produces longer words that have very special properties, as shown with the
two examples.

Example 1. When the process is applied to the initial word x = 1221, it
produces a list of ternary words starting with

hO(x)
hl(x)
h?(x)
h3(x)
h*(x)
3 (x)
RS (x)
h(x)
h8(x)
o (x)

1

0 1
1 1 1
1 2 2 1

I Il

PR R R PR R PR R R
HONRONRON
NP R NP RNDRE RN
HONONRKRNR O R
CO R R NRNRR
OO N R NREDNER
oo Rr oOoRr oRr
co N NR R
oo R N R

=
N

In particular, h?(x) = x - 00000 - x, which shows that the word x has been
reproduced.

Example 2. Applied to y = 121, the associated list starts with

Gy = 1 2 1

R'(Gy) = 1 0 0 1
R(Gy) = 1 1 0 1 1
By) = 1 2 1 1 2 1

uestion. Show that for any word w € A% the two properties hold:
y prop

(A) There is an integer m for which A" (w) consists of two copies of w
separated by a factor of zeros (i.e., a factor in 0%).

(B) If |w| is a power of 3 then A"l(w) = ww.
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Solution
Point (A). Let m be the minimal power of 3 not smaller than the length n of w

and denote
a(i) = ( ’7 )mod 3.

We use the following fact.

Observation. Let i € {0,1,...,m}. Since m is a power of 3, then we have
(obviously) «(i) = 1ifi € {0,m}; otherwise (slightly less obvious) « (i) = O.

We refer the reader to Problem 108 that shows a relation between the present
process and Pascal’s triangle.

Starting with the word 1, after m steps, at position i on 4™ (1) we have the
letter (7).

Due to the observation after m steps the contribution of a single 1 at position
t to the letter at position ¢ + i is «(i). Therefore in the word 4™ (w) the prefix
w remains as it is, since «(0) = 1, and it is copied m positions to the right,
since a(m) = 1. Letters at other positions in 4™ (w) are 0, since «(i) = O for
i ¢ {0,m]}. This solves point (A) of the question.

Point (B). Following the above argument, if |w| is a power of 3 the word w is
copied m positions to the right, which gives the word ww, since the prefix of
size m is unchanged. This solves point (B) of the question.

Notes
When the alphabetis A; = {0,1,...,j — 1} and j is a prime number we can
choose m = min {j’ : ji > n}, where n is the length of the initial word w.
When j is not prime the situation is more complicated: now we can choose
m = j-n!, butin this case the word separating the two copies of w can contain
non-zero values.

The problem presented here is from [13], where a 2-dimensional (more
interesting) version is also presented.
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110  Weights of Factors

The weight of a word on the alphabet {1, 2} is the arithmetic sum of its letters.
The problem deals with the weights of all the non-empty factors of a given
word of length n. In this limited alphabet, the potentially maximal weight is
2n and the maximal number of different weights among factors is 2n — 1.

For example, the number of weights of factors of the word 2221122 is 10,
namely they are 1,2, ...,8,10,12.

Question. Design a simple linear-time algorithm computing the number of
different weights of non-empty factors of a word x € {1,2}%.

Question. Show that after preprocessing the word x in linear time each
query of the type ‘is there is a non-empty factor of x of positive weight k?°
can be answered in constant time. The memory space after preprocessing
should be of constant size.

Solution
Before going to solutions, let us show some properties of weights. For a
positive integer k let

SameParity(k) = {i : 1 <i <k and (k — i) is even}.

The size of the set is |SameParity (k)| = (%1.
Let sum(i, j) denote the weight of the factor x[i .. j]of x,i < j. Extremely
simple solutions to the questions derive from the following fact.

Fact. If £ > O is the weight of some factor of x then each element of
SameParity (k) is also the weight of a non-empty factor of x.

Proof Let sum(i,j) = k be the weight of x[i..j],i < j. If x[i] = 2 or
x[j] = 2 then chopping the first or the last letter of x[i .. j] produces a factor
with weight k — 2 if it is non-empty. Otherwise x[i] = x[j] = 1 and after
chopping both end letters we get again a factor with weight k — 2 if it is non-
empty. Iterating the process proves the fact. L]

Note that, if x € 27, answers to questions are straightforward because x
has |x| different weights, 2, 4, ..., 2|x|. In the rest we assume x contains at
least one occurrence of letter 1. Let first and last be respectively the first and
the last positions on x of letter 1 and let
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110 Weights of Factors 281

s = sum(0,n — 1) and t = max{sum(first + 1,n — 1), sum(0, last — 1)}.

In other words, s is the weight of the whole word x and ¢ is the maximum
weight of a prefix or a suffix of x that is of different parity than s.
The next observation is a consequence of the above fact.

Observation. The set of weights of all non-empty factors of a word x is the
union SameParity(s) U SameParity (7).

Number of different weights. Since the number of different weights of non-
empty factors of x is

N t
|SameParity(s)| + |SameParity ()| = ’75-‘ + ’75—‘ ,
its computation amounts to compute s and ¢, which is done in linear time.
For the word 2221122, we have s = 12, = max{5,7} = 7 and the number
of weights of its factors is (%] + (%1 = 10 as seen above.

Constant-time query. The preprocessing consists in computing the two values
s and ¢ corresponding to the word x, which is done in linear time. After
preprocessing, the memory space is used only to store the values s and 7.

Then, to answer the query ‘is k > 0 the weight of a non-empty factor of x?’
it suffices to check the condition

k <t or ((s — k) is non-negative and even),
which is done in constant time.

Notes
What about larger alphabets, for example {1, 2, 3, 4, 5}? An efficient algorithm
is still possible but there is nothing as nice and simple as the above solution.

Let x be a word whose length is a power of 2. An anchored interval [i .. j]
is a subinterval of [0..|x| — 1] with i in the left half and j in the right half
of the interval. The associated factor x[i .. j] of x is called an anchored factor.
Using fast convolution, all distinct weights of anchored factors of a word x can
be computed in time O(|x|log|x|). We can take characteristic vectors of the
sets of weights of suffixes of the left half and of prefixes of the right half of x.
Both vectors are of length O(|x|). Then the convolution of these two vectors
(sequences) gives all the weights of anchored factors.

Over the alphabet {1,2,3,4,5}, using a recursive approach, all distinct
weights of factors of a word of length n are computed in time O (n(logn)?)
because the running time 7 () to do it satisfies the equation 7' (n) = 2T (n/2)+
O(nlogn).
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111 Letter-Occurrence Differences

For a non-empty word x, diff (x) denotes the difference between the numbers
of occurrences of the most frequent letter and of the least frequent letter in x.
(They can be the same letter.)

For example,

diff (aaa) = 0 and diff (cabbcadbeaebaabec) = 4.

In the second word, a and b are the most frequent letters, with five occurrences,
and d the least frequent letter, with one occurrence.

Question. Design an O(n|A|) running time algorithm computing the value
max{diff (x) : x factor of y} for a non-empty word y of length n over the
alphabet A.

[Hint: First consider A = {a,b}.]

Solution

Assume for a moment that y € {a,b}™ and let us search for a factor x of
y in which b is the most frequent letter. To do so, y is transformed into
Y by substituting —1 for a and 1 for b. The problem then reduces to the
computation of a factor with the maximum arithmetic sum and containing at
least one occurrence of 1 and of —1.

Before considering a general alphabet, we consider a solution for the binary
alphabet {-1, 1} and introduce a few notations.

For a given position i on the word ¥ € {-1,1}", let sum; be the sum
Y[0] + Y[1]+ ---+ Y[i] and let pref; be the minimum sum corresponding to
a prefix Y[0..k] of Y for which both k < i and Y[k + 1..i] contains at least
one occurrence of -1. If there is no such k, let pref; = oo.

The following algorithm delivers the expected value for the word Y.

MAXDIFFERENCE(Y non-empty word on {—1, 1})
1 (maxdiff, prevsum, sum) < (0,0,0)
pref < oo
fori < Oto |Y|—1do
sum < sum + Y[i]
if Y[i] = —1 then
pref < min{pref, prevsum}
prevsum <— sum

maxdiff < max{maxdiff,sum — pref’}

O 0 N N Lt B W

return maxdiff
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Algorithm MAXDIFFERENCE implements the following observation to com-
pute the maximal difference among the factors of its input.

