
CHAPTER 7

Analytic Approach to
Pattern Matching

7.0. Introduction

Repeated patterns and related phenomena in words are known to play a cen-
tral role in many facets of computer science, telecommunications, coding,
data compression, and molecular biology. One of the most fundamental
questions arising in such studies is the frequency of pattern occurrences
in another string known as the text. Applications of these results include
gene finding in biology, code synchronization, user search in wireless com-
munications, detecting signatures of an attacker in intrusion detection, and
discovering repeated strings in the Lempel–Ziv schemes and other data
compression algorithms.

In basic pattern matching one finds for a given (or random) pattern w

or a set of patterns W and text X how many times W occurs in the text
and how long it takes for W to occur in X for the first time. These two
problems are not unrelated as we have already seen in Chapter 6. Through-
out this chapter we allow patterns to overlap and we count overlapping
occurrences separately. For example, w = abab occurs three times in the
text = bababababb.

We consider pattern matching problems in a probabilistic framework
in which the text is generated by a probabilistic source while the pattern
is given. In Chapter 1 various probabilistic sources were discussed. Here
we succinctly summarize assumptions adopted in this chapter. In addition,
we introduce a new general source known as a dynamical source recently
proposed by Vallée. In Chapter 2 algorithmic aspects of pattern matching
and various efficient algorithms for finding patterns were discussed. In this
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354 7. Analytic Approach to Pattern Matching

chapter, as in Chapter 6, we focus on analysis. However, unlike in Chapter 6,
here we apply analytic tools of combinatorics and analysis of algorithms to
discover general laws of pattern occurrences. An immediate consequence
of our results is the possibility of setting thresholds at which a pattern in a
text begins to be (statistically) meaningful.

The approach we undertake to analyse pattern matching problems is
through a formal description by means of regular languages. Basically,
such a description of contexts of one, two, or several occurrences gives
access to expectation, variance, and higher moments, respectively. A sys-
tematic translation into generating functions of a complex variable z is
available by methods of analytic combinatorics deriving from the original
Chomsky–Schützenberger theorem. Then, the structure of the implied gen-
erating functions at a pole, usually at z = 1, provides the necessary asymp-
totic information. In fact, there is an important phenomenon of asymptotic
simplification where the essentials of combinatorial–probabilistic features
are reflected by the singular forms of generating functions. For instance,
variance coefficients come out naturally from this approach together with
a suitable notion of correlation. Perhaps the originality of the present ap-
proach lies in such a joint use of combinatorial–enumerative techniques
and of analytic–probabilistic methods.

There are various pattern matching problems. In its simplest form,
the pattern W = w is a single string w and one searches for some/all
occurrences of w as a block of consecutive symbols in the text. This problem
is known as the exact string matching and its analysis is presented in
Section 7.2 (cf. also Chapter 6). We adopt a symbolic approach, and first
describe a language that contains all occurrences of w. Then we translate
this language into a generating function that will lead to precise evaluation
of the mean and the variance of the number of occurrences of the pattern.
Finally, we prove the central and local limit laws, and large deviations.

In the generalized string matching problem the pattern W is a set
rather than a single pattern. In its most general formulation, the pattern is
a pair (W0,W) where W0 is the so-called forbidden set. If W0 = ∅, then
W appears in the text whenever a word from W occurs as a string with
overlapping allowed. When W0 �= ∅ one studies the number of occurrences
of strings in W under the condition that there is no occurrence of a string
from W0 in the text X. This could be called a restricted string matching
since one restricts the text to those strings that do not contain strings from
W0. Finally, setting W = ∅ (with W0 �= ∅) we search for the number of
text strings that do not contain any pattern from W0. In particular, for � ≤ k

if W0 is such that two consecutive 1s are separated by at least � and at
most k letters 0, then we deal with the so-called (�, k) sequences that find
application in magnetic recoding.
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7.0. Introduction 355

We shall present a complete analysis of the generalized string match-
ing problem in Section 7.3. We first consider the so-called reduced set of
patterns in which a string in W cannot be a substring of another string
in W . We shall generalize our combinatorial language approach from
Section 7.2 to derive the mean, variance, central, and local limit laws,
and large deviations. Then we analyse the generalized string pattern match-
ing with W0 = ∅ and adopt a different approach. We shall construct an
automaton to recognize the pattern W that turns out to be a de Bruijn
graph. The generating function of the number of occurrences will have a
matrix form with the main matrix representing the transition matrix of the
associated de Bruijn graph. Finally, we consider the (�, k) sequences and
enumerate them in order to obtain the Shannon capacity.

In Section 7.4 we discuss a new pattern matching problem called the
subsequence pattern matching or the hidden pattern matching. In this case
the pattern W = a1a2 · · · am, where ai is a symbol of the underlying al-
phabet, is to occur as a subsequence rather than a substring (consecutive
symbols) in a text. We say that W is hidden in the text. For example, date
occurs as a subsequence in the text hidden pattern, in fact four times,
but not even once as a substring. The gaps between occurrences of W may
be bounded or unbounded. The extreme cases are: the fully unconstrained
problem where all gaps are unbounded; and the fully constrained problem
where all gaps are bounded. We analyse these and mixed cases.

In Section 7.5 we generalize all of the above pattern matching problems
and analyse the generalized subsequence problem. In this case, the pattern
is W = (W1, . . . ,Wd) where Wi is a collection of strings (a language).
We say that the generalized pattern W occurs in the text X if X contains
W as a subsequence (w1, w2, . . . , wd ) where wi ∈ Wi . Clearly, it includes
all the problems discussed so far. We shall analyse this generalized pattern
matching for general probabilistic dynamical sources (which include among
others Markov sources and mixing sources). The novelty of the analysis
lies in translating probabilities into composition of operators. Under a mild
decomposability assumption, these operators admit representations that
allow us to derive precise asymptotic behaviour for quantities of interest.

Finally, in the last section we study a different pattern matching, namely
the one in which the pattern is part of the (random) text. We coin the term
self-repetitive pattern matching. More precisely, we look for the longest
substring of the text occurring at a given position that has another copy
in the text. This new quantity, when averaged over all possible positions
of the text, is actually the typical depth in a suffix trie (cf. Chapter 2)
built over (randomly generated) text. We analyse it using analytic tech-
niques such as generating functions and the Mellin transform. We reduce
its analysis to the exact pattern matching; thus we call the technique the
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string-ruler method. In fact, we prove that the probability generating func-
tion of the depth in a suffix trie is asymptotically close to the probability
generating function of the depth in a trie that is built over n indepen-
dently generated texts. Such tries have been extensively studied in the past
and we have pretty good understanding of their probabilistic behaviours.
This allows us to conclude that the depth in a suffix trie is asymptotically
normal.

7.1. Probabilistic models

We study here pattern matching in a probabilistic framework in which the
text is generated randomly. Let us first introduce some general probabilistic
models of generating sequences. The reader is also referred to Chapter 1
for a brief introduction to probabilistic models. For the convenience of the
reader, we repeat here some definitions.

Throughout this chapter we shall deal with sequences of discrete random
variables. We write (Xk)∞k=1 for a one-sided infinite sequence of random
variables. However, we often abbreviate it as X, provided that it is clear
from the context that we are talking about a sequence, not a single variable.
We assume the existence of the sequence (Xk)∞k=1 is defined over a finite
alphabetA = {a1, . . . , aV } of size V . A partial sequence is denoted as Xn

m =
(Xm, . . . , Xn) for m < n. Finally, we shall always assume the existence of
the probability measure P (xn

1 ) = P(Xk = xk, 1 ≤ k ≤ n, xk ∈ A) where
we use lowercase letters for a realization of a stochastic process.

Sequences are generated by information sources, usually satisfying
some constraints. We also call them probabilistic models. Throughout this
chapter, we assume the existence of a stationary probability distribution,
that is, for any string w the probability that the text X contains an oc-
currence of w at position k is equal to P (w) independently of the posi-
tion k. For P (w) > 0, we denote by P (u | w) the conditional probability
P (wu)/P (w).

The most elementary source is a memoryless source also known as a
Bernoulli source.

(B) Memoryless or Bernoulli Source
Symbols of the alphabet A = {a1, . . . , aV } occur independently of
one another; thus X = X1X2X3 . . . can be described as the outcome
of an infinite sequence of Bernoulli trials in which P(Xj = ai) = pi

and
∑V

i=1 pi = 1. Throughout this chapter, we assume that at least
for one i we have 0 < pi < 1.
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In many cases, assumption (B) is not very realistic. When this is the
case, assumption (B) may be replaced by:

(M) Markov Source of order one
There is a Markovian dependency between consecutive symbols in a
string; that is, the probability pij = P(Xk+1 = aj |Xk = ai) describes
the conditional probability of sampling symbol aj immediately after
symbol ai . We denote by P = {pij }Vi,j=1 the transition matrix, and by
µ = (π1, . . . , πV ) the stationary vector satisfying µP = µ. Through-
out this chapter, we assume that the Markov chain is irreducible and
aperiodic. A general Markov source of order r is characterized by the
transition matrix V r × V with coefficients being P (j ∈ A | u) for
u ∈ Ar .

In some situations more general sources must be considered (for
which one can still obtain reasonably precise analysis). Recently, a new
kind of sources called dynamical sources was introduced. We briefly
describe it here and use it in the analysis of the generalized sub-
sequence problem in Section 7.5. To introduce such sources we start
with the description of a dynamical system. A dynamical system is
composed of,

• A topological partition of the unit interval I = (0, 1) into a disjoint
set of open intervals Ia, a ∈ A.

• An encoding mapping χ which is constant and equal to a ∈ A on
each Ia .

• A shift mapping T : I → I whose restriction to Ia is a bijection of
class C2 from Ia to I. The local inverse of T restricted to Ia is denoted
by ha .

Observe that such a dynamic system produces infinite words ofA∞ through
the encoding χ . For an initial value x ∈ I the source outputs a word, say
w(x) = (χx, χT x, . . .).

(DS) Dynamical Source
A source is called a dynamical source, if the unit interval of a dynam-
ical system is endowed with a density f of probability. The proba-
bility that the source outputs the word w = w1 . . . wk is by definition
equal to the probability of the set of x ∈ I such that w(x) begins
with w.

Example 7.1.1. A memoryless source associated with the probability dis-
tribution {pi}Vi=1 (where V can be finite or infinite) is modelled by a dy-
namical source in which the components wk(x) = χT kx are independent
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(a) (b)

Figure 7.1. Dynamical sources discussed in Example 7.1.1: (a) mem-
oryless with the shift mapping Tm(x) = {(x − qm)/pm+1} (b) continued
fraction source with Tm(x) = 1/x − m = {1/x}.

and the corresponding topological partition of I is defined as

Im = (qm, qm+1], qm =
∑
j<m

pj .

In particular, a symmetric V -ary memoryless source can be described as

T (x) = {V x}, χ(x) = �V x�,
where �x� is the integer part of x and {x} = x − �x� is the fractional part
of x (cf. Figure 7.1(a)).

Here is another example of a source with memory related to continued
fractions. The alphabet A is the set of all natural numbers and the partition
of I is defined as Im = (1/(m + 1), 1/m). The restriction of T to Im is the
decreasing linear fractional transformation T (x) = 1/x − m, that is,

T (x) = {1/x}, χ(x) = �1/x�.
Observe that the inverse branches hm are defined as hm(x) = 1/(x + m)
(cf. Figure 7.1(b)).

Let us observe that a word of length k, say w = w1w2 · · ·wk is as-
sociated with the mapping hw = hw1

◦ hw2
◦ · · · ◦ hwk

which is an inverse
branch of T k , where ◦ denotes the composition of mappings. In fact, all
words that begin with the same prefix w belong to the same fundamen-
tal interval defined as Iw = (hw(0), hw(1)). Furthermore, for probabilistic
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7.2. Exact string matching 359

dynamical sources with the densityf , one easily computes the probability
of w as the measure of the interval Iw.

The probability P (w) of a word w can be explicitly computed through
the special generating operator Gw defined as follows

Gw[f ](t) = |h′
w(t)|f ◦ hw(t). (7.1.1)

One recognizes in Gw[f ](t) a density mapping, that is, Gw[f ](t) is the
density of f mapped over hw(t). The probability of w can then be computed
as

P (w) =
∣∣∣∣
∫ hw(1)

hw(0)
f (t) dt

∣∣∣∣ =
∫ 1

0
|h′

w(t)|f ◦ hw(t) dt =
∫ 1

0
Gw[f ](t) dt.

(7.1.2)

Let us now consider a concatenation of two words w and u. For memo-
ryless sources P (w · u) = P (w)P (u). For Markov sources one still obtains
the product of conditional probabilities. Dynamical sources replace the
product of probabilities by the product (composition) of generating opera-
tors. To see this, we observe that

Gw·u = Gu ◦ Gw, (7.1.3)

where we write Gw for Gw[f ](t). Indeed, hwu = hw ◦ hu and Gw·u =
h′

w
◦ hu · h′

u · f ◦ hw ◦ hu while Gw = h′
w · f ◦hw and then Gu ◦ Gw =

hu · h′
w

◦ hu · f ◦ hw ◦ hu, as desired.

7.2. Exact string matching

In the exact string matching problem the pattern w = w1w2 · · · wm of length
m is given while the text X = Xn

1 = X1 . . . Xn of length n is generated by a
random source. Observe that since the pattern w is given, its length m will
not vary with n when n → ∞ (asymptotic analysis).

There are several parameters of interest in the string matching, but two
of them stand out. Namely, the number of times w occurs in X is denoted
by Nn(w) or by Nn for short and is defined by

Nn(w) = Card{i : Xi
i−m+1 = w, m ≤ i ≤ n}.

We can write Nn(w) in an equivalent form as

Nn(w) = Im + Im+1 + · · · + In (7.2.1)

where Ii = 1 if w occurs at position i and Ii = 0 otherwise.
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The second parameter is the waiting time Tw defined as the first time w

occurs in the text X, that is,

Tw = min{n : Xn
n−m+1 = w}.

One can also define Tj as the minimum length of the text in which the pattern
w occurs j times. Clearly, Tw = T1. These parameters are not independent
since

{Tw > n} = {Nn(w) = 0}. (7.2.2)

More generally,

{Tj ≤ n} = {Nn(w) ≥ j}. (7.2.3)

Relation (7.2.3) is called the duality principle in Chapter 6.
Our goal is to estimate the frequency of pattern occurrences Nn in a text

generated by a Markov source. We allow patterns to overlap when count-
ing occurrences (e.g., if w = abab, then it occurs twice in X = abababb

when overlapping is allowed; it occurs only once if overlapping is not al-
lowed). We study the probabilistic behaviour of Nn through two generating
functions, namely:

Nr (z) =
∑
n≥0

P(Nn(w) = r)zn,

N(z, u) =
∞∑

r=1

Nr (z)ur =
∞∑

r=1

∞∑
n=0

P(Nn(w) = r)znur

that are defined for |z| ≤ 1 and |u| ≤ 1.
Throughout this section we adopt a combinatorial approach to string

matching, that is, we use combinatorial calculus to find combinatorial re-
lations between sets of words satisfying certain properties (i.e. languages).
Alternatively, we could start with the representation (7.2.1) and use proba-
bilistic tools along the lines already discussed in Chapter 6.

7.2.1. Representations by languages

We start our combinatorial analysis with some definitions. For any language
L we define its generating function L(z) as

L(z) =
∑
u∈L

P (u)z|u|,

where P (u) is the stationary probability of the occurrence of u and we
assume that P (ε) = 1. Notice that L(z) is defined for all complex z such
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that |z| < 1. In addition, we define the w-conditional generating function
of L as

Lw(z) =
∑
u∈L

P (u|w)z|u| =
∑
u∈L

P (wu)

P (w)
z|u|.

Since we allow overlaps, the structure of the pattern has a profound
impact on the number of occurrences. To capture this, we introduce the
autocorrelation language and the autocorrelation polynomial. Given a string
w, we define the autocorrelation set S as:

S = {wm
k+1 : wk

1 = wm
m−k+1}. (7.2.4)

By P(w) we denote the set of positions k ≥ 1 satisfying wk
1 = wm

m−k+1. In
other words, if w = vu and w = ux for some words v, x, and u, then x

belongs to S and |u| ∈ P(w). Notice that ε ∈ S. The generating function
of the language S is denoted by S(z) and we call it the autocorrelation
polynomial (see also Chapter 1). Its w-conditional generating function is
denoted by Sw(z). In particular, for Markov sources (of order one)

Sw(z) =
∑

k∈P(w)

P (wm
k+1 | wk

k )zm−k. (7.2.5)

Before we proceed, let us present a simple example illustrating the
definitions introduced so far.

Example 7.2.1. Let us assume that w = aba over a binary alphabet
A = {a, b}. Observe that P(w) = {1, 3} and S = {ε, ba}, where ε is
the empty word. Thus, for the unbiased memoryless source we have
S(z) = 1 + (z2/4), while for the Markovian model of order one, we ob-
tain Saba(z) = 1 + pabpbaz

2.

Our goal is to estimate the number of pattern occurrences in a text.
Alternatively, we can seek the generating function of a language that con-
sists of all words containing some occurrences of w. Given a pattern w, we
introduce the following languages:

(i) Tr is the set of words containing exactly r occurrences of w.
(ii) R is the set of words containing only one occurrence of w, located at

the right end.
(iii) U is defined as

U = {u : wu ∈ T1}, (7.2.6)

that is, a word u ∈ U if wu has exactly one occurrence of w at the left
end of wu.
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(iv) M is defined as

M = {v : wv ∈ T2 and w occurs at the right end of wv},
that is, M is the language such that any word in wM has exactly two
occurrences of w at the left and right end.

Example 7.2.2. Let A = {a, b} and w = abab. Then r = aaabab ∈ R
since there is only one occurrence of w at the right end of r . Also,
u = bbbb ∈ U since wu has only one occurrence of w at the left end, but
v = abbbb /∈ U since wv = abababbbb has two occurrences of w. Fur-
thermore, m = ab ∈ M since wm = ababab ∈ T2 has two occurrences of
w at the left and the right ends. Finally, t = bbabababbbababbb ∈ T3 and
one observes that t = rm1m2u where r = bbabab ∈ R, m1 = ab ∈ M,
m2 = bbabab ∈ M, and u = bb ∈ U .

We now describe the languages T≥1 =⋃r≥1 Tr (set of words containing
at least once occurrence of w) and Tr in terms of R, M, and U . Recall that
Mr denotes the concatenation of r languages M, and M0 = {ε}. Also,
M+ = ∪r≥1Mr and M∗ = ∪r≥0Mr .

Theorem 7.2.3. The languages Tr for r ≥ 1 and T≥1 satisfy the relations

Tr = RMr−1U, (7.2.7)

and therefore

T≥1 = RM∗U . (7.2.8)

In addition, we have

T0w = RS. (7.2.9)

Proof. To prove (7.2.7), we obtain our decomposition of Tr as follows. The
first occurrence of w in a word belonging to Tr determines a prefix p ∈ Tr

that is in R. After concatenating a nonempty word v we create the second
occurrence of w provided that v ∈ M. This process is repeated r − 1 times.
Finally, after the last w occurrence we add a suffix u that does not create a
new occurrence of w, that is wu is such that u ∈ U . Clearly, a word belongs
to T≥1 if for some 1 ≤ r < ∞ it is in Tr .

The derivation of (7.2.9) is left to the reader as Exercise 7.2.1.

Example 7.2.4. Let w = T AT . The following string belongs to T3:

R︷ ︸︸ ︷
CCT AT AT︸︷︷︸

M

GAT AT︸ ︷︷ ︸
M

U︷ ︸︸ ︷
GGA .
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We now prove the following result that summarizes relations between
the languages R, M, and U .

Theorem 7.2.5. The languages M, R, and U satisfy

M∗ = A∗w + S, (7.2.10)
UA = M + U − {ε}, (7.2.11)
w(M − ε) = AR − R. (7.2.12)

Proof. We first deal with (7.2.10). Clearly, A∗w contains at least one oc-
currence of w on the right, hence A∗w ⊂ M∗. Furthermore, a word v in
M∗ is not in A∗w if and only if its size |v| is smaller than |w| (e.g., think of
v = ab ∈ M for w = abab). Then the second w occurrence in wv overlaps
with w, which means that v is in S.

Let us turn now to (7.2.11). When one adds a character a ∈ A right after
a word u from U , two cases may occur. Either wua still does not contain
a second occurrence of w (which means that ua is a nonempty word of
U) or a new w appears, clearly at the right end. Hence UA ⊆ M + U − ε.
Let now v ∈ M − ε, then by definition wv ∈ T2 ⊆ UA − U which proves
(7.2.11).

We now prove (7.2.12). Let x = ar be a word in w(M − ε) where
a ∈ A. Because x contains exactly two occurrences of w located at its left
and right ends, r is inR and x is inAR − R, hence w(M − ε) ⊆ AR − R.
To prove AR − R ⊆ w(M − ε), we take a word arw from AR that is not
in R. Then arw contains a second occurrence of w starting in ar . As rw is
inR, the only possible position is at the left end, and then x is in w(M − ε).
This proves (7.2.12).

7.2.2. Generating functions

The next step is to translate the relations between languages into the associ-
ated generating functions. Therefore, we must now select the probabilistic
model according to which the text is generated. We derive our results for a
Markov model of order one. We adopt the following notation. To denote the
element at position (i, j ) in a matrix P we write [P]i,j . We also recall that
(I − P)−1 =∑k≥0 Pk provided ||P|| < 1 for a matrix norm || · ||. We also
write � for the stationary matrix that consists of V identical rows equal to
µ. Finally, we denote by Z the matrix Z = (I − (P − �))−1 where I is the
identity matrix.

The next lemma translates the relations between languages (7.2.10)–
(7.2.12) into relations between the generating functions Mw(z), Uw(z), and
R(z) of languages M, U , and R (we recall that the first two generating
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functions are conditioned by the occurrence of w appearing just before any
word from M and U). We define a function F (z) by

F (z)= 1

µw1

[
∑
n≥0

(P − �)n+1zn]wm,w1 =
1

µw1

[(P − �)(I − (P − �)z)−1]wm,w1

(7.2.13)

for |z| < ‖ P − � ‖−1, where µw1 is the stationary probability of the first
symbol w1 of w. For memoryless sources P = � and thus F (z) = 0.

Lemma 7.2.6. For Markov sources (of order one), the generating func-
tions associated with languages M,U , and R satisfy

1

1 − Mw(z)
= Sw(z) + P (w)zm

(
1

1 − z
+ F (z)

)
, (7.2.14)

Uw(z) = Mw(z) − 1

z − 1
, (7.2.15)

R(z) = P (w)zm · Uw(z). (7.2.16)

Recall that the underlying Markov chains are assumed to be irreducible and
aperiodic.

Proof. We first prove (7.2.15). Let us consider the language relations
(7.2.11) from Theorem 7.2.5, which we rewrite as U · A − U = M − ε.
Observe that

∑
b∈A pabz = z. Hence, the set AR gives the w-conditioned

generating function.∑
u∈U

∑
b∈A

P (ub|w)z|ub| =
∑
a∈A

∑
u∈U,�(u)=a

P (u|w)z|u|∑
b∈A

pabz = Uw(z) · z,

where �(u) denotes the last symbol of the word u. Of course, M − ε and
U translate into Mw(z) − 1 and Uw(z), and (7.2.15) is proved.