Observation. Assume pref # oo. Then the letter Y[k] is - 1 and the difference
diff Y[k+1..i]) is sum — pref. Moreover Y[k + 1..i] has maximal diff value
among the suffixes of Y[0..i].

In this way the problem is solved in linear time for a word on a two-letter
alphabet.

On a larger alphabet we apply the following trick. For any two distinct
letters a and b of the word y, let y, 5 be the word obtained by removing all
other letters occurring in y. After changing y, j to Y, , on the alphabet {-1,1},
Algorithm MAXDIFFERENCE produces the maximal difference among factors
of Y, p, which is the maximal difference among factors of y, ;, as well.

The required value is the maximum result among results obtained by
running MAXDIFFERENCE on Y, ;, for all pairs of letters a and b separately.

Since the sum of lengths of all words y, p is only O(n|Al), the overall
running time of the algorithm is O(n|A|) for a word of length n over the
alphabet A.

Notes
This problem appeared in the Polish Olympiad of Informatics for high school
students in the year 2010.

112  Factoring with Border-Free Prefixes

Searching for a border-free pattern in texts is done very efficiently without
any sophisticated solution by BM algorithm (see Problem 33) because two
occurrences of the pattern cannot overlap. When a pattern is not border free, its
factorisation into border-free words may lead to efficient searching methods.

We say that a non-empty word u is border free if none of its proper non-
empty prefix is also a suffix, that is, Border(u) = ¢, or equivalently, if its
smallest period is its length, that is, per(u) = |u]|.
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The aim of the problem is to show how a word factorises into its border-free
prefixes.

Consider for example the word aababaaabaababaa. Its set of border-
free prefixes is {a, aab,aabab} and its factorisation on the set is

0 1 2 3 4 5 6 7 8 9 10 11 12 134 15
a a b ab aaabaababaa
. X6 X5 X4 I X3 X2, X1

Question. Show that a non-empty word x uniquely factorises into
XkXk—1 - - - X1, where each x; is a border-free prefix of x and x; is the shortest
border-free prefix of x.

The factorisation of x can be represented by the list of its factor lengths.
On the preceding example it is (5,1,3,5, 1, 1) and the list of factors is x[0. . 4],
x[5..5], x[6..8], x[9..13], x[14..14], x[15..15].

Question. Design a linear-time algorithm for computing the border-free
prefix factorisation of a word, namely the list of factor lengths.

Solution

Unique factorisation. Let S(x) be the set of border-free prefixes of x. It is a
suffix code, that is, if u, v € S(x) and u and v are distinct words none of them is
a suffix of the other. Because on the contrary, if for example u is a proper suffix
of v, since u is a non-empty prefix of v, v is not border-free, a contradiction.
Then, any product of words in S(x) admits a unique decomposition into such
a product. This shows the uniqueness of the factorisation of x into words of
S(x), if the factorisation exists.

Let us prove that the factorisation exists. If x is border free, that is x €
S(x), the factorisation contains only one factor, x itself. Otherwise, let u be the
shortest non-empty border of x. Then u is border free, that is, u € S(x). Thus,
we can iterate the same reasoning on the word xu~! to get the factorisation.
This yields a factorisation in which the last factor is the shortest element of
S(x), as required.

Factoring. The factorisation of a non-empty word x can be computed
from its border table with the intermediate shortest-border table shtbord:
shtbord[€] = 0 if x[0..£ — 1] is border free and else is the length of its
shortest border. The table is computed during a left-to-right traversal of the
border table of x.
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Here are the tables for the word x = aababaaabaababaa:
i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[i] a a b a b a a a b a a b a b a a
L o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
borderf¢] — 0 1 O 1 O 1 2 2 3 4 2 3 4 5 6 7
shtbordl(] — 0 1 O 1 O 1 1 1 3 1 1 3 1 5 1 1

The lengths £ of the border-free prefixes of x satisfy border[¢] = 0, and are 1,
3 and 5 on the example.

Since the set S(x) is a suffix code it is natural to compute the factorisation
by scanning x from right to left. Following the above proof, lengths of factors
are picked from the table of shortest non-empty borders until a border-free
prefix is found.

FACTORISE(x non-empty word)
1 border <— BORDERS(x)
2 for ¢ < Oto |x| do
3 if border[¢] > 0 and shtbord[border[£]] > O then
shtbord[{] < shtbord[border[{]]
else shtbord[{] < border[{]
L < empty list
0 < |x|
while border[¢] > 0 do
L < shtbord[{] - L
10 L < £ — shtbord[ (]
11 L < shtbord[{] - L
12 return L

O o0 N N L B~

As for the running time of Algorithm FACTORISE, it is clearly linear in
addition to the computation of the border table of x, which can also be
computed in linear time (see Problem 19). Therefore the overall process runs
in linear time.

Notes

It is unclear whether the table of shortest non-empty borders can be computed
as efficiently with the technique applied to produce the table of short borders
in Problem 21.
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113  Primitivity Test for Unary Extensions

A non-empty word x can be decomposed as x = (uv)“u for two words u and
v where v is non-empty, |uv| = per(x) is the (smallest) period of x and e is a
positive integer. We set fail(x) = v (not u).

For example, tail(abcd) = abcd because the associated words are u = ¢
and v = abcd, tail(abaab) = a because abaab = (aba)lab and
tail(abaababa) = ab because abaababa = (abaab)!aba. The latter
word is the Fibonacci word fib, and in general tail(fib,) = fib,_3, forn > 3.

The goal of the problem is to test whether xa* is primitive when only little
is known about the word x.

Question. Assume the only information on x is

* x is not unary (contains at least two distinct letters)

* tail(x) is not unary or tail(x) € b*, for a letter b

e { = |tail(x)|

Show how to answer in constant time if the word xa* is primitive, for an
integer k and a letter a.

[Hint: fail(x) is an obvious candidate to extend x to a non-primitive word.]

Solution
The solution relies on the following property, for a non-unary word x:

xa* is not primitive = tail(x) = ak.
Since the converse obviously holds, the property leads to a constant-time test
under the hypotheses in the question because testing the primitivity of xa*
amounts to check if tail(x) € b*, thatis, to check if a = b and k = £. Although
the property is simply stated it needs a tedious proof. We start with an auxiliary
fact and go on with the crucial lemma.

Fact. If x is non-unary and x = (uv)°u = u’v'u’, where |uv| = per(x), e > 0
and |u’| < |ul, then v’ is non-unary.

Indeed, if v’ is unary, v also is, which implies that u is not (it cannot be unary
with a letter different from the letter in v). Since the word u’ is both a proper
prefix and a suffix of u, we get u = u’y = zu' for two non-empty words y and
z that are respectively prefix and suffix of v' with |y| = |z| = per(u). Then
both are unary, implying u and x also are, a contradiction.

Unary-Extension Lemma. If x is non-unary, a is a letter, k is a positive integer
and af # tail(x), then xak is primitive.
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k

Proof By contradiction, assume xa“ is non-primitive, that is

xa* =7/, j =2, |z| = per(xa).
We deduce |z| > k, because otherwise both x would be unary and |z| # per(x),
since ak # tail(x). Since |z| is a period of x, |z| > per(x). We cannot have
j > 2 because z2 would be a prefix of x, which implies |z| = per(x).
Consequently the only remaining case in this situation is when j = 2, that is

xad* =722 =W Vu'v, x = wv)u =V, v = d,
where v’ # v = tail(x), |uv| = per(x) and |u’v'| = per(xa®). Let us consider
two cases.
Case |u’| < |ul: This is impossible due to the above preliminary fact which
implies that v' = @ is non-unary.
Case |u/| > |u|: Let us consider only the situation i = 2, that is, x = (uv)?u.
The general case i > 1 can be treated similarly.

Claim. |u/| < |uv].

Proof (of the claim) By contradiction assume |u’| > |uv|. Then the word x
admits periods p = |uv| and ¢ = |x| — |u'| = |u'V'|, where p + g < |x|.
The Periodicity Lemma implies that p (as the smallest period) is a divisor of
g. Hence p is also a period of xa* (which has a period ¢). Consequently x and
xa* have the same shortest period, which is impossible. ]

Let w be such that #’v’ = uvw. Due to the above claim w is a suffix of v’
and consequently w is unary. The word u’ is a prefix of uvu (as a prefix of x).
This implies that |w| is a period of uvu. Since w is unary, uv is also unary and
the whole word x is unary, a contradiction.