We now turn our attention to (7.2.16), and we use relation (7.2.12)
wM − w = AR − R of Theorem 7.2.5. In order to compute the con-
ditional generating function of A · R, we proceed as follows∑

ab∈A2

∑
bv∈R

P (abv)z|abv| = z2
∑
a∈A

∑
b∈A

µapab

∑
bv∈R

P (v|v−1 = b)z|v|.

But due to the stationarity of the underlying Markov chain
∑

a µapab = µb.
As µbP (v|v−1 = b) = P (bv), we get zR(z). Furthermore, wM − w trans-
lates into P (w)zm(Mw(z) − 1). By (7.2.15), this is P (w)zmUw(z)(z − 1),
and after a simplification, we obtain (7.2.16).

Finally, we deal with (7.2.14), and prove it using (7.2.10) from
Theorem 7.2.5. The left-hand side of (7.2.10) involves the language M,
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hence we must use w-conditioned generating functions. In particular,⋃
r≥1 Mr + ε of (7.2.10) translates into 1/(1 − Mw(z)). Now we deal

with A∗w of the right-hand side of (7.2.10). The w-conditioned generating
function Aw(z) of A∗ · w is

Aw(z) =
∑
n≥0

∑
|u|=n

zn+mP (uw|u−1 = wm)

=
∑
n≥0

∑
|u|=n

znP (uw1|u−1 = wm)P (w2 . . . wm|w1)zm.

We have P (w2 . . . wm|w1)zm = (1/µw1 )zmP (w), and for n ≥ 0:∑
|u|=n

P (uw1|u−1 = wm) = [Pn+1]wm,w1 .

In summary, the language A∗ · w contributes P (w)zm
[
(1/µw1 )

∑
n≥0

Pn+1zn
]
wm,w1

, while the language S − {ε} introduces Sw(z) − 1. Using the

equality Pn+1 − � = (P − �)n+1 (which follows from a consecutive ap-
plication of the identity �P = �), and observing that for any symbols a

and b [
1

µb

∑
n≥0

�zn

]
ab

=
∑
n≥0

zn = 1

1 − z
.

we finally obtain the sum in (7.2.14). This completes the proof of the
theorem.

Lemma 7.2.6 together with Theorem 7.2.3 suffice to derive an explicit
form for the generating functions Nr (z) and N(z, u).

Theorem 7.2.7. Let w be a given pattern of size m, and X be a random text
of length n generated according to an irreducible and aperiodic Markov
chain with the transition probability matrix P. Define

Dw(z) = (1 − z)Sw(z) + zmP (w)(1 + (1 − z)F (z)). (7.2.17)

Then

N0(z) = 1 − R(z)

1 − z
= Sw(z)

Dw(z)
, (7.2.18)

Nr (z) = R(z)Mr−1
w (z)Uw(z), r ≥ 1, (7.2.19)

N(z, u) = R(z)
u

1 − uMw(z)
Uw(z), (7.2.20)
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where

Mw(z) = 1 + z − 1

Dw(z)
, (7.2.21)

Uw(z) = 1

Dw(z)
, (7.2.22)

R(z) = zmP (w)
1

Dw(z)
. (7.2.23)

We recall that for memoryless sources, F (z) = 0, and hence

D(z) = (1 − z)S(z) + zmP (w). (7.2.24)

Proof. We only comment on the derivation of N0(z) since the rest follows
directly from our previous results. Observe that

N0(z) =
∑
n≥0

P(Nn = 0)zn =
∑
n≥0

(1 − P(Nn > 0))zn = 1

1 − z
−

∞∑
r=1

Nr (z),

thus the first expression follows from (7.2.19). The second expression is a di-
rect translation of T0 · w = R · A (cf. (7.2.9)) which reads N0(z)P (w)zm =
R(z)Sw(z) in terms of the appropriate generating functions.

7.2.3. Moments and limit laws

In the previous section we derived an explicit formula for the generat-
ing function N(z, u) =∑n≥0 E(uNn)zn and Nr (z). These formulae can be
used to obtain explicit and asymptotic expressions for moments of Nn (cf.
Theorem 7.2.8), the central limit theorem (cf. Theorem 7.2.11), and large
deviations (cf. Theorem 7.2.12). We start with derivation of the mean and
the variance of Nn.

Theorem 7.2.8. Under the assumptions of Theorem 7.2.7 and nP (w) →
∞, one has, for n ≥ m:

E[Nn(w)] = P (w)(n − m + 1), (7.2.25)

and

Var[Nn(w)] = nc1 + c2 + O(R−n), for R > 1 (7.2.26)

where

c1 = P (w)(2Sw(1) − 1 − (2m − 1)P (w) + 2P (w)E1)), (7.2.27)
c2 = P (w)((m − 1)(3m − 1)P (w) − (m − 1)(2Sw(1) − 1) − 2S ′

w(1))

− 2(2m − 1)P (w)2E1 + 2E2P (w)2, (7.2.28)
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and the constants E1, E2 are

E1 = 1

µw1

[(P − �)Z]wm,w1, E2 = 1

µw1

[(P2 − �)Z2]wm,w1,

Proof. Notice that the first moment estimate can be derived directly from
the definition of the stationary probability of w. In order to grasp higher mo-
ments we will use analytic tools applied to generating functions. We com-
pute the first two moments of Nn from N(z, u) since E(Nn) = [zn]Nu(z, 1)
and E(Nn(Nn − 1)) = [zn]Nuu(z, 1) where Nu(z, 1) and Nuu(z, 1) are the
first and the second derivatives of N(z, u) with respect to variable u at (z, 1).
By Theorem 7.2.7 we find

Nu(z, 1) = zmP (w)

(1 − z)2
,

Nuu(z, 1) = 2zmP (w)Mw(z)Dw(z)

(1 − z)3
.

Now we observe that both expressions admit as a numerator a function that
is analytic beyond the unit circle. Furthermore, for a positive integer k > 0

[zn](1 − z)−k =
(

n + k − 1

k − 1

)
= �(n + k)

�(k)�(n + 1)
, (7.2.29)

(where �(x) is the Euler gamma function), we find for n ≥ m

E(Nn) = [zn]Nu(z, 1) = P (w)[zn−m](1 − z)−2 = (n − m + 1)P (w).

In order to estimate variance, we introduce

�(z) = 2zmP (w)Mw(z)Dw(z),

and observe that

�(z) = �(1) + (z − 1)�′(1) + (z − 1)2

2
�′′(1) + (z − 1)3f (z),

where f (z) is the remainder of the Taylor expansion of �(z) up to order 3
at z = 1. For memoryless sources, �(z) and thus f (z) are polynomials of
degree 2m − 2 and [zn](z − 1)f (z) is 0 for n ≥ 2m − 1. Hence, by (7.2.29)
we arrive at

E(Nn(Nn − 1)) = [zn]Nuu(z, 1) = �(1)
(n + 2)(n + 1)

2

−�′(1)(n + 1) + 1

2
�′′(1).

But Mw(z)Dw(z) = Dw(z) + (1 − z) and taking into account formula
(7.2.24) for D(z), we finally obtain (7.2.26).
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For Markov sources, Dw(z) has an additional term, namely

[zn]
2(z2mP (w)2F (z))

(1 − z)2
,

where F (z), defined in (7.2.13), is analytic beyond the unit circle for
|z| ≤ R, with R > 1. The Taylor expansion of F (z) is E1 + (1 − z)E2,
and applying (7.2.29) again yields the result.

Recall that P = � for memoryless sources, so E1 = E2 = 0 and (7.2.26)
reduces to an equality for n ≥ 2m − 1. Thus

Var[Nn(w)] = nc1 + c2 (7.2.30)

with

c1 = P (w)(2S(1) − 1 − (2m − 1)P (w)),
c2 = P (w)((m − 1)(3m − 1)P (w) − (m − 1)(2S(1) − 1) − 2S ′(1)).

In passing we should notice that from the generating function N(z, u)
we can compute all moments of Nn. Instead, however, we present
some limit laws for P(Nn = r) for different values of r . We consider
r = O(1), r = E(Nn) + x

√
Var(Nn) (central and local limit regime), and

r = (1 + δ)E(Nn) (large deviations). From the central limit theorem (cf.
Theorem 7.2.11) we conclude that the normalized random variable (Nn −
E(Nn))/

√
Var(Nn) converges also in moments to the moments of the stan-

dard normal distribution. This follows from the fact that in Theorem 7.2.9
we prove the convergence of the normalized generating function to
an analytic function, namely eu2/2 for u complex in the vicinity of
zero. Since an analytic function has well-defined derivatives, conver-
gence in moments follows. We leave a formal proof to the reader (cf.
Problem 7.2.3).

Theorem 7.2.9. Under the assumptions of Theorem 7.2.8, the equation
Dw(z) = 0 has a real root ρw > 1 which is simple and such that any other
root has modulus strictly larger than ρw. Further there exists ρ > ρw such
that for r = O(1)

P(Nn(w) = r) =
r+1∑
j=1

(−1)j aj

(
n

j − 1

)
ρ−(n+j )

w + O(ρ−n), (7.2.31)

where

ar+1 = ρm
wP (w) (ρw − 1)r−1(

D′
w(ρw)

)r+1 , (7.2.32)
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and the remaining coefficients can be computed according to

aj = 1

(r + 1 − j )!
lim

z→ρw

dr+1−j

dzr+1−j

(
Nr (z)(z − ρw)r+1

)
(7.2.33)

with j = 1, 2, . . . , r .

In order to prove Theorem 7.2.9, we need the following simple result.

Lemma 7.2.10. The equation Dw(z) = 0 has at least one root, and all its
roots are of modulus greater than 1.

Proof. Poles of Dw(z) = (1 − z)/(1 − Mw(z)) are clearly poles of 1/(1 −
Mw(z)). As 1/(1 − Mw(z)) is the generating function of a language, it
converges for |z| < 1 and has no pole of modulus smaller than 1. Since
Dw(1) �= 0, then z = 1 is a simple pole of 1/(1 − Mw(z)). As all its coeffi-
cients are real and nonnegative, there is no other pole of modulus |z| = 1. It
follows that all roots of Dw(z) are of modulus greater than 1. The existence
of a root is guaranteed since Dw(z) is either a polynomial (Bernoulli model)
or a ratio of polynomials (Markov model).

Proof of Theorem 7.2.9. We first rewrite the formula on Nr (z) as follows

Nr (z) = zmP (w)(Dw(z) + z − 1)r−1

Dr+1
w (z)

. (7.2.34)

Observe that P(Nn(w) = r) is the coefficient at zn of Nr (z). By Hadamard’s
theorem, asymptotics of the coefficients of a generating function depend
on the singularities of the underlying generating function. In our case, the
generating function Nr (z) is a rational function, thus we can only expect
poles (for which the denominator Dw(z) vanishes). Lemma 7.2.10 estab-
lishes the existence and properties of such a pole. Therefore, the generating
function Nr (z) can be expanded around its root of smallest modulus, let ρw

be this smallest modulus, in Laurent’s series:

Nr (z) =
r+1∑
j=1

aj

(z − ρw)j
+ Ñr (z) (7.2.35)

where Ñr (z) is analytical in |z| < ρ ′ and ρ ′ is defined as ρ ′ = inf{|ρ| :
ρ > ρwand Dw(ρ) = 0}. The constants aj satisfy (7.2.33). This formula
simplifies into (7.2.32) for the leading constant ar+1. As a consequence of
analyticity we have for 1 < ρw < ρ < ρ ′: [zn]Ñ (r)(z) = O(ρ−n). Hence,
the term Ñr (z) contributes only to the lower terms in the asymptotic expan-
sion of Nr (z). After some algebra, and noting that [zn]1/(1 − z)k+1 = (n+k

n

)
,

we prove Theorem 7.2.9.
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In the next theorem we establish the central limit theorem in its strong
form (i.e. local limit theorem).

Theorem 7.2.11. Under the same assumption as in Theorem 7.2.8 we
have

P(Nn(w) ≤ E(Nn) + x
√

Var(Nn))=
(

1 + O

(
1√
n

))
1√
2π

∫ x

−∞
e−t2/2dt.

(7.2.36)

If, in addition, pij > 0 for all i, j ∈ A, then for any bounded real interval
B

sup
x∈B

∣∣∣∣P(Nn(w) = �E(Nn) + x
√

Var(Nn)�)

− 1√
2πVar(Nn)

e−(1/2)x2

∣∣∣∣ = o

(
1√
n

)
(7.2.37)

as n → ∞.

Proof. Let r = �E(Nn) + x
√

Var(Nn)� with x = O(1). We compute
P(Nn(w) ≤ r) (central limit theorem) and P(Nn(w) = r) (local limit
theorem) for r = E(Nn) + x

√
Var(Nn) when x = O(1). Let νn =

E(Nn(w)) = (n − m + 1)P (w) and σ 2
n = Var(Nn(w)) = c1n + O(1). To

establish the normality of (Nn(w) − νn)/σn, it suffices, according to Lévy’s
continuity theorem, to prove the following

lim
n→∞ e−τνn/σnNn(eτ/σn) = eτ 2/2 (7.2.38)

for complex τ (actually, τ = iv suffices). Again, by Cauchy’s theorem

Nn(u) = 1

2πi

∮
N(z, u)

zn+1
dz = 1

2πi

∮
uP (w)

D2
w(z)(1 − uMw(z))zn+1−m

dz,

where the integration is along a circle around the origin. The evaluation
of this integral is standard and it appeals to the Cauchy residue theorem.
Namely, we enlarge the circle of integration to a bigger one, say R > 1, such
that the bigger circle contains the dominant pole of the integrand function.
Observe that the Cauchy integral over the bigger circle is O(R−n). Let us
now substitute u = et and z = eρ . Then, the poles of the integrand are the
roots of the equation

1 − etMw(eρ) = 0. (7.2.39)

This equation implicitly defines in some neighbourhood of t = 0 a unique
C∞ function ρ(t), satisfying ρ(0) = 0. Notably, all other roots ρ satisfy
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inf |ρ| = ρ ′ > 0. Then, the residue theorem with eρ ′
> R > eρ > 1 leads to

Nn(et ) = C(t)e−(n+1−m)ρ(t) + O(R−n) (7.2.40)

where

C(t) = P (w)

D2
w(ρ(t))M ′

w(ρ(t))
.

To study the properties of ρ(t), we observe that the cumulant formula im-
plies E(Nn(w)) = [t] log Nn(et ) and σ 2

n = [t2] log Nn(et ) where, we recall
that [t r ]f (t) denotes the coefficient of f (t) at t r . In our case, νn ∼ −nρ ′(0)
as well as σ 2

n ∼ −nρ ′′(0). Now set t = τ/σn → 0 in (7.2.40) for some com-
plex τ . Since uniformly in t we have ρ(t) = tρ ′(0) + ρ ′′(0)t2/2 + O(t3) for
t → 0, our estimate (7.2.40) leads to

e−τνn/σnNn(eτ/σn) = exp

(
τ 2

2
+ O(nτ 3/σ 3

n )

)
= eτ 2/2

(
1 + O(1/

√
n)
)
,

which proves (7.2.36) after applying the Berry–Essen inequality (see the
Notes for a reference) that allows the error term O(1/

√
n) to be derived for

the probability distribution.
To establish the local limit theorem, we observe that if pij > 0 for all

i, j ∈ A, then ρ(t) > 0 for t �= 0 (cf. Problem 7.2.4). We can obtain a much
more refined local limit result. Indeed, we find for x = o(n1/6)

P(Nn = E(Nn) + x
√

nc1) = 1√
2πnc1

e−(1/2)x2

(
1 − κ3

2c
3/2
1

√
n

(
x − x3

3

))

+ O(n−3/2), (7.2.41)

where κ3 is a constant (i.e. the third cumulant). This completes the proof of
Theorem 7.2.11.

Finally, we establish large deviations estimates for Nn. Large deviations
plays a central role in many applications, most notably in data mining
and molecular biology, since it allows a threshold to be established for
overrepresented and underrepresented patterns.

Theorem 7.2.12. Let r = aE[Nn] with a = (1 + δ)P (w) for δ �= 0. For
complex t , define ρ(t) to be the root of

1 − etMw(eρ) = 0, (7.2.42)

and define ωa and σa by

−ρ ′(ωa) = a, −ρ ′′(ωa) = σ 2
a .
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Then

P(Nn(w) = (1 + δ)E(Nn)) ∼ 1

σa

√
2π(n − m + 1)

e−(n−m+1)I (a)+θa

(7.2.43)

where I (a) = aωa + ρ(ωa) and

θa = log
P (w)emρ(ωa )

Dw(eρ(ωa )) + (1 − eρ(ωa ))D′
w(eρ(ωa ))

, (7.2.44)

and Dw(z) is defined in (7.2.17).

Proof. From (7.2.40) we conclude that

lim
n→∞

log Nn(et )

n
= −ρ(t).

By the Gärtner–Ellis (see the Notes for a reference) theorem we find

lim
n→∞

log P(Nn > na)

n
= −I (a),

where

I (a) = aωa + ρ(ωa)

with ωa being a solution of −ρ ′(t) = a. A stronger version of the above
result is possible and we derive it in the sequel. In fact, we use (7.2.41) and
the “shift of mean” technique.

As in the local limit regime, we could use Cauchy’s formula to com-
pute the probability P(Nn = r) for r = E(Nn) + xO(

√
n). But, formula

(7.2.41) is only good for x = O(1) while we need x = O(
√

n) for the large
deviations. To expand its validity, we shift the mean of the generating func-
tion Nn(u) to a new value, say an = (1 + δ)P (w)(n − m + 1), so we can
again apply the central limit formula (7.2.41) around the new mean. To
accomplish this, let us rewrite (7.2.40) as for any R > 0

Nn(et ) = C(t)[g(t)]n−m+1 + O(R−n)

where g(t) = e−ρ(t). (In the next derivation, we drop for simplicity the
O(R−n) term.) The above suggests that Nn(et ) is the moment generating
function of a sum Sn of n − m + 1 “almost” independent random vari-
ables X1, . . . , Xn−m+1 having moment generating function equal to g(t)
and Y whose moment generating function is C(t). Observe that E(Sn) =
(n − m + 1)P (w) while we need to estimate the tail of Sn around (1 + δ)
(n − m + 1)P (w). To achieve it, we introduce a new random variable X̃i
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whose moment generating function g̃(t) is

g̃(t) = g(t + ω)

g(ω)
where ω will be chosen later. Then, the mean and the variance of the new
variable X̃ are

E(X̃) = g′(ω)

g(ω)
= −ρ ′(ω),

Var(X̃) = g′′(ω)

g(ω)
−
(

g′(ω)

g(ω)

)2

= −ρ ′′(ω).

Let us now choose ωa such that

−ρ ′(ωa) = g′(ωa)

g(ωa)
= a = P (w)(1 + δ).

Then, the new sum S̃n − Y = X̃1 + · · · + X̃n−m+1 has a new mean (1 + δ)
P (w)(n − m + 1) = a(n − m + 1), and hence we can apply to S̃n − Y the
central limit result (7.2.41). To translate from S̃n − Y to Sn we use the
following simple formula

[etM ]
(
gn(t)

) = gn(ω)

eωM
[etM ]

(
gM (t + ω)

gM (ω)

)
(7.2.45)

where M = a(n − m + 1) and [etn]g(t) denotes the coefficient of g(t) at
zn = etn (where z = et ). Now, we can apply (7.2.41) to the right-hand side
of (7.2.45) to obtain

[etM ]

(
gM (t + ω)

gM (ω)

)
∼ 1

σa

√
2π(n − m + 1)

.

To obtain the final result we must take into account the effect of Y whose
moment generating function is C(t). This leads to a = 1 + δ being replaced
by a = 1 + δ + C ′(0)/n resulting in the correction term eθa = eC ′(0)ωa .
Theorem 7.2.12 is proved.

We illustrate the above results on an example taken from molecular
biology.

Example 7.2.13. Biologists apply the so called Z-score and p-value to
determine whether biological sequences such as DNA or protein contain a
biological signal, that is, an underrepresented or overrepresented pattern.
These quantities are defined as

Z(w) = E(Nn(w)) − Nn(w)√
Var(Nn(w))

,

pval(r) = P (Nn(w) > r).
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Table 7.1. Z scores and p-values of oligomens in
A. thaliana.

p-value
Oligomer Obs (large deviation) Z-score.

AATTGGCGG 2 8.059 × 10−4 48.71
TTTGTACCA 3 4.350 × 10−5 22.96
ACGGTTCAC 3 2.265 × 10−6 55.49

AAGACGGTT 3 2.186 × 10−6 48.95
ACGACGCTT 4 1.604 × 10−9 74.01
ACGCTTGG 4 5.374 × 10−10 84.93
GAGAAGACG 5 0.687 × 10−14 151.10

The Z-score measures the actual deviation of the observed value of Nn(w)
from its mean divided by the standard deviation. Clearly, this score makes
sense only if one can prove, as we did in Theorem 7.2.11, that Z satisfies
(at least asymptotically) the Central Limit Theorem (CLT). On the other
hand, p-value is used for rare occurrences, far away from the mean where
one needs to apply the large deviations as in Theorem 7.2.12.

The range of validity of the Z-score and p-value are important as
illustrated in Table 7.1 where results for 2008 nucleotides long fragments
of A. thaliana (a plant genome) are presented. In the table for each 9-mer the
number of observations is presented in the first column followed by the large
deviations probability computed from Theorem 7.2.12 where the parameter
r is the observed value of Nn(w) and finally the Z-score. We observe
that for AAT T GGCGG and AAGACGGT T the Z-scores are about 48
while p-values differ by two order of magnitudes. In fact, occurrences of
these 9-mers are very rare, and therefore the Z-score is not an adequate
measure.

7.2.4. Waiting times

We shall now discuss the waiting times Tw and Tj , where Tw = T1 is the
first time w occurs in the text, while Tj is the minimum length of the text
in which w occurs j times. Fortunately, we do not need to rederive the
generating function of Tj since, as we have already indicated in (7.2.3),
the following duality principle holds

{Nn ≥ j} = {Tj ≤ n},
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and in particular, {Tw > n} = {Nn = 0}. Therefore, if

T (u, z) =
∑
n≥0

∑
j≥0

P(Tj = n)znuj ,

then by the duality principle we have

(1 − u)T (u, z) + u(1 − z)N(z, u) = 1,

and one obtains T (u, z) from Theorem 7.2.7. Waiting times were analysed
in depth in Chapter 6.

Finally, observe that the above duality principle implies

E(Tw) =
∑
n≥0

P(Nn = 0) = N0(1).

In particular, for memoryless sources, from Theorem 7.2.7 we conclude
that

N0(z) = S(z)

(1 − z)S(z) + zmP (w)
.

See also formula (1.9.3), hence

E(Tw) =
∑
n≥0

P(Nn(w) = 0) = N0(1) = S(1)

P (w)

=
∑

k∈P(w)

1

P (wk
1)

= 1

P (w)
+

∑
k∈P(w)−{m}

1

P (wk
1)

(7.2.46)

7.3. Generalized string matching

In this section we consider generalized pattern matching in which a set of
patterns (rather than a single pattern) is given. We assume that the pattern
is a pair of sets of words (W0,W) where W =⋃d

i=1 Wi consists of sets
Wi ⊂ Ami (i.e. all words in Wi have a fixed length equal to mi). The
set W0 is called the forbidden set. For W0 = ∅ one is interested in the
number of pattern occurrences, Nn(W), defined as the number of patterns
from W occurring in the text Xn

1 generated by a (random) source. Another
parameter of interest may be the number of positions in Xn

1 where a pattern
from W appears (clearly, some patterns may occur more than once at some
positions). The latter quantity is denoted by �n. If we define �(i)

n as the
number of positions where a word from Wi occurs, then

Nn(W) = �(1)
n + · · · + �(d)

n .
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Notice that at any given position of the text and for a given i only one word
from Wi can occur.