In both cases we have a contradiction. Therefore the word xa* is primitive
as stated. ]

Notes

The solution to this problem is by Rytter in [215]. A time—space optimal prim-
itivity test (linear time, constant space) is given in Problem 40 but the present
problem provides a much faster solution in the considered particular case.
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114 Partially Commutative Alphabets

The study of words over a partially commutative alphabet is motivated by the
representation of concurrent processes in which letters are names of processes
and commutativity corresponds to the non-concurrency of two processes.

We consider an alphabet A for which some pairs of letters commute. This
means that we can transform the word uabv to ubav, for any commuting pair
(a,b). The corresponding (partial) commutativity relation on A denoted by =
is assumed to be symmetric.

Two words are equivalent (with respect to the commutativity relation),
denoted by u = v, if one word can be transformed into the other by a
series of exchanges between adjacent commuting letters. Observe that = is
an equivalence relation while & usually is not.

For example, on the alphabet A = {a,b, ¢,d}

arbr~crdx~a = abcdabcd = badbdcac

due to the following commutations:
a b cdabocd

b acdabocd
b a d c¢c a b c d
b a d c b a c d
b a d b ¢ a c d
b a d b ¢c a d c
b a d b c d a c
b a d b dc a c

Question. Design an equivalence test that checks if u = v for two words u
and v of length n in A* and that runs in time O (n|Al).

[Hint: Consider projections of words on pairs of letters.]

Solution

For two letters a,b € A, 7, »(w) denotes the projection of w on the pair (a,b),
that is, the word resulting from w by erasing all letters except them. Let |w|,
denote the number of times letter a occurs in w. The next property is the basis
of our solution.

Property. For two words u and v, u = v if and only if the following two
conditions hold:
(i) |u]s = |v]|, for each letter a € A; and

(i) 74, p(u) = 14 p(v) Whenever a and b do not commute.
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Proof 1t is clear that the conditions are satisfied if # = v. Conversely, assume
conditions (i) and (ii) hold. The proof is by induction on the common length of
the two words.

Assume u = au’, where a € A. We claim that we can move the first
occurrence of letter a in v to the first position using the relation ~. Indeed,
if we are not able to do it, there is some non-commuting letter b occurring
before a in v. Then m, (1) # 74, (v), a contradiction.

After moving a to the beginning of v we get the word av’ with av’ = v
and the conditions (i) and (ii) hold for #” and v’. By the inductive assumption
u' = v/, and consequently u = au’ = av’ = v. This completes the proof. =

The equivalence test consists in checking the above two conditions. Check-
ing the first condition is obviously done in time O(n|A|) (or even in time
O (nlog|A|) without any assumption of the alphabet).

The second condition it to check if 7, 5 (u) = 74 (v) for all pairs of letters
a,b that do not commute. At a first glance this looks to produce a O (n|A|%)
time algorithm. However, the sum of the lengths of all words of the form
7q,p(u) is only O(n|Al), which is also an upper bound on the running time
of the algorithm.

Notes
The material in this problem is based on properties of partial commutations
presented by Cori and Perrin in [61].

There is an alternative algorithm for the equivalence problem. We can define
a canonical form of a word as its lexicographically smallest equivalent version.
Hence given two words one can compute their canonical versions and test their
equality. The computation of canonical forms is of independent interest.
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115 Greatest Fixed-Density Necklace

A word is called a necklace if it is the lexicographically smallest word in its
conjugacy class. The density of a word on the alphabet {0, 1} is the number of
occurrences of 1’s occurring in it. Let N (n,d) be the set of all binary necklaces
of length n and density d.

The problem is concerned with the lexicographically greatest necklace
in N(n,d) with 0 <d < n. For example, 00100101 is the greatest necklace in
N(8,3):

{00000111,00001011,00001101,00010011,00010101,00011001,00100101}.
And 01011011 is the greatest necklace in N (8, 5):
{00011111,00101111,00110111,00111011,00111101,01010111,01011011}.

The following intuitive property characterises the structure of largest neck-
laces.

Lemma 20 Let C be the greatest necklace in N (n,d):

(1) Ifd < n/2then C = 0101 --.0%-11, where both co > 0 and, for
eachi > 0, ¢; € {cg,co — 1}.

(i) Ifd > n/2 then C = 019011 . .. 01~4-1, where both cy > 0 and, for
eachi > 0, ¢; € {cg,co + 1}.

(iii) In both cases, the binary sequence w = (0, |c1 — col, |c2 — col, .. .) is the
largest necklace of its length and density.

Question. Based on Lemma 20, design a linear-time algorithm for comput-
ing the greatest necklace in N (n,d).

Solution
The lemma motivates the following two definitions when the (binary) word w
is a necklace of length £:

b (w) = 0/~ gl L grwleTyg

Ui (w) = 0170 grtwll] grtwle=1]

The next two facts are rather direct consequences of the lemma and show
that the functions ¢; and v, preserve the lexicographic order. They also justify
the recursive structure of the algorithm below.
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Fact 1. A binary word w of length £ is a necklace if and only if ¢;(w) is a
necklace for all ¢ > 0.

Fact 2. A binary word w of length £ is a necklace if and only if ¥ (w) is a
necklace for all # > 0.

The following algorithm then solves the problem. Point (iii) of the lemma
allows to reduce the problem to a single much smaller problem by a single
recursive call.

GREATESTNECKLACE (7, d natural numbers,d < n)
if d = 0 then

return 0"
elseif d < n/2 then

(t,r) < (In/d],n mod d)

w < GREATESTNECKLACE(d,d — r)

f—

return ¢; (w)

elseif d < n then
(t,r) < (In/(n —d)],n mod (n — d))
w <— GREATESTNECKLACE(n — d,r)

O 0 N N Lt B W N

—_
S

return ;1 (w)

—
—

else return 1”

Example. For n =8 and d =3, we get r =2, r =2 and the recursive call gives
GREATESTNECKLACE(3,1) = w = 001. Eventually GREATESTNECKLACE(8, 3)
= 027910279102-11, whichis 00100101, as already seen above.

Example. Forn = 8andd = 5, wealsogett =2,r = 2 (sincen—d = 3) and
the recursive call gives GREATESTNECKLACE(3,2) = w = 011. This produces
GREATESTNECKLACE(8,5) = 0111001!*+1o1!+! which is 01011011 as
seen above.

The correctness of Algorithm GREATESTNECKLACE essentially comes from
the lemma and the two facts.

As for the running time of GREATESTNECKLACE(n,d) note that recursive
calls have to deal with words whose length is no more than n /2. Therefore the
whole runs in linear time to generate the final word.

Notes
The material of the problem is by Sawada and Hartman in [218].
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116 Period-Equivalent Binary Words

Two words are said to be period equivalent if they have the same set of periods
or equivalently have the same length and the same set of border lengths.
For example, abcdabcda and abaaabaaa are period equivalent since they
share the same set of periods {4, 8,9} although their letters are not in one-to-one
correspondence.

The goal of the problem is to show that a set of periods of a word can be
realised by a binary word.

Question. Let w be a word over an arbitrarily large alphabet. Show how to
construct in linear time a binary word x period equivalent to w.

[Hint: Consider border lengths instead of periods.]

Solution

Dealing with the border lengths of w instead of its periodic structure is more
convenient to solve the question and describe the corresponding algorithm.
The border structure is given by the increasing list B(w) = (91,92, - - -,qn) of
lengths of non-empty borders of w with the addition of ¢, = |w| = N. For
example, (1,5,9) is the list associated with abcdabcda.

To answer the question, from the list B(w) a sequence of words
(x1,X2, ...,X,), in which x; is a binary word associated with the border
list (g1, - .. ,qi), is constructed iteratively. The binary word period equivalent
to wis x = x,.

Let x; be a border-free word of length g;. The word x; of length g; with
longest border x;_1 is either of the form x;y;x; if this fits with its length or
built by overlapping x;_; with itself. Word y; is unary and its letter is chosen
to avoid creating undesirable borders.

Example. Let (1,3,8,13) = (91,92,93,94) = B(abacdabacdaba). Starting
with the border-free word x; = 0, x> is built by inserting y, = 1 between
two occurrences of x. The word x3 is built similarly from x, with the unary
word y3 = 00, whose letter is different from that of y,. Eventually, x4 =
0100001000010 is built by overlapping two occurrences of x3.