For W0 �= ∅ one studies the number of occurrences Nn(W) under the
condition that Nn(W0) := �(0)

n = 0, that is, there is no occurrence of a
pattern from W0 in the text Xn

1 . This could be called a restricted pattern
matching since one restricts the text to those strings that do not contain
strings from W0.

Finally, we may set Wi = ∅ for i = 1, . . . , d with W0 �= ∅ and count
the number of text strings that do not contain any pattern from W0.
(Alternatively, we can estimate the probability that a randomly selected
text Xn

1 does not contain any pattern from W0.) In particular, define for
� ≤ k

W0 = {11, 101, . . . , 10�−11, 0k+1}, (7.3.1)

A text satisfying the property that no pattern from W0 defined in (7.3.1) oc-
curs in it is called an (�, k) sequence. Such sequences are used for magnetic
coding.

In this section, we first present an analysis of the generalized pattern
matching with W0 = ∅ and d = 1 that we call the reduced pattern set
(i.e. no pattern is a substring of another pattern) followed by a detailed
analysis of the generalized pattern matching. We describe two methods
of analysis. First, we generalize our language approach from the previ-
ous section, and then for the general pattern matching case we use de
Bruijn’s automata and spectral analysis of matrices. Finally, we enumer-
ate (�, k) sequences and compute the so-called Shannon capacity for such
sequences.

Throughout this section we assume that the text is generated by a
(nondegenerate) memoryless source (B), as defined in Section 7.1.

7.3.1. String matching over a reduced set of patterns

We analyse here a special case of the generalized pattern matching with
W0 = ∅ and d = 1. In this case we shall write W1 = W = {w1, . . . , wK}
where wi (1 ≤ i ≤ K) are given patterns with fixed length |wi | = m. We
shall generalize the results from the exact pattern matching section, but we
omit most of the proofs or move them to exercises.

As before, let T≥1 be a language of words containing at least one
occurrence from the set W , and for any nonnegative integer r , let Tr

be the language of words containing exactly r occurrences from W . In
order to characterize Tr we introduce some additional languages for any
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1 ≤ i, j ≤ K:
• Mij = {v : wiv ∈ T2 and wj occurs at the right end of v};
• Ri defined as the set of words containing only one occurrence of wi ,

located at the right end;
• Ui = {u : wiu ∈ T1}, that is, a set of words u such that the only

occurrence of wi ∈ W in wiu is on the left.
We also need to generalize the autocorrelation set and the autocorre-

lation polynomial to a set of patterns. For any given two strings w and u,
let

Sw,u = {um
k+1 : wm

m−k+1 = uk
1}

be the correlation set. The set of positions k satisfying uk
1 = wm

m−k+1 is
denoted as P(w, u). If w = x · v and u = v · y for some words x, y, v, then
y ∈ Sw,u and |v| ∈ P(w, u). The correlation polynomial, Sw,u(z), of w and
u is the associated generating function of Sw,u, that is,

Sw,u(z) =
∑

k∈P(w,u)

P (um
k+1)zm−k.

In particular, for wi, wj ∈ W we define Si,j := Swi,wj
. The correlation

matrix of W is denoted as S(z) = {Swiwj
(z)}i,j=1,K .

Example 7.3.1. Consider a DNA sequence over the alphabet A = {A, C,

G, T } generated by a memoryless source with P (A) = 1
5 , P (C) = 3

10 ,
P (G) = 3

10 and P (T ) = 1
5 . Let w1 = ATT and w2 = TAT. Then the cor-

relation matrix S(z) is

S(z) =
(

1 1 + (z2/25)
1 + (z/5) 1 + (z2/25)

)
.

In order to analyse the number of occurrences of Nn(W) and its gener-
ating functions we first generalize the language relationships discussed in
Theorem 7.2.3. Observe that

Tr =
∑

1≤i,j≤K

RiMr−1
ij Uj ,

T≥1 =
∑
r≥1

∑
1≤i,j≤K

RiMr−1
ij Uj ,

where
∑

denotes disjoint union of sets. As in Theorem 7.2.5, one finds the
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following relationships between just introduced languages⋃
k≥1

Mk
i,j = A∗ · wj + Sij − ε, 1 ≤ i, j ≤ K,

Ui · A =
⋃
j

Mij + Ui − ε, 1 ≤ i ≤ K,

A · Rj − (Rj − wj ) =
⋃

i

wiMij , 1 ≤ j ≤ K,

T0 · wj = Rj + Ri(Sij − ε), 1 ≤ i, j ≤ K.

Let us now analyse Nn(W) in a probabilistic framework. To simplify our
presentation, we assume that the text is generated by a memoryless source.
Then the above language relationships translate directly into generating
functions, as discussed in the last section.

Before we proceed, we adopt the following notation. Lowercase let-
ters are reserved for vectors which are assumed to be column vectors
(e.g., xt = (x1, . . . , xK )) except for vectors of generating functions which
we denote by uppercase letters (e.g., Ut (z) = (U1(z), . . . , UK (z)) where
Ui(z) is the generating function of a language Uwi

). The upper index
“t” denotes transpose. We shall use uppercase letters for matrices (e.g.,
S(z) = {Swiwj

(z)}i,j=1,K ). In particular, we write I for the identity matrix,
and �1t = (1, . . . , 1) for the vector of all 1s.

Now we are ready to present exact formulae for the generating func-
tion Nr (z) =∑n≥0 P(Nn(W) = r)zn and N(z, u) =∑k≥0 Nr (z)ur . The
following theorem is a direct consequence of our definitions and of the
relations between languages.

Theorem 7.3.2. LetW = {w1, . . . , wK} be a given set of reduced patterns
each of length m, and X be a random text of length n generated by a
memoryless source. The generating functions Nr (z) and N(z, u) can be
computed as follows:

Nr (z) = Rt (z)Mr−1(z)U(z) (7.3.2)

N(z, u) = Rt (z)u(I − uM(z))−1U(z) , (7.3.3)

where, denoting wt = (P (w1), . . . , P (wK )) and �1t = (1, 1, . . . , 1), we have

M(z) = (D(z) + (z − 1)I)D(z)−1, (7.3.4)

(I − M(z))−1 = S(z) + zm

1 − z
�1 · wt , (7.3.5)

U(z) = 1

1 − z
(I − M(z)) · �1, (7.3.6)

Rt (z) = zm

1 − z
wt · (I − M(z)), (7.3.7)
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and

D(z) = (1 − z)S(z) + zm�1 · wt .

Using these results and following the footsteps of our analysis for the
exact pattern matching, we arrive at the following asymptotic results.

Theorem 7.3.3. Let the text X be generated by a memoryless source with
P (wi) > 0 for i = 1, . . . , K and P (W) =∑wi∈W P (wi) = wt · �1.

(i) The following holds

E(Nn(W)) = (n − m + 1)P (W),

Var(Nn(W)) = (n − m + 1)
(
P (W) + P 2(W) − 2mP 2(W)

+ 2wt(S(1) − I)�1
)

+m(m − 1)P 2(W) − 2wt ·
S(1) · �1,

where
·
S(1) denotes the derivative of the matrix S(z) at z = 1.

(ii) Let ρW be the smallest root of multiplicity one of det D(z) = 0 outside
the unit circle |z| ≤ 1. There exists ρ > ρW such that for r = O(1)

P(Nn(W) = r) = (−1)r+1 ar+1

r!
(n)rρ

−(n−m+r+1)
W

+
r∑

j=1

(−1)j aj

(
n

j − 1

)
ρ

−(n+j )
W + O(ρ−n),

where ar are computable constants.
(iii) Let B be a bounded real interval and r = �E(Nn) + x

√
Var(Nn)�.

Then

sup
x∈B

∣∣∣∣P(Nn(W) = r) − 1√
2πVar(Nn)

e−(1/2)x2

∣∣∣∣ = o

(
1√
n

)
,

as n → ∞.
(iv) Let r = (1 + δ)E(Nn) with δ �= 0, and let a = (1 + δ)P (W). Define

τ (t) to be the root of

det(I − etM(eτ )) = 0,

and ωa and σa to be

−τ ′(ωa) = −a, −τ ′′(ωa) = σ 2
a .

Then

P(Nn(W) = r) ∼ 1

σa

√
2π(n − m + 1)

e−(n−m+1)I (a)+θa

where I (a) = aωa + τ (ωa) and θa is a computable constant (cf.
Problem 7.3.3).
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Proof. We only sketch the derivation of part (iii) but we present two proofs.
Our starting point is

N(z, u) = Rt (z)u(I − uM(z))−1U(z)

shown in Theorem 7.3.2 to hold for |z| < 1 and |u| < 1. We may proceed
in two different ways.

Method A: Determinant Approach.
Observe that

(I − uM(z))−1 = B(z, u)

det(I − uM(z))

where B(z, u) is a complex matrix. Let

Q(z, u) := det(I − uM(z)),

and let z0 = ρ(u) be the smallest root of Q(z, u) = 0. Observe that ρ(1) = 1
by (7.3.5).

For our central limit result, we restrict out interest to ρ(u) in a vicinity
of u = 1. Such a root exists and is unique since for real z the matrix M(z)
has all positive coefficients. The Perron–Frobenius theorem implies that
all other roots ρi(u) are of smaller modulus. Finally, one can analytically
continue ρ(u) to a complex neighbourhood of u. Thus Cauchy’s formula
yields for some A < 1

Nn(u) = [zn]N(z, u) = 1

2πi

∮
Rt (z)B(z, u)U(z)

Q(z, u)

dz

zn+1

= C(u)ρ−n(u)(1 + O(An))

where C(u) = −Rt (ρ(u))B(ρ(u), u)U(ρ(u))ρ−1(u)/Q′(ρ(u), u). As in the
proof of Theorem 7.2.11, we recognize a quasi-power form for Nn(u) that
directly leads to the central limit theorem. An application of a saddle point
method completes the proof of the local limit theorem.

Method B: Eigenvalue Approach
We now apply the Perron–Frobenius theorem for positive matrices to-

gether with a matrix spectral representation to obtain even more precise
asymptotics. Our starting point is the following formula

[I − uM(z)]−1 =
∞∑

k=0

ukMk(z). (7.3.8)

Now, observe that M(z) for real z, say x, is a positive matrix since each
element Mij (x) is the generating function of the language Mij and for
any v ∈ Mij we have P (v) > 0 for memoryless sources. Let then λ1(x),
λ2(x), . . . , λK (x) be eigenvalues of M(x). By the Perron–Frobenius result
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we know that λ1(x) is simple, real and λ1(x) > |λi(x)| for i ≥ 2. To simplify
our further derivation, we also assume that λi(x) are simple but this assump-
tion will not have any significant impact on our asymptotics, as we shall
see. Let li and ri , i = 1, . . . , K be left and right eigenvectors corresponding
to λ1(x), λ2(x), . . . , λK (x), respectively. We set 〈l1, r1〉 = 1 where 〈x, y〉 is
the scalar product of the vectors x and y. Since ri is orthogonal to the left
eigenvector rj for j �= i, we can write for any vector x

x = 〈l1, x〉r1 +
K∑

i=2

〈li , x〉ri .

This yields

M(x)x = 〈l1, x〉λ1(x)r1 +
K∑

i=2

〈li , x〉λi(x)ri .

Since Mk(x) has eigenvalues λk
1(x), λk

2(x), . . . , λk
K (x), then – dropping even

the assumption about eigenvalues λ2, . . . , λK being simple – we arrive at

Mk(x)x = 〈l1, x〉r1λ
k
1(x) +

K ′∑
i=2

qi(k)〈li , x〉riλk
i (x) (7.3.9)

where qi(k) is a polynomial in k (qi(k) ≡ 1 when the eigenvalues λ2, . . . , λK

are simple). Finally, we observe that we can analytically continue λ1(x) to
a complex plane due to separation of λ1(x) from other eigenvalues leading
to λ1(z).