0 1 0 0 0 0O 1 O 0 0 0 1 o0
K L L L L L
L X | L
x

L J
X3, J J
L X4 |
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In Algorithm ALTERNATING that implements the method, prefix(z,k)
denotes the prefix of length k of a word z when k < |z].

ALTERNATING(w non-empty word)

—

(91,92, - -, qn) < B(w)
(x1,a) < (019171 0)
fori < 2tondo
gap; < qi —2qi-1
if gap; > O then

2

3

4

5

6 a<1—a
7 Xi < xi_1 -a8Pi . x;_4

8 else x; < prefix(x;—1,q; — qi—1) - Xi—1

9 return x,

Why does Algorithm ALTERNATING work? The proof relies on the next
result that is directly implied by the Unary-Extension Lemma (see Problem

113). When z is written (uv)u and |uv| is its (smallest) period, by definition
tail(z) = v.

Lemma 21 Let 7 be a non-unary binary word, k a positive integer and a a
letter for which a* # tail(z). Then the word x = za*z has no period smaller
than |za*|, that is, has no border longer than z.

Proof The proof is by contradiction. Assume x = za*z has a period p < |za¥|
and consider two cases.

Case p < |z|. The word x has two periods |za¥| and p that satisfy
|zak| + p < |x|. Applying the Periodicity Lemma to them, we deduce that
ged(|za|, p) is also a period of x. This implies that ua* is non-primitive, since
gcd(|za¥|, p) < p < |ua*|. But this contradicts the Unary-Extension Lemma,
whose conclusion is that #a* is primitive under the hypothesis.

Case |u| < p < |ua"|.

S I S R

< >

-« p Ll Z |

Inequalities of this case imply that there is an internal occurrence of z in za¥z,

namely at position p. If p < k, thatis, p + |z] < |za¥| (see picture) this
occurrence is internal to a¥, which contradicts the fact that z is non-unary.
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A
Y

U 7 | U |

Otherwise p > k, thatis, p + |z] > |zak| (see picture). Then the last two
occurrences of z overlap, which means that |zaX| — p is a period of z. As a
suffix of a*, the prefix period u = z[0..|zaX| — p — 1] of z is unary, which
implies that z itself is unary, a contradiction again.

Therefore no period of za*z is smaller than |za¥|. [ ]

To prove the correctness of Algorithm ALTERNATING we have to show that
filling the gap between occurrences of x;_; with a unary word at line 7 does
not generate a redundant period.

To do so, assume g; > 1. The case g; = 1 can be treated similarly
starting with the first i for which x; is non-unary. Algorithm ALTERNATING
has the following property: if gap; > 0 then x; = x;_1y;x;—; where y; =
a83Pi = tail(x;_1) and x;_1 is not unary. Due to the lemma x;_; y;x;_ has no
border longer than x;_1. Thus no redundant border is created, which shows the
correctness of ALTERNATING.

Computing the list of border lengths, for example, with Algorithm BORDERS
from Problem 19, and running the algorithm takes linear time O(N) =
O (Jw]), as expected.

Notes
The presented algorithm as well as more complicated algorithm for binary
lexicographically first words are by Rytter [215].

Note that a sorted list B = (1,42, - . - ,q,) corresponds to the list of border
lengths of a word if and only if, for §; = ¢; — gi—1 wheni > 1,

8i—118; = 8i—1=06; and q; +8; <n=gq; +6; € B.

This is a version of Theorem 8.1.11 in [176]. The above technique provides
a compressed description of size O (n), which can be of order log N, of the
output word of length N.
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117 Online Generation of de Bruijn Words

A binary de Bruijn word of order n is a word of length 2" on the alphabet
{0, 1} in which all binary words of length n occur cyclically exactly once. For
example, 00010111 and 01000111 are (non-conjugate) de Bruijn words of
order 3.

A de Bruijn word can be generated by starting from a binary word of length
n and then repeating the operation NEXT(w) below. The operation computes
the next bit of the sought de Bruijn word and updates the word w. The whole
process stops when w returns to its initial word.

DEBRUUN(n positive integer)
1 (x,wp) < (&,abinary word of length n)
w <— Wy
do w <« NEXT(w)
x < x-wln—1]
while w # wy

AN L AW

return x

The operation NEXT needs only to be specified to get an appropriate on-line
generation algorithm. Let b denote the negation of the bit b.

NEXT(w non-empty word of length n)
1 ifw[l..n — 1] 1 smallest in its conjugacy class then
2 b < w[0]
3 else b < w|0]
4

return w(l..n —1]-b

Question. Show that the execution of DEBRUIIN(n) generates a binary de
Bruijn word of length 2".

Example. Let n = 3 and wp = 111. The values of w at line 4 of Algorithm
DEBRUUN are 110,101,010,100,000,001,011,111. Underlined bits form
the de Bruijn word 01000111.

Forn = 5 and wg = 11111 the consecutive values of w are
11110,11101,11011,1011211,01110,11100,11001,10011, 00110,
01100,11000, 10001, 00010, 00101, 01011,10110,01101,11010,
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10101,01010,10100,01001,10010,00100,01000,10000,00000,
00001,00011,00111,01111,11111, generating the de Bruijn word

01110011000101101010010000011111.

Solution

The correctness of Algorithm DEBRUDN can be proved by interpreting its run
as a traversal of a tree whose nodes are shift cycles connected by two-way
‘bridges’. Vertices of shift cycles are words of length n that are in the same
conjugacy class. The representative of a cycle is its lexicographically minimal
word (a necklace or Lyndon word if primitive). Edges in cycles stand for shifts,
that is, are of the form au — ua, where a is a single bit, and u is a word of
length n — 1. Shift cycles form the graph G,,.

/11101

10 \
AT
111 :

11 11011

S 01111
00000 "
10000 10111
01000 ‘
00001 7701110
00111 \
o010c g P
... 00010 00011 : 11100
7w
" 10010 10001 “10011 /
01001 o110 D 11001
oo1o1 11000 /
10100 " 01100
.
01010

\ L7 01011
1010 \

11010 (//

N 01101
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Graph G, is transformed into the graph G;, (see picture for G%) by adding
bridges connecting disjoint cycles and by removing some cycle edges (dotted
edges in picture) with the following procedure.

BRIDGES(G graph of cycles)

1 for each node u of G do

2 if u1 smallest in its conjugacy class then
3 remove edges 1u — u1l and Ou — u0
4 create edges 1u — u0 and Ou — ul

5 return modified graph

All solid edges in G, are associated with the function NEXT and used
to traverse the graph. The graph G/, consists of a single Hamiltonian cycle
containing all words of length n. Bridges that connect a cyclic class of a word
to another cyclic class of words with more occurrences of 0 form a (not rooted)
tree whose nodes are cycles.

Observation. For a word w of length n, v = NExT(w) if and only if w — v
is an edge of G/,.

Hence the algorithm implicitly traverses the graph using the Hamiltonian
cycle. This completes the proof of correctness.

Notes
The algorithm is by Sawada et al. [219]. The present proof is completely
different from their. The for loop of function BRIDGES can be changed to the

following:
1 for eachnode u of G do
2 if Ou smallest in its conjugacy class then
3 remove edges Ou — u0 and 1u — ul
4 create edges Ou — ul and 1u — u0

Doing so we obtain a different graph of shift cycles connected by a new type
of bridges and an alternative version of operation NEXT corresponding to the
new Hamiltonian cycle.
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118 Recursive Generation of de Bruijn Words

Following Problem 117, the present problem provides another method to
generate a de Bruijn word on the alphabet B = {0, 1}. The method is recursive
and its description requires a few preliminary definitions.

Let us first define Shift. When a word u occurs circularly exactly once
in a word x, |u| < |x|, Shift(x,u) denotes the conjugate of x admitting
u as a suffix. For example, Shiftf(001011101,0111) = 010010111 and
Shift(001011101,1010) = 010111010.

Let us then define the operation @ between two words x,y € BN, N = 2",
for which the suffix u of length n of x has a unique circular factor occurrence
in y: x @ y denotes x - Shift(y,u). For example, withn =2, 00104 1101 =
00101110 since Shiftf(1101,10) = 1110.

Eventually, for a binary word w, let ¥(w) be the binary word v of length
|w| defined, for 0 <i < |w| — 1, by

v[i] = (w[0] + w[1] + - -- + w[i]) mod 2.

For example, ¥(0010111011) = 0011010010. Also denote by X the
complement of x, that is, its bitwise negation.

Question. Show that if x is a binary de Bruijn word of length 2" then W (x)&®
W (x) is a de Bruijn word of length 2"+1.

[Hint: Count circular factors of W(x) @ W (x).]

Example. For the de Bruijn word 0011, we have W(0011) = 0010 and
W(0011) =1101.Then 001041101 = 00101110, which is a de Bruijn
word of length 8.

Solution
Let Cfact; (z) denote the set of circular factors of length k of a word z. We start
with the following fact.

Observation 1. If two words x and y of length N have a common suffix of
lengthn < N, Cfact, (x - y) = Cfact, 1 (x) U Cfact, 1 (y).
The second observation is a consequence of the first.

Observation 2. Let x and y be binary words of length N = 2". When both
Cfact, 1 (x) U Cfact, 1 (y) = B"*! and the suffix of length n of x belongs to
Cfact,(y), the word x @ y is a de Bruijn word.
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Proof We can assume that x and y have the same suffix of length n because
this does not change the result of the operation & and then we have x @ y =
x - y. Observation 1 implies, due to the hypothesis, that Cfact, , (x ® y) =
Cfact, 1 (x - y) = Cfact, | (x) U Cfact, | (y) = B"*!, Since x @ y has length
2"+1 every binary word of length n + 1 occurs circularly exactly once in it.
This means that x @ y is a de Bruijn word as expected. ]

To answer the question, let x be a de Bruijn word of length 2". The operation
W satisfies the following two properties:

(i) Cfact, (¥ (x)) N Cfact, (¥ (x)) = 0

(i) |Cfact, (¥ (x))| = 2" and |Cfact,, ; (¥ (x))| = 2".

Properties (i) and (ii) imply that the words W(x) and W(x) satisfy the
assumptions of Observation 2. Consequently W (x) @ W (x) is a de Bruijn binary
word of length 2"+,

Notes

The recursive approach used to build de Bruijn words is from [206]. It is also
a syntactic version of Lempel’s algorithm that uses a special type of graph
homomorphism, see [174].

It is an example of a simple application of algebraic methods in text algo-
rithms. A more advanced application of algebraic methods is the generation of
de Bruijn words based on so-called linear shift registers and related primitive
polynomials, see [131].

The algorithm has a surprising graph-theoretic property. Assume we start
with wo, = 0011 and define, for n > 3,

wy, = Y(w,—1) & V(wy—1).

Then, in the de Bruijn graph G,4; of order n 4+ 1 having 2" nodes, w,
corresponds to a Hamiltonian cycle C. After removing C and disregarding
two single-node loops, the graph G, becomes a big single simple cycle of
length 2" — 2.
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119 Word Equations with Given Lengths of Variables

A word equation is an equation between words whose letters are constants
or variables. Constants belong to the alphabet A = {a,b, ...} and variables
belong to the disjoint alphabet of unknowns U = {X,Y,...}. An equation is
written L = R, where L,R € (A U U)* and a solution of it is a morphism
¥ (AU TU)* — A* leaving constant invariant and for which the equality
¥ (L) = ¢ (R) holds.

In the problem we assume that the length |y (X)| is given for each variable
X occurring in the equation and is denoted by | X]|.

For example, XYbX = aYbXba with |X| = 3 and |Y| = 4 admits a
(unique) solution ¥ defined by ¥ (X) = aba and ¥ (Y) = baba:

[ X 17 Y 1 [ X 1
a\baba}b\aba}ba
Y X

On the contrary, the equation aXY = YbX has no solution, because ay (X)
and by (X) must be conjugate, which is incompatible with both |ay(X)|a =
1+ ¥ (X)|a and by (X)|a = |¥(X)|a, while the equation aXY = YaX =
has AX! solutions when | X| = |Y| — 1.

Question. Given a word equation with the variable lengths, show how to
check in linear time with respect to the equation length plus the output length
if a solution exists.

Solution
Let i be a potential solution of the equation L = R. If |Y(L)| # |¥(R)|
according to the given variable lengths the equation has obviously no solution.
We then consider that variable lengths are consistent and set n = |y (L)| =
[V (R)I.

Let G = (V, E) be the undirected graph defined by

e V={0,1,...,n — 1}, set of positions on x = (L) = ¥ (R).
* E setof edges (i, j) where i and j correspond to the same relative position

on two occurrences of ¥ (X) in ¢ (L) or in ¢ (R), for some variable X. For
example, i and j can be first positions of occurrences.

To build the graph, the list of positions on x covered by an occurrence of ¥ (X)
in ¥ (L) or in ¥ (R) can be precomputed.
We say that two positions are conflicting if they index two distinct constants.
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Observation. The equation is solvable if and only if there is no conflicting
position in the same connected component of G.

Quadratic-time algorithm. After the graph is computed, its connected com-
ponents are built and the condition on conflicting positions is checked. Using
a standard efficient algorithm for computing the connected components the
overall takes O (n?) time because the size of the graph is O (n?).

Example. Alignment and graph associated with the above equation XYbX =
aYbXba with | X| = 3 and |Y| = 4. The graph has two connected components
{0,2,4,6,8,10} and {1,3,5,7,9}. Positions 0 and 10 correspond to letter a and
positions 5, 7 and 9 to letter b in the equation. There is no conflicting position
and only one solution, producing the word abababababa.

’0}1(2|3 4y5 6|17)|8)9(10
[a] Y lp[ x [p]a

Linear-time algorithm. The algorithm is accelerated by reducing the number
of edges of G in a simple way. It is enough to consider edges (i, j), i < J,
where i and j are positions of consecutive occurrences of ¥ (X) in (L) or
in ¥ (R) (see picture), possibly merging two lists. The connected components
of the new graph satisfy the observation and the algorithm now runs in linear
time because the size of the graph is linear, with at most two outgoing edges
starting from each position.

Notes

When the lengths associated with variables are not given, the problem has been
shown to be decidable by Makanin [181]. The problem is known to be NP-hard,
but the big open question is its membership to the class of NP problems.

The fastest known algorithms work in exponential time (see [176, chapter
12] and references therein). If we knew that the shortest solution is of (only)
single-exponential length then there is a simple NP algorithm to solve the
problem. There is no known example of an equation for which a shortest
solution is longer than a single exponential, but it is an open problem to prove
it is always true.
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120 Diverse Factors over a Three-Letter Alphabet

A word w is called diverse if the numbers of occurrences of its letters are
pairwise different (some letters may be absent in w). The problem deals with
diverse factors occurring in a word x € {a,b, c}*.

Example. The word aab is diverse but aa and the empty word are not. The
word abbccc itself is diverse but the word abcabcabc has no diverse factor.
The longest diverse factor of cbaabacccbba is cbaabaccc.

Obviously any word of length at most 2 has no diverse factor and a word
of length 3 is not diverse if it is a permutation of the three letters. The
straightforward observation follows.

Observation 1. The word x € {a,b,c}*, |x| > 3, has no diverse factor if and
only if its prefix of length 3 is not diverse, that is, is a permutation of the 3
letters, and is a word period of x.

Question. Design a linear-time algorithm finding a longest diverse factor of
a word x over a three-letter alphabet.

[Hint: Consider the Key property proved below.]

Key property. If the word x[0..n — 1] € {a,b,c}* has a diverse factor, it
has a longest diverse factor w = x[i .. j] for which either 0 < i < 3 or
n—3 <j <n,thatis,

n—1

2
we | JPref(x[i..n— 1)U | Suff(x[0..;]).
i=0 j=n-3

Solution

Since testing the condition in Observation 1 takes linear time it remains to
consider the case where the word x contains a diverse factor. Before discussing
the algorithm, we start with a proof of the Key property.

The proof of the property is by contradiction. Assume x has a longest
diverse factor w for which x = wwv with both |u| > 3 and |v| > 3. In
other words x has a factor of the form abcwdef for letters a, b, ¢, d, e and f.
We consider all cases corresponding to the occurrence numbers of letters in w
and in the neighbouring three positions of w, to the left and to the right in x,
and assume w.l.o.g. that

lwla < lwlp < |wlc.
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The following observation limits considerably the number of cases to examine.

Observation 2. If w is a longest diverse factor of abcwdef, where a, b, ¢, d, e
and f are single letters and |w|a < |w|p < |w|c, then

c ¢ {c.dyand |w|a + 1= |w|p = |wlc — 1.