Applying now (7.3.9) to (7.3.8) and using it in the formula for N(z, u)
derived in Theorem 7.3.2 we obtain

N(z, u) = Rt (z)u[I − uM(z)]−1U(z)

= uRt (z)

( ∞∑
k=0

ukλk
1(z)〈l1(z), U(z)〉r1(z)

+
K ′∑
i=2

ukλk
i (z)〈li(z), U(z)〉ri(z)

)

= uC1(z)

1 − uλ1(z)
+

K ′∑
i=2

uCi(z)

1 − uλi(z)

for some polynomials Ci(z). This representation entails application of the
Cauchy formula yielding, as before, for A < 1 and a polynomial B(u)

Nn(u) = [zn]N(z, u) = B(u)ρ−n(u)(1 + O(An))
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where ρ(u) is the smallest root of 1 − uλ(z) = 0 which coincides with
the smallest root of det(I − uM(u)) = 0. In the above A < 1 since λ1(z)
dominates all the other eigenvalues. In the next section we return to this
method and discuss it in some more depth.

7.3.2. Analysis of generalized string matching

In this section we deal with a general pattern matching problem where
words in W are not of the same length, that is W =⋃d

i=1 Wi such that Wi

is a subset of Ami with all mi being different. We still keep W0 = ∅ (i.e.
there are no forbidden words). In the next section, we consider the case
W0 �= ∅. We present here a powerful method based on finite automata (i.e.
de Bruijn graphs). This approach is very versatile, but unfortunately is not
as insightful as the combinatorial approach so far discussed.

Our goal is to derive the probability generating function Nn(u) =
E(uNn(W)) of the number of occurrences of the pattern W in the text.
We start by building an automaton that scans the text X1X2 · · ·Xn and
recognizes the occurrences of patterns from the set W . As a matter of
fact, our automaton is a de Bruijn graph that we describe in the sequel:
Let M = max{m1, . . . , md} − 1 and B = AM . The de Bruijn automaton
is built over the state space B. Let b ∈ B and a ∈ A. Then a transition
from a state b upon scanning symbol a of the text is to b̂ ∈ B such
that

b̂ = b2b3 · · · bMa,

that is, the leftmost symbol of b is erased and symbol a is appended on the
right. We shall denote such a transition as ba �→ b̂ or ba ∈ Ab̂ since the
first symbol of b has been deleted when scanning symbol a. When scanning
a text of length n − M one constructs an associated path of length n − M

in the de Bruijn automaton that begins at a state formed by the first M

symbols of the text, that is, b = X1X2 · · ·XM .
To record the number of pattern occurrences we equip the automaton

with a counter φ(b, a). When a transition occurs, we increment φ(b, a) by
the number of occurrences of patterns from W in the text ba. Since all
occurrences of patterns from W that end at a are contained in the text of
the form ba, we realize that

φ(b, a) = NM+1(W, ba) − NM (W, b)

where Nk(W, x) is the number of pattern occurrences in the text x of length
k. Having built such an automaton, we construct a transition V M × V M

matrix T(u) as a function of a complex variable u and indexed by B × B
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aa

ab

ba

bba

b

a

b

b

a

b

a

Figure 7.2. The de Bruijn graph for W = {ab, aab, aba}.

such that

[T(u)]b,b̂ = P (a)uφ(b,a)[[ ba ∈ Ab̂ ]]

= P (a)uNM+1(W,ba)−NM (W,b)[[ b̂ = b2b3 · · · bMa ]]
(7.3.10)

where Iverson’s bracket convention is used:

[[B]] =
{

1 if the property B holds,
0 otherwise.

Example 7.3.4. Let W = {ab, aab, aba}. Then M = 2, the de Bruijn
graph is presented in Figure 7.2, and the matrix T(u) is shown below

T(u) =

aa ab ba bb

aa

ab

ba

bb

⎛
⎜⎝

P (a) P (b) u 0 0
0 0 P (a) u2 P (b)

P (a) P (b) 0 0
0 0 P (a) P (b)

⎞
⎟⎠ .

Next, we extend the above construction to scan a text of length k ≥ M .
By combinatorial properties of matrix products, the entry of index b, b̂ of the
power Tk(u) cumulates all terms corresponding to starting in state b, ending
in state b̂, and recording the total number of occurrences of patternsW found
upon scanning the last k letters of the text. Therefore,[

Tk(u)
]
b,b̂

=
∑

v∈Ak

P (v) uNM+k(W,bv)−NM (W,b). (7.3.11)

Define now a vector x(u) indexed by b as

[x(u)]b = P (b) uNM (W,b).

Then, the summation of all the entries of the row vector x(u)tTk(u)
is achieved by means of the vector �1 = (1, . . . , 1) so that the quantity
x(u)tT(u)k�1 represents the probability generating function of Nk+M (W)
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taken over all texts of length M + k. By setting n = M + k we prove the
following theorem.

Theorem 7.3.5. Consider a general pattern W = (W1, . . . ,Wd ) with
M = max{m1, . . . , md} − 1. Let T(u) be the transition matrix defined as

[T(u)]b,b̂ = P (a)uNM+1(W,ba)−NM (W,b)[[ b̂ = b2b3 · · · bMa ]]

where b, b̂ ∈ AM and a ∈ A. Then

Nn(u) = E(uNn(W)) = bt (u)Tn(u)�1 (7.3.12)

where bt (u) = xt (u)T−M (u). Also,

N(z, u) =
∑
n≥0

Nn(z)zn = bt (u)(I − zT(u))−1�1 (7.3.13)

for |z| < 1.

Let us now return for a moment to the reduced pattern case discussed
in the previous section and compare expression (7.3.13) derived here with
(7.3.3) of Theorem 7.3.2 that we now repeat

N(z, u) = Rt (z)u(I − uM(z))−1U(z).

Although these formulae have a striking resemblance they are quite differ-
ent. In (7.3.3) M(z) is a matrix of z representing generating functions of
languages Mij , while T(u) is a function of u and it is the transition matrix
of the associated de Bruijn graph. Nevertheless, the eigenvalue method dis-
cussed in the proof of Theorem 7.3.3 can be directly applied to derive limit
laws of Nn(W) for a general set of patterns W . We shall discuss it next.

To study asymptotics of Nn(W) we need to estimate the growth of
T n(u) which is governed by the growth of the largest eigenvalue, as we
have already seen in the previous sections. Here, however, the situation
is a little more complicated because the matrix T(u) is irreducible but not
necessarily primitive (cf. Chapter 1 for in depth discussion). It follows from
the definitions of Chapter 1 that T(u) is irreducible if its associated de Bruijn
graph is strongly connected, while for primitivity of T(u) we require that
the greatest common divisor of the cycle weights of the de Bruijn graph is
equal to one.

Let us first verify the irreducibility of T(u). It is easy to check that the
matrix is irreducible since for any g ≥ M and b, b̂ ∈ AM there are two
words w, v ∈ Ag such that bw = vb̂ (e.g., for g = M one can take w = b̂

and v = b). Thus Tg(u) > 0 for u > 0 which is sufficient for irreducibility.
Let us now have a closer look at the primitivity of T(u). We start with

a precise definition. Let ψ(b, b̂) := φ(b, a) where ba �→ b̂ is the counter
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value when transitioned from b to b̂. Let also C be a cycle in the associated
de Bruijn graph. Define the total weight of the cycle C as

ψ(C) =
∑
b,b̂∈C

ψ(b, b̂).

Finally, we set ψW = gcd(ψ(C) : C cycle). If ψW = 1, then we say that
T(u) is primitive.

Example 7.3.4 (continued).. Consider again the matrix T(u) and its associ-
ated graph shown in Figure 7.2. There are six cycles of respective weights
0, 3, 2, 0, 0, 1, therefore ψW = 1 and T(u) is primitive.

Consider now another matrix

T(u) =
(

P (a) P (b) u4

P (a) u2 P (b) u3

)
.

This time there are three cycles of weights 0, 6, and 3 and ψW = 3. The
matrix is not primitive. Observe that the characteristic polynomial λ(u) of
this matrix is a polynomial in u3.

Observe that the diagonal elements of T(u)k (i.e. its trace) are polynomi-
als in u� if and only if � divides ψW ; therefore, the characteristic polynomial
det(zI − T(u)) of T(u) is a polynomial in uψW . Indeed, it is known that for
any matrix A

det(I − A) = exp

(∑
k≥0

−Tr[Ak]

k

)

where Tr[A] is the trace of A.
Asymptotic behaviour of the generating function Nn(u) = E(uNn(W)),

hence Nn(W), depends on the growth of Tn(u). The next lemma summarizes
some useful properties of T(u) and its eigenvalues. For the matrix T(u) of
dimension |A|M × |A|M we denote by λj (u) for j = 1, . . . , R = |AM |
its eigenvalues and we assume that |λ1(u)| ≥ |λ2(u)| ≥ · · · ≥ |λR(u)|. To
simplify notation, we often drop the index of the largest eigenvalue, that is,
λ(u) = λ1(u). Observe that �(u) = |λ(u)| is known as the spectral radius
and it is equal to

�(u) = lim
n→∞ ||T n(u)||1/n

where || · || is any matrix norm.

Lemma 7.3.6. Let GM (W) and T(u) denote, respectively, the de Bruijn
graph and its associated matrix defined in (7.3.10) for a general pattern
W . Assume P (W) > 0.
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(i) For u > 0 the matrix T(u) has a unique dominant eigenvalue λ(u)
(> λj (u) for j = 2, . . . , |A|M ) that is strictly positive and a dominant
eigenvector r(u) whose entries are all strictly positive. Furthermore,
there exists a complex neighbourhood of the real positive axis on
which the mappings u → λ(u) and u → r(u) are well defined and
analytic.

(ii) Define �(s) = log λ(es) for s complex. For real s the function s →
�(s) is strictly increasing and strictly convex. In addition,

�(0) = 1, �′(0) = P (W) > 0, �′′(0) = σ 2(W) > 0.

(iii) For any θ ∈ (0, 2π) and x real �(xeiθ ) ≤ �(x).
(iv) For any θ ∈ (0, 2π), if ψW = 1, then for x real �(xeiθ ) < �(x); other-

wise ψW = d > 1 and �(xeiθ ) = �(x) if and only if θ = 2kπ/d.

Proof. We first prove (i). Take u > 0 real positive. Then the matrix T(u)
has positive entries, and for any exponent g ≥ M the gth power of T(u)
has strictly positive entries, as shown above (see irreducibility of T(u)).
Therefore, by the Perron–Frobenius theorem (cf. also Chapter 1) there
exists an eigenvalue λ(u) that dominates strictly all the others. Moreover, it
is simple and strictly positive. In other words, one has

λ(u) = λ1(u) > |λ2(u)| ≥ |λ3(u)| ≥ · · · .
Furthermore, the corresponding eigenvector r(u) has all its components
strictly positive. Since the dominant eigenvalue is separated from other
eigenvalues, by perturbation theory there exists a complex neighbourhood
of the real positive axis where the functions u → λ(u) and u → r(u) are
well defined and analytic. Moreover, λ(u) is an algebraic function since it
satisfies the characteristic equation det(λI − T(u)) = 0.

We now prove part (ii). The increasing property for λ(u) (and thus for
�(s)) is a consequence of the fact that if A and B are nonnegative irreducible
matrices such that Ai,j ≥ Bi,j for all (i, j ), then the spectral radius of A is
larger than the spectral radius of B.

For convexity of �(s), it is sufficient to prove that for u, v > 0

λ(
√

uv) ≤
√

λ(u)
√

λ(v).