Unfortunately there are still several cases to consider for letters a to f, but
all of them lead to a contradiction with the non-extendability of the diverse
factor w in the local window abcwdef. Eventually the question reduces to six
cases whose proofs are left to the reader.

As a consequence of the Key property, the problem amounts to several
applications of a simpler version: the diverse prefix and suffix problems, that
is, compute a longest diverse prefix and a longest diverse suffix of a word. They
are to be computed respectively for the three suffixes x[i ..n —1],0 <i < 3,
and for the three prefixes x[0.. j],n — 3 < j < n of x to get the result.

Linear-time solution for the longest diverse prefix. We describe only the
computation of a longest diverse prefix of x, since the other cases are either
similar or symmetric.

Example. The longest diverse prefix of y = cbaabacccbba is cbaabaccc
as shown on the table at index 8. In fact it can be checked that it is the longest
diverse factor of y.

i 0 1 2 3 4 5 6 7 8 9 10 11
yli] c b a a b a c c c b b a
yla 0 0 0 1 2 2 3 3 3 3 3 3 4
b O O 1 1 1 2 2 2 2 2 3 4 4
e 0 1 1 1 1 1 1 2 3 4 4 4 4

The computation to find a longest diverse prefix of x is done on-line on x.
The occurrence numbers of the three letters are computed in consecutive
prefixes. The largest index where the vector has pairwise different numbers
provides the sought prefix.

Notes
Note that a longest diverse factor can be much shorter than the word, like
ccbaaaaaa in aaaabccbaaaaaa, and that the boundary distance 3 in
the Key property cannot be reduced to 2: a counterexample is the word
abcacbacba whose longest diverse factor is cacbac.

The problem appeared in the 25th Polish Olympiad in Informatics under the
name ‘Three towers’.
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121 Longest Increasing Subsequence

In this problem we consider a word x on the alphabet of positive integers.
An increasing subsequence of x is a subsequence x[ig]x[i1]- - - x[i¢—1], where
0<ip<iy<-- <ip—y <|xland x[io] < x[i1] < -+ < x[ig—1]

Example. Let x = 3 6 4 10 1 15 13 4 19 16 10. A longest increasing
subsequence of x isy = 3 4 10 13 16 of length 5. Another such subsequence
isz = 3 4 10 13 19.If 21 is appended to x this lengthen y and z to
increasing subsequences of length 6. But if 18 is appended to x only y 18
becomes a longest subsequence, since z 18 is not increasing.

Question. Show that Algorithm Lis computes in place the maximal length
of an increasing subsequence of a word x in time O (|x|log |x]).

Lis(x non-empty word over positive integers)

1 ¢<«1

2 fori < 1to|x|—1do

3 (a,x[i]) < (x[i],00)

4 k< min{j:0<j <fanda < x|j]}
5 x[k] < a

6 if k = ¢ then

7 L <—C+1

8 return ¢

Example followed. The tables display x before and after a run of Algorithm

Lis.

i 0 1 2 3 4 5 6 7 8 9 10
x[i] 3 6 4 10 1 15 13 4 19 16 10
i 0 1 2 3 4 5 6 7 8 9 10
x[i] 1 4 4 10 16 o0 o0 o0 o0 00 00

Inspecting carefully Algorithm Lis, it should be noticed that the word
x[0..£€ — 1] computed when the algorithm terminates is increasing but not
usually a subsequence of x, as shown by the example, which leads to the next
question.
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Question. Design an algorithm that computes a longest increasing subse-
quence of a word x in time O(|x|log |x]).

Solution

Complexity. Note that values stored in the prefix x[0..£ — 1] of x satisfy
x[0] < x[1] < --- < x[£ — 1] and are followed by co. (They can be different
from the initial values in x[0..¢ — 1].) Thus, the instruction at line 4 can
be implemented to run in O (log|x|) time and in fact in O (log¥) if £ is the
length of a longest increasing subsequence of x. This amount to a total of
O(|x|log|x]|) or O(]x|log¥) running time. It is clear that the required memory
space in addition to the input is constant.

Correctness. The correctness of Algorithm Lis relies on this invariant of the
for loop: for any j, 0 < j < £, x[j] is the smallest value, called best[j], that
can end an increasing subsequence of length j in x[0..{].

This obviously holds at start with j = 0 and x[0] unchanged. The effect of
lines 4-7 is either to decrease best[k] or to enlarge the previously computed
longest increasing subsequence.

Longest Increasing Subsequence. Algorithm Lis can be upgraded to compute
it. Values stored in x[0..¢] or rather their positions on x can be kept in
a separate array with their predecessors inside an increasing subsequence.
The main instruction to manage the new array, after initialisation, is to set
the predecessor of the current element x[i], when added to the array, to the
predecessor of the element it replaces. When the algorithm terminates, a
longest increasing subsequence is retrieved by traversing the predecessor links
from the largest/rightmost value in the array.

Below is the predecessor array defined on indices for the above example,
with which the two longest increasing subsequences are retrieved by tracing
them back from indices 9 or 8.

Jj 0 1 2 3 4 5 6 7 8 9 10
pred|j] -0 0 2 - 3 3 2 6 6 3
Notes

Observe that the algorithm solves a dual problem, and computes the smallest
number of disjoint strictly increasing subsequences into which a given word
can be split.

Computing a longest increasing subsequence is a textbook example of
dynamic programming (see for example [226]).
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When the word is composed of a permutation of the nth smallest positive
integers the question is related to the representation of permutations with
Young tableaux; see the chapter by Lascoux, Leclerc and Thibon in [176,
Chapter 5] for a presentation of Schensted’s algorithm in this context. In this
case, the running time of the computation can be reduced to O (nloglogn)
(see [241]) and even to O (n loglog £) (see [95] and references therein).

122 Unavoidable Sets via Lyndon Words

Lyndon words often surprisingly appear in seemingly unrelated problems. We
show that they appear as basic components in certain decompositions, which
are the main tool in the problem.

The problem deals with unavoidable sets of words. A set X C {0,1}* is
unavoidable if any infinite binary word has a factor in X.

To start with, let \V; be the set of necklaces of length k, k > 0. A necklace
is the lexicographically smallest word in its conjugacy class. Each necklace is
a power of a Lyndon word.

Example. The set A3 = {000,001,011,111} is avoidable, since (01)* has
no factor in 3. But after moving the last 1 to the beginning we get the set
{000,100,101,111} thatis unavoidable.

Observation 1. If X C {0, 1}¥ is unavoidable then | X| > |N|.

Indeed, for each w € {0, 1}k , length-k factors of w® are all conjugates of w
and at least one of them should be in the unavoidable set X. The first question
provides a more flexible condition to be unavoidable.

Question. Show that if for each necklace y € {0,1}*, |y| > 2k, the word y?
contains a word in X C {0, 1}" then X is unavoidable.

An ingenious construction of an unavoidable set is based on the notion of
pre-primes. A pre-prime w is a prefix of a necklace.
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Observation 2. A pre-prime is a prefix of a power of a Lyndon word.

The observation justifies the special decomposition of a pre-prime w as u®v,
where u is a Lyndon word, e > 1, |v| < |u| and u is the shortest possible. Head
and tail of w are defined by head(w) = u® and tail(w) = v.

Example. w = 0101110 factorises as 01%-110,01011-10 and 010111 -
0 over its Lyndon prefixes 01, 01011 and 010111 respectively. Its special
decomposition is 01011 - 10, head(w) = 01011 and tail(w) = 10.

Note that v is not necessarily a proper prefix of u, that is, |u«| is not usually
the period of w. It is clear that such factorisation of a pre-prime always exists.
The factorisation is the key-concept in this problem.

Question. Show that there is an unavoidable set X; < {0, 1}¥ of size |Ng].
Consequently, |N| is the smallest size of such a set.

[Hint: Consider words of the form rail(w) - head(w).]

Solution
We first prove the statement in the first question, which provides a restricted
condition for a subset of {0, 1}¥ to be unavoidable, getting rid of infinity.

By contradiction, assume there is an infinite word x having no factor in
X C {0, l}k . Consider a word u with two non-overlapping occurrences in x, so
that uvu is a factor of x and |u|, |v] > k. Let y be the necklace conjugate of
uv. The hypothesis implies that there is a word w € X factor of y?; however,
due to the inequalities |u|, |[v| > k this word also occurs in #vu and thus in x.
This contradicts the assumption that x does not contain any word from X and
completes the proof.

A smallest unavoidable set. The sought unavoidable set is
Xy = {tail(w) - head(w) : w € Ni}.
For example X4 = {0000,0001,1001,0101,1011,1111} and X7 contains

the 20 words (tails are underlined):

0000000,0000001,1000001,0100001,1100001,0010001,0110001,
1010001,1110001,1001001,0100101,1100101,0110011,1010011,
1110011,1010101,1101011,1011011,1110111,1111111.

Before proving Xj is an answer to the second question, we state a useful
property of necklaces and special decompositions; its technical proof is left to
the reader (see Notes).
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Observation 2. Let w € {0, 1}¥ be a pre-prime prefix of a necklace y of length
at least 2k and with decomposition u€ - v. Let z be the suffix of y of length |v]|.
Then u€ - z is a necklace with decomposition u° - z.

Theorem. The set X is unavoidable.

Proof Due to the first question it is enough to show that for each necklace y
of size at least 2k the word y? has a factor in X;. Let us fix any such y and let
u® - v be the decomposition of the pre-prime, prefix of length k of y. The goal
is to find a factor of y? that belongs to Xj.

Let z be the suffix of length |v| of y. According to Observation 2 the word
w = u®z is a necklace and u® - 7 is its decomposition. Hence z - u® € Xy. Since
z is a suffix of y and u® is a prefix of y, zu® is a factor of y> (see picture). This
completes the proof. n

Notes
The solution of the problem is by Champarnaud et al. [53]. Testing if a word
is a pre-prime is addressed in Problem 42.
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123 Synchronising Words

The problem deals with the synchronisation of the composition of functions
from I, = {0,1,...,n — 1} to itself for a positive integer n. For two such
functions f3 and fp,, a word w € {a,b}" encodes their composition f,, =
hoohyjo---ohpy—1 whenh; = fzif w[i] =aandh; = f if w[i] = b. (Note
functions k; are applied to elements of I, in decreasing order of i as usual, i.e.,
from right to left according to w.) The word w is said to be synchronising if
the set fy,(I,;) contains a single element.

A useful notion is that of a pair synchroniser: a word u € {a,b}* is a
synchroniser of the pair (i, j), i, j € Iy, if f,(i) = fu.(j)-

Example. Consider the two functions: gg(i) = (i + 1) mod n, gp(i) =
min{i, g5 (7)}. For n = 3 they are illustrated by the automaton. As shown on
the table below the word w = baab is synchronising since the image of the
set {0, 1,2} by gy, is the singleton {0}. The word obviously synchronises every
pair but the table shows additional synchonisers like b for the pair (0,2), baa
for the pair (0, 1) and ba for the pair (1,2).

a
bc@/\ b
a,b a
w b a a b
gw@ = 0 <« 2 <« 1 <« 0 <« 0
gw@l) = 0 <« 0 <« «~ 1 «~ 1
gw2 = 0 <« 2 <« 1 <« 0 <« 2

For any positive integer n the word w = b(a”~!b)"~2 is a synchronising word
of the functions g5 and g,. It is more difficult to see that it is a shortest such
word in this particular case. This yields a quadratic lower bound on the length
of a synchronising words.

Question. Show that a pair of functions admits a synchronising word if and
only if there exists a synchroniser for each pair (i, j) of elements of /,,.

[Hint: Compute a synchronising word from synchronisers.]

Question. Show how to check in quadratic time if a pair of functions admits
a synchronising word.

[Hint: Check pair synchronisers.]
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Solution

The ‘only if” part of the statement in the first question is obvious because a
synchronising word is a synchroniser of every pair of elements of 7,. Then
we just have to prove the ‘if’ part, that is, show that a synchronising word
exists when there is a synchroniser for each pair (7, j) of elements i, j € I,,.
Algorithm SYNCWORD constructs a global synchronising word.

SYNCWORD( f3, fi, functions from I, to itself)
1 J <1,
(TR
while |/| > 1 do
i,j < any two distinct elements from J
u < a synchroniser of (i, j)
J < fulJ)

w<—u-w

0 N N Lt W

return w

Existence of pair synchronisers. To answer the second question, we need to
check whether each pair of elements has a synchroniser or not.

To do so, let G be the directed graph whose nodes are pairs (i, j), i, j € I,
and whose edges of the form (i, j) — (p,q) are such that p = f,(i) and
q = fa(j),for aletter a € {a,b}.

Then the pair (i, j) has a synchroniser if and only if there is a path from
(i, j) to anode of the form (p, p). Checking the property is done by a standard
algorithm for traversing the graph.

If some pair has no synchroniser, the functions have no synchronising word
by the first statement. Otherwise there is a synchronising word.

The running time for processing the graph is O(n?), as required. But
running Algorithm SYNCWORD to get a synchronising word takes cubic time
provided operations on words are done in constant time.

Notes
When the two functions are letters acting on the set of states of a finite automa-
ton, a synchronising word is also called a reset word; see, for example, [29].
Although the above method works in quadratic time (it is enough to test
the existence of local synchronisers) the actual generation of a synchronising
word could take cubic time. This is due to the fact that the length of the
generated word can be cubic. The so-called Cerny’s conjecture states that the
upper bound on a synchronising word is only quadratic, but the best known
114

upper bound is only %”3 + O(n®) (improving on the best previous bound of
114

mn3 + 0(n?)); see [229] and references therein.
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124  Safe-Opening Words

The problem addresses a special non-deterministic version of synchronising
words. We are given a graph G with edges labelled by symbols and with a
unique sink node s on which all edges loop. We are to find a synchronising
word S for which each non-deterministically chosen path labelled by S goes
to s independently of the starting node.

The problem is generally difficult but we consider a very special case called
safe-opening words. It shows some surprising operations on words over the
alphabet B,, = {0,1}".

Narrative description of the problem. The door of a rotating safe has a
circular lock, which has n indistinguishable buttons on its circumference with
equal spacing. Each button is linked to a switch on the other side of the door,
invisible from outside. A switch is in state 0 (off) or 1 (on). In each move,
you are allowed to press several buttons simultaneously. If all switches are
turned on as a result, the safe door opens and remains open. Immediately before
each move the circular lock rotates to a random position, without changing the
on/off status of each individual switch. The initial configuration is unknown.
The goal is to find a sequence called a safe-opening word

S(ﬂ) = A] . A2--~A2n_1

of moves A; € B, having a prefix that opens the safe.

Assuming button positions are numbered 1 to n from the top position
clockwise, a move is described by an n-bit word b1 b, - - - b, with the meaning
that button at position i is pressed if and only if b; = 1. Positions are fixed
though buttons can move, that is, change positions.

Example. It can be checked that the unique shortest safe-opening word for 2
buttons is S(2) = 11 - 01 - 11.

Question. Let n be a power of two. Construct a safe-opening word S(n) of
length 2" — 1 over the alphabet B,,.

Abstract description of the problem. Each move A; is treated as a binary
word of length n. Let = be the conjugacy (cyclic shift) equivalence. Let G, =
(V, E) be the directed graph in which V is the set of binary words of length n,
configurations of the circular lock, and edges are of the form, for A € B,:

u —A> (v xor A)

. A .
foreachv =uifu # 1", and 1" — 1" otherwise.
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Example. Foru = 0111 and A = 1010 there are four nodes v conjugate of
u,0111,1110,1101, 1011, and consequently edges:

A A A A
u — 1101, u — 0100, u —> 0111, u —> 0001.

The aim is to find a word S = A - Ay--- Ay«_1 in B} for which each
non-deterministically chosen path in G, labelled by S leads to the sink 1”
independently of the starting node.

Solution
Two operations on words X,Y € B} are defined to state recurrence relations:

XOY=X-Y[0]-X-Y[1]-X---X-Y[N—1]-X
is a word in B and, when [X| = Y| =N, X®Y € X :

X®Y =X[0]Y[O] - X[1]Y[1]--- X[N — 1]Y[N —1].
For example, (01-11-10)®(10-11-00)=0110-1111-1000.

Recurrence relations. Let Z(n) = (0")2'~!, word of length 2" — 1 over B,.

Let S(n) be a safe-opening word for n > 2. Then S(2n) can be computed as
follows:

(i) B(n) = Sm) @ S(n), C(n) = Z(n) @ S(n).
(i) S2n) = B(n) © C(n).