Since eigenvectors are defined up to a constant, one can always choose the
eigenvectors r(

√
uv), r(u), and r(v) such that

max
i

ri(
√

uv)√
ri(u) ri(v)

= 1.

Suppose that this maximum is attained at some index i. We denote by Pij the
coefficient at u in T(u), that is, Pij = [uψ ][T(u)]ij . By the Cauchy–Schwarz
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inequality we have

λ(
√

uv)ri(
√

uv) =
∑

j

Pij (
√

uv)ψ(i,j ) rj (
√

uv)

≤
∑

j

Pij (
√

uv)ψ(i,j )
√

rj (u) rj (v)

≤
⎛
⎝∑

j

Pij uψ(i,j ) rj (u)

⎞
⎠

1/2 ⎛
⎝∑

j

Pij vψ(i,j ) rj (v)

⎞
⎠

1/2

=
√

λ(u)
√

λ(v)
√

ri(u) ri(v),

which implies convexity of �(s). To show that �(s) is strictly convex, we
argue as follows: Observe that for u = 1 the matrix T(u) is stochastic, hence
λ(1) = 1 and �(0) = 0. As we shall see below, the mean and the variance
of Nn(W) are equal asymptotically to n�′(0) and n�′′(0), respectively.
From the problem formulation, we conclude that �′(0) = P (W) > 0 and
�′′(0) = σ 2(W) > 0. Therefore, �′(s) and �′′(s) cannot always be 0 and
(since they are analytic) they cannot be zero on any interval. This implies
that �(s) is strictly increasing and strictly convex.

We now establish part (iii). For |u| = 1, and x real positive, consider
two matrices T(x) and T(xu). From (i) we know that for T(x) there exist a
dominant strictly positive eigenvalue λ = λ(x) and a dominant eigenvector
r = r(x) whose all entries rj are strictly positive. Consider an eigenvalue
ν of T(xu) and its corresponding eigenvector s = s(u). Denote by vj the
ratio sj /rj . One can always choose r and s such that max1≤j≤R |vj | = 1.
Suppose that this maximum is attained for some index i. Then

|νsi | = |
∑

j

Pij (xu)ψ(i,j ) sj | ≤
∑

j

Pij xψ(i,j ) rj = λri. (7.3.14)

We conclude that |ν| ≤ λ, and part (iii) is proven.

Finally we deal with part (iv). Suppose now that the equality |ν| = λ

holds. Then, all the previous inequalities in (7.3.14) become equalities.
First, for all indices � such that Pi,� �= 0, we deduce that |s�| = r�, and v�

has modulus 1. For these indices �, we have the same equalities in (7.3.14)
as for i. Finally, the transitivity of the de Bruijn graph entails that each
complex vj is of modulus 1. Now, the converse of the triangular inequality
shows that for every edge (i, j ) ∈ GM (W) we have

uψ(i,j )vj = ν

λ
vi,
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and for any cycle of length L we conclude that(ν

λ

)L

= uψ(C).

However, for any pattern W there exists a cycle C of length one with weight
ψ(C) = 0, as is easy to see. This proves that ν = λ and that uψ(C) = 1 for any
cycle C. If ψW = gcd(ψ(C), C cycle) = 1, then u = 1 and �(xeiθ ) < �(x)
for θ ∈ (0, 2π).

Suppose now that ψW = d > 1. Then, the characteristic polynomial
and the dominant eigenvalue λ(v) are functions of vd . The lemma is
proved.

Lemma 7.3.6 provides the main technical support for proving the forth-
coming results; in particular, to establishing the asymptotic behaviour of
Tn(u) for large n. Indeed, our starting point is (7.3.13) to which we apply
the spectral decomposition as in (7.3.9) to conclude that

N(z, u) = c(u)

1 − zλ(u)
+
∑
i≥2

ci(u)

(1 − zλi(u))αi
,

where αi ≥ 1 are some integers. In this, λ(u) is the dominant eigenvalue,
while λi(u) < λ(u) are other eigenvalues. The numerator has the expres-
sion c(u) = bt (u)〈l(u), �1〉r(u) where l(u) and r(u) are the left and the right
dominant eigenvectors and bt (u) is defined after (7.3.12). Then Cauchy’s
coefficient formula implies

Nn(u) = c(u)λn(u)(1 + O(An)) (7.3.15)

for some A < 1. Equivalently, the moment generating function for Nn(W)
is given by the following uniform approximation in a neighbourhood of
s = 0

E(esNn(W)) = d(s)λn(es)(1 + O(An)) = d(s) exp (n�(s)) (1 + O(An))
(7.3.16)

where d(s) = c(es) and �(s) = log λ(es).
There is another, more general, derivation of (7.3.15). Observe that the

spectral decomposition of T(u) when u lies in a sufficiently small complex
neighbourhood of any compact subinterval of (0, +∞) is of the form

T(u) = λ(u)Q(u) + R(u) (7.3.17)

where Q(u) is the projection under the dominant eigensubspace and R(u) a
matrix whose spectral radius equals |λ2(u)|. Therefore,

T(u)n = λ(u)nQ(u) + R(u)n,
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entails the estimate (7.3.15). The next result follows immediately from
(7.3.16).

Theorem 7.3.7. Let W = (W0,W1, . . . ,Wd ) be a generalized pattern
with W0 = ∅ generated by a memoryless source. For large n

E(Nn(W)) = n�′(0) + O(1) = nP (W) + O(1), (7.3.18)
Var(Nn(W)) = n�′′(0) + O(1) = nσ 2(W) + O(1) (7.3.19)

where �(s) = log λ(es) and λ(u) is the largest eigenvalue of T(u). Further-
more,

P(Nn(W) = 0) = Cλn(0)(1 + O(An))

where C > 0 is a constant and A < 1.

Now we establish limit laws, starting with the central limit law and its
local limit law.

Theorem 7.3.8. Under the same assumption as for Theorem 7.3.7, the
following holds

sup
x∈B

∣∣∣∣P
(

Nn(W) − nP (W)

σ (W)
√

n
≤ x

)
− 1√

2π

∫ x

−∞
e−t2/2 dt

∣∣∣∣ = O

(
1√
n

)
(7.3.20)

where B is a bounded real interval.

Proof. The uniform asymptotic expansion (7.3.16) of a sequence of moment
generating functions is known as a “quasi-powers approximation”. Then an
application of the classical Levy continuity theorem leads to the Gaussian
limit law. An application of the Berry–Essen inequality provides the speed
of convergence which is O(1/

√
n). This proves the theorem.

Finally, we deal with the large deviations.

Theorem 7.3.9. Under the same assumption, Let ωa be a solution of

ωλ′(ω) = aλ(ω)

for some a �= P (W), where λ(u) is the largest eigenvalue of T(u). Define

I (a) = a log ωa − log λ(ωa). (7.3.21)

Then there exists a constant C > 0 such that I (a) > 0 for a �= P (W) and

lim
n→∞

1

n
log P (Nn(W) ≤ an) = −I (x) if 0 < x < P (W) (7.3.22)

lim
n→∞

1

n
log P (Nn(W) ≥ na) = −I (x) if P (W) < x < C. (7.3.23)
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Proof. We consider now large deviations and establish (7.3.22). The vari-
able Nn(W) is by definition of linear growth at most, and there exists a
constant C such that Nn(W) ≤ Cn + O(1). Let 0 < x < P (W). Cauchy’s
coefficient formula provides

P (Nn(W) ≤ k) = 1

2iπ

∫
|u|=r

Nn(u)

uk

du

u(1 − u)
.

For ease of exposition, we first discuss the case of a primitive pattern. We
recall that a pattern is primitive if ψW = gcd(ψ(C), C cycle) = 1. The strict
domination property expressed in Lemma 7.3.6(iv) for primitive patterns
implies that the above integrand is strictly maximal at the intersection of the
circle |u| = r and the positive real axis. Near the positive real axis, where
the contribution of the integrand is concentrated, the following uniform
approximation holds, with k = na:

Nn(u)

uk
= exp (n (log λ(u) − a log u)) (1 + o(1)) (7.3.24)

The saddle point equation is then obtained by cancelling the first derivative
yielding

F (ω) := ωλ′(ω)

λ(ω)
= a. (7.3.25)

Note that the function F is exactly the derivative of �(s) at point s = log ω.
Since �(s) is strictly convex, the left side is an increasing function of its
argument as proved in Lemma 7.3.6(ii). Also, we know from this lemma
that the values F (0) = 0, F (1) = P (W) while we set F (∞) = C. Thus,
for any real a in (0, C), Equation (7.3.25) always admits a unique positive
solution that we denote by ω ≡ ωa . Moreover, for a �= P (W), one has
ωa �= 1. Since the function

u → − log
λ(u)

ua

admits a strict maximum at u = ωa , hence this maximum I (a) is strictly
positive. Finally, the usual saddle point approximation applies and one finds

P
(

Nn(W)

n
≤ a

)
=
(

λ(ωa)

ωa
a

)n

�(n),

where �(n) is of the order of n−1/2. In summary, the large deviation rate is

I (a) = −log
λ(ωa)

ωa
a

with
ωaλ

′(ωa)

λ(ωa)
= a.

as shown in the theorem.
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In the general case when the pattern is not primitive, the strict inequality
of Lemma 7.3.6(iv) is not satisfied, and several saddle points may be present
on the circle |u| = r , which will lead to some oscillations. We must, in this
case, use the weaker inequality of Lemma 7.3.6, namely, �(xeiθ ) ≤ �(x),
which replaces the strict inequality. However, the factor (1 − u)−1 present
in the integrand of (7.3.24) attains its maximum modulus on |u| = r solely
at u = r . Thus, the contribution of possible saddle points can only affect a
fraction of the contribution from u = r . Consequently, (7.3.22) and (7.3.21)
continue to be valid. A similar reasoning provides the right tail estimate,
with I (a) still given by (7.3.21). This completes the proof of (7.3.22).

We complete this analysis with a local limit law.

Theorem 7.3.10. If T(u) is primitive, then

sup
x∈B

∣∣∣∣∣P (Nn = nP (W) + xσ (W)
√

n
)− 1

σ (W)
√

n

ex2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
(7.3.26)

where B is a bounded real interval. Furthermore, under the above addi-
tional assumption, one can find constants σa and δa such that

P(Nn(W) = aE(Nn)) ∼ 1

σa

√
2πn

e−nI (a)+θa (7.3.27)

where I (a) is defined in (7.3.21).

Proof. By Lemma 7.3.6, one can estimate the probability distribution of
Nn(W) by the classical saddle point method in the case whenW is primitive.
Again, one starts from Cauchy’s coefficient integral,

P(Nn(W) = k) = 1

2iπ

∫
|u|=1

Nn(u)
du

uk+1
, (7.3.28)

where k is of the form k = nP (W)n + xσ (W)
√

n. Property (iv) of
Lemma 7.3.6 grants us precisely the fact that any closed arc of the unit
circle not containing u = 1 brings an exponentially negligible contribu-
tion. A standard application of the saddle point technique does the job. In
this way, the proof of the local limit law of Theorem 7.3.10 is completed.
Finally, the precise large deviations follows from the local limit result
and an application of the method of shift discussed in the proof of
Theorem 7.2.12.

Stronger “regularity conditions” are needed in order to obtain local limit
estimates. Roughly, one wants to exclude the possibility that the discrete
distribution is of a lattice type, being supported by a nontrivial sublattice of
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the integers. (For instance, we need to exclude the possibility that Nn(W)
will be always odd, or of the parity of n, and so on.) Observe first that
positivity and irreducibility of the matrix T(u) is not enough as shown in
Example 7.3.4.

7.3.3. Forbidden words and (�, k) sequences

Finally, consider the general pattern W = (W0,W1, . . . ,Wd) with
nonempty forbidden set W0. In this case, we study the number of oc-
currences Nn(W|W0 = 0) of patterns W1, . . .Wd under the condition that
there is no occurrence in the text of any pattern from W0.