Example. Knowing that S(2) = 11 - 01 - 11, we get

B(2)=1111-0101-1111,
C(2)=0011-0001-0011 and
S(4)=1111-0101-1111-0011-1111-0101-1111-0001-1111-0101-1111

-0011-1111-0101-1111.

Claim. If n is a power of 2 the recurrence from Equation (ii) correctly generates
safe-opening words.

Proof The word B(n) treats exactly in the same way buttons whose positions
are opposite on the cycle. In other words, buttons at positions i and i + n/2
are both pressed or both non-pressed at the same time. Hence at some
moment the word B(n) achieves the required configuration, if it starts from
the configuration in which for each pair (i,i 4+ n/2) the corresponding buttons
are synchronised, that is, in the same state.

This is precisely the role of the word C(n). After executing its prefix
Cy1-Cy---Cj, for some i, all pairs of opposite buttons are synchronised.

Then the forthcoming application of the whole word B(n) opens the safe,
as required. ]
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Illustration on the compacted graph. The alphabet B, has exponential size
but in the solution only its small part, denoted by BJ, is used. Instead of
G, let us consider its compacted version G/, in which nodes are (smallest)
representatives of conjugacy classes and edges have labels from B, only.
The figure shows G, in which letters 0001, 0011, 0101, 1111 of B), are
abbreviated as 1, 3, 5, 15, and nodes 0000, 0001, 0011,0101,0111,1111,
necklaces representing conjugacy classes, are abbreviated as A, B,C, D, E, F
respectively.

15

15
1,3,5,15

Observe that, independently of the starting node in G/, every path labelled
with 15,5,15,3,15,5,15,1,15,5,15,3,15,5,15 leads to 1111.

The correctness of this sequence can be shown by starting from the whole
set of nodes and applying consecutive transitions. At the end we should get the
set { F'}. Indeed we have

{A,B,C,D,E,F} -2 (B,C,D,E,F} —> {A,B,C,E,F} -2

{BCEF}i>{ABEDF}1—5> {BEDF}—5> {A, B,E,F)

—>{BEF}—>{ADCF} {DCF}—>{ACF}
Boe,Fy 2 A, F) B (0, Fy 2 (A F) 22 (F).
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Notes
The content of the problem is adapted from its original version by Guo
at https://www.austms.org.au/Publ/Gazette/2013/Marl3/
Puzzle.pdf. The length of safe-opening words is not addressed but it is
shown that there is no such word if n is not a power of 2.

There is an alternative description of the safe-opening sequence. Assume
binary words are represented as non-negative integers in a standard way. Then

S2) = 3-1-3and
S4) =15-5-15-3-15-5-15-1-15-5-15-3-15-5-15.

The recurrence equations (i) and (ii) now look much shorter:

S2n) = (2" x8M)+SHn)) © Sh),

where the operations +, x are here component-wise arithmetic operations on
sequences of integers.

125 Superwords of Shortened Permutations

On the alphabet of natural numbers, a word is an n-permutation if every
number from {1, 2, ...,n} appears exactly once in it (see Problems 14 and 15).
A word is a shortened n-permutation (n-shortperm, in short) if it is an
n-permutation with its last element removed. The bijection between standard
permutations and shortened ones for a given n implies there are n! shortened
n-permutations.

The subject of the problem is the construction of a shortest superword for
all n-shortperms. They are of length n! +n — 2, which meets the obvious lower
bound. For example, 3213123 is a shortest superword for 3-shortperms since
it contains all shortened 3-permutations

32,21,13,31,12 and 23.
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Question. Show how to construct a superword of length n!+n — 2 for
shortened n-permutations in linear time w.r.t. the output length.

[Hint: Consider an Eulerian cycle in an appropriate graph.]

Solution
The problem reduces to finding an Eulerian cycle in a directed graph 7,
(Jackson graph) that is very similar to a de Bruijn graph. The set V,, of nodes
of J, consists of all words that are (n — 2)-combinations of elements in
{1,2,...,n}. Foreach w = ajay...a,—» € V, there are two outgoing edges:
b

ajay---ap—p —> az---ay-2b,
where b € {1,2,...,n} — {aj,az,...,a,—2}. Each such edge labelled by b
corresponds to the shortened permutation ajas - --a,—2b. The graph Jj is
displayed in the picture below, where labels of edges are implicit.

Observation. If biby---b, is the label of an Eulerian cycle starting
from ayas - --ap—2, ajaz---a,—2b1by ... by is a shortest superword for n-
shortperms.

Example. In J4, the Eulerian cycle 12 — 23 — 34 — 41 — 12 — 24 —
43 - 32 —> 21 —> 14 - 43 - 31 - 14 - 42 - 21 — 13 — 32 —
24 - 41 - 13 — 34 — 42 — 23 — 31 — 12 produces the superword
of length 26 = 4! 44 — 2 prefixed by 12:

12 341243214314213241342312.

To answer the question it is sufficient to show that the graph 7, is an Eulerian
graph.
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Lemma 22 For two n-shortperms with the same set of elements one is
reachable from the other in the Jackson graph 7.

Proof 1t is enough to show that for each shortperm aja; - - - a,—; there is a
pathin 7, toits cyclic shifta, - - - a,—2aj and to axajas - - - a,—7 (transposition
of the first two elements) because any permutation can be decomposed into a
series of such permutations.

We sketch it for a shortperm of the form 123 - - - n — 2 using the represen-
tative example of 12345 forn = 7. Leta = 6 and b = 7. In J7 we have the
path

12345 — 2345a — 345ab — 45ab2 — 5ab23 — ab234
— b2345 — 23451,

which shows that there is a path 12345 —*5 23451 from 12345 to its shift
. * .

23451. There is also a path 12345 — 345ab. Then using them both we

get the path

* * *
12345 —> 345ab —> ab345 —> b3452 — 34521 —> 21345,

which corresponds to the transposition of the first two elements. This com-
pletes the sketch of the proof. L]

The lemma induces that the Jackson graph is strongly connected. It is
also regular, that is, the in-degree and out-degree of each node equal 2. It is
known that these conditions imply that it is an Eulerian graph. Following the
observation we can extract a required superword from an Eulerian cycle.

Notes
The problem of constructing a shortest superword for all shortened
n-permutations has been completely solved by Jackson [151, 211].

The problem is equivalent to finding a Hamiltonian cycle in the line
graph ‘H,, of J,. The nodes of H,, identified with shortened permutations,
correspond to edges of J,: there is an edge (e,e’) in H,, if and only if the
starting node of the edge ¢’ in 7, is the end node of e.

Edges of H,, can be labelled as follows. For each node aja; - - - a,—1 of H,
the graph has two labelled edges

1 0
aaz---ap-1 — az---ag—1a;1and ayaz - --ap—1 —> az---Ay—1a10y,

where a, ¢ {aj,an,...a,—1}. The Eulerian tour in 7, corresponds now to
a Hamiltonian cycle in H,,. For example, the Eulerian cycle in J4 from the
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previous example is associated with the Hamiltonian cycle in H4, after adding
one edge at the end:

123 —O> 234 —O> 341 —0> 412 —l> 124 —0> 243 —l> 432 —0>
321 —O> 214 —O> 143 —l> 431 —l> 314 —0> 142 —l> 421 —0>
213 —l> 132 —O> 324 —0> 241 —O> 413 —1> 134 —O> 342 —1>
423 —0> 231 —1> 312 —1> 123.
The Hamiltonian cycle starting at 123 is identified by the word of labels
x=000101000110101000101011.

Interestingly there is a family of words x, describing a Hamiltonian cycle
in the graph H, and having a very compact description. We use the interesting
operation ® on words defined as follows. For two binary words u# and v =

v[0.. &k —1],let
u®@uv=uv[0luv[l]luv|2] - -uvlk —1].
Let u denote the operation of negating all symbols in u. Then for n > 2 let
x2=00and x,41 = 001" 2 O %,.

For example, x3 = 00 ® 11 = 001001 and x4 = 001 ® 110110 =
(00110011 0010)2. Itis shown in [211] that for n > 2 the word x,, describes
a Hamiltonian cycle starting from 123 ---n — 1 in H,,.

The connection between words and Hamiltonian cycles happening here is
similar to the relation between de Bruijn words and Hamiltonian cycles in de
Bruijn graphs.
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