Fortunately, we can recover almost all results from our previous analysis
after redefining the matrix T(u) and its de Bruijn graph. We now change
(7.3.10) to

[T(u)]b,b̂ := P (a)uφ(b,a)[[ ba ∈ Ab̂ and ba �⊂ W0]] (7.3.29)

where ba ⊂ W0 means that any subword of ba belongs to W0. In words,
we force the matrix T(u) to be zero at any position that leads to a word
containing patterns from W0, that is, we eliminate from the de Bruijn graph
any transition that contains a forbidden word. Having constructed the matrix
T(u), we can repeat all previous results except that it is much harder to find
explicit formulae even for the mean and the variance (cf. Problem 7.3.4)

Finally, we consider a degenerated general pattern in which Wi = ∅ for
all i = 1, . . . , d except nonempty W0. In this case, we count the number
of sequences that do not contain a pattern from W0. We only consider
the special case of this problem, that of (�, k) sequences for which W0 is
defined, in (7.3.1). In particular, we compute the so called Shannon capacity
C�,k defined as

C�,k = lim
n→∞

log(number of (�, k) sequences of length n)

n
.

We first compute the ordinary generating function T�,k(z) =∑w∈T�,k
z|w|

of all (�, k) words denoted as T�,k . To enumerate T�,k we define D�,k as the
set of all words consisting only of runs of 0s whose length is between � and
k. The generating function D(z) is clearly equal to

D(z) = z� + z�+1 + · · · + zk = z� 1 − zk−�+1

1 − z
.

We now observe that T�,k can be symbolically written as

T�,k = D�,k

({1} × ε + D̄�,k + D̄�,k × D̄�,k + · · · + D̄k
�,k + · · ·) ,

(7.3.30)
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where D̄�,k = {1} × D�,k . The equation above basically says that the collec-
tion of (�, k) sequences, T�,k , is a concatenation of {1} × D�,k . Thus (7.3.30)
translates into the generating functions T�,k(z) as follows

T�,k(z) = D(z)
1

1 − zD(z)
= z�(1 − zk+1−�)

1 − z − z�+1 + zk+2

= z� + z�+1 + · · · + zk

1 − z�+1 − z�+2 − · · · − zk+1
. (7.3.31)

Then Shannon capacity C�,k is

C�,k = lim
n→∞

log[zn]T�,k(z)

n
.

If ρ is the smallest root in absolute value of 1 − z�+1 − z�+2 − · · · − zk+1 =
0, then clearly

C�,k = −log ρ.

Example 7.3.11. In this example, we show that one can enumerate more
precisely (�, k) sequences. In fact, since the function T�,k(z) is rational we
can compute [zn]T�,k(z) exactly. Let us consider a particular case, namely,
� = 1 and k = 3. Then the denominator in (7.3.31) becomes 1 − z2 − z3 −
z4, and its roots are

ρ−1 = −1, ρ0 = 0.682 327 . . . ,

ρ1 = −0.341 164 . . . + i1.161 541 . . . , ρ2 = ρ̄1.

Computing residues we obtain

[zn]T1,3(z) = ρ0 + ρ2
0 + ρ3

0

(ρ1 + 1)(ρ0 − ρ1)(ρ0 − ρ̄1)
ρ−n−1

0

+ (−1)n+1 1

(ρ0 + 1)(ρ1 + 1)(ρ̄1 + 1)
+ O(r−n),

where r ≈ 0.68. More specifically,

[zn]T1,3(z) = 0.594(1.465)n+1 + 0.189(−1)n+1 + O(0.68n)

for large n.

7.4. Subsequence pattern matching

In string matching problems, given a pattern W one searches for some/all
occurrences of W as a block of consecutive symbols in a text. We analysed
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various string matching problems in the previous sections. Here we concen-
trate on subsequence pattern matching. In this case we search for a given
pattern W = w1w2 . . . wm in the text X = x1x2 . . . xn as a subsequence,
that is, we look for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that xi1 = w1,
xi2 = w2, . . . , xim = wm. We also say that the word W is “hidden” in the
text; thus we call this the hidden pattern problem. For example, date oc-
curs as a subsequence in the text hidden pattern, in fact four times, but
not even once as a string.

More specifically, we allow the possibility of imposing an additional
set of constraints D on the indices i1, i2, . . . , im to record a valid subse-
quence occurrence. For a given family of integers dj (dj ≥ 1, possibly
dj = ∞), one should have (ij+1 − ij ) ≤ dj . More formally, the hidden pat-
tern specification is determined by a pair (W,D) where W = w1 · · ·wm is
a word of length m and the constraint D = (d1, . . . , dm−1) is an element of
(N+ ∪ {∞})m−1.

Example 7.4.1. With # representing a ‘don’t care symbol’ and the sub-
script denoting a strict upper bound on the length of the associated gap, a
typical pattern may look like

ab#2r#ac#a#d#4a#br#a (7.4.1)

where # = #∞ and #1 is omitted; That is ‘ab’ should occur first contigu-
ously, followed by ‘r’ with a gap of < 2 symbols, followed anywhere later
in the text by ‘ac’, etc.

The case when all the dj s are infinite is called the (fully) unconstrained
problem. When all the dj s are finite, then we speak of the (fully) constrained
problem. In particular, the case where all the dj s are equal to one reduces to
the exact string matching problem. Furthermore, observe that when all dj <

∞ (fully constrained pattern), the problem can be treated as the generalized
string matching discussed in Section 7.3. In this case, the general pattern
W is a set consisting of all words satisfying the constraint D. However, if
at least one dj is infinite, then the techniques discussed so far are not well
suited to handling it. Therefore, in this section, we develop new methods
that make the analysis possible.

If an m-tuple I = (i1, i2, . . . , im) (1 ≤ i1 < i2 < · · · < im) satisfies the
constraint D with ij+1 − ij ≤ dj , then it is called a position tuple. Let
Pn(D) be the set of all positions subject to the separation constraint D,
satisfying furthermore im ≤ n. Let also P(D) =⋃n Pn(D). An occurrence
of pattern W subject to the constraint D is a pair (I, X) formed with
a position I = (i1, i2, . . . , im) of Pn(D) and a text X = x1x2 · · · xn for
which xi1 = w1, xi2 = w2, . . . , xim = wm. Thus, what we call an occur-
rence is a text augmented with the distinguished positions at which the
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pattern occurs. The number � of occurrences of pattern W in text X as
a subsequence subject to the constraint D is then a sum of characteristic
variables

�(X) =
∑

I∈P|X|(D)

ZI (X), (7.4.2)

where ZI (X) := [[W occurs at position I in X]]. When the text X is of
length n, then we often write �n := �(X).

In order to proceed we need to introduce the important notion of blocks
and aggregates. In the general case, we assume that the subset F of indices
j for which dj is finite (dj < ∞) has cardinality m − b with 1 ≤ b ≤ m.
The two extreme values of b, namely, b = m and b = 1, describe the (fully)
unconstrained and the (fully) constrained problem, respectively. Thus, the
subset U of indices j for which dj is unbounded (dj = ∞) has cardinality
b − 1. It then separates the patternW into b independent subpatterns that are
called the blocks and are denoted by W1,W2, . . .Wb. All the possible dj s
“inside” any Wr are finite and form the subconstraint Dr , so that a general
hidden pattern specification (W,D) is equivalently described as a b-tuple
of fully constrained hidden patterns ((W1,D1), (W2,D2), . . . , (Wb,Db)).

Example 7.4.1 (continued).. Consider again

ab#2r#ac#a#d#4a#br#a,

in which one has b = 6, the six blocks being

W1 =a#1b#2r, W2 = a#1c, W3= a, W4= d#4a, W5=b#1r, W6= a.

In the same way, an occurrence position I = (i1, i2, . . . , im) of W sub-
ject to constraint D gives rise to b suboccurrences, I [1], I [2], . . . , I [b], the
rth term I [r] representing an occurrence of Wr subject to constraint Dr .
The rth block B[r] is the closed segment whose end points are the extremal
elements of I [r], and the aggregate of position I , denoted by α(I ), is the
collection of these b blocks.

Example 7.4.1 (continued).. Taking the pattern of Example 7.4.1, the posi-
tion tuple

I = (6, 7, 9, 18, 19, 22, 30, 33, 50, 51, 60)

satisfies the constraint D and gives rise to six subpositions,

I [1]︷ ︸︸ ︷
(6, 7, 9),

I [2]︷ ︸︸ ︷
(18, 19),

I [3]︷︸︸︷
(22),

I [4]︷ ︸︸ ︷
(30, 33),

I [5]︷ ︸︸ ︷
(50, 51),

I [6]︷︸︸︷
(60) ;
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accordingly, the resulting aggregate α(I ),

B[1]︷ ︸︸ ︷
[6, 9],

B[2]︷ ︸︸ ︷
[18, 19],

B[3]︷︸︸︷
[22],

B[4]︷ ︸︸ ︷
[30, 33],

B[5]︷ ︸︸ ︷
[50, 51],

B[6]︷︸︸︷
[60] ,

is formed with six blocks.

7.4.1. Mean and variance analysis

Hereafter, we assume that W is given and the text X is generated by a
(nondegenerate) memoryless source. The first moment of the number of
occurrences, �(X), is easily obtained by describing the collection of all
occurrences in terms of formal languages, as already discussed in previous
sections. We consider the collection of position-text pairs

O = {(I, X) ; I ∈ P|X|(D)},
with the size of an element being by definition the length n of the text X.
The weight of an element of O is taken to be equal to ZI (X)P (X), where
P (X) is the probability of the text. In this way, O can also be regarded as
the collection of all occurrences weighted by probabilities of the text. The
corresponding generating function of O equipped with this weight is

O(z) =
∑

(I,X)∈O
ZI (X)P (X) z|X| =

∑
X

⎛
⎝ ∑

I∈P|X|(D)

ZI (X)

⎞
⎠ P (X)z|X|,

(7.4.3)

and, with the definition of �,

O(z) =
∑
X

�(X)P (X) z|X| =
∑

n

E(�n)zn. (7.4.4)

As a consequence, one has [zn]O(z) = E(�n), so that O(z) serves as the
generating function of the sequence of expectations E(�n).

On the other hand, each occurrence can be viewed as a “context” with
an initial string, then the first letter of the pattern, then a separating string,
then the second letter, etc. The collection O is therefore described combi-
natorially by

O = A∗ × {w1} × A<d1 × {w2} × A<d2 × · · ·
× {wm−1} × A<dm−1 × {wm} × A∗. (7.4.5)

There, for d < ∞, A<d denotes the collection of all words of length strictly
less than d, i.e. A<d =⋃i<d Ai , whereas, for d = ∞, A<∞ denotes the
collection of all finite words, i.e. A<∞ = A∗ =⋃i<∞ Ai . Since the source
is memoryless, the rules discussed at the end of the last section can be
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applied, and they give access to O(z) from the description (7.4.5). The
generating functions associated to A<d and A<∞ are

A<d (z) = 1 + z + z2 + · · · + zd−1 = 1 − zd

1 − z
,

A<∞(z) = 1 + z + z2 + · · · = 1

1 − z
.

Thus, the description (7.4.5) of occurrences automatically translates into

O(z) ≡
∑
n≥0

E[�n] zn =
(

1

1 − z

)b+1

×
(

m∏
i=1

pwi
z

)
×
(∏

i∈F

1 − zdi

1 − z

)
.

(7.4.6)

One finally finds

E(�n) = [zn]O(z) = nb

b!

(∏
i∈F

di

)
P (W)

(
1 + O

(
1

n

))
, (7.4.7)

and a complete asymptotic expansion could be easily obtained.
For the analysis of variance and especially of higher moments, it is

essential to work with a centred random variable � defined, for each n, as

�n = �n − E(�n) =
∑

I∈Pn(D)

YI , (7.4.8)

where YI := ZI − E(ZI ) = ZI − P (W). The second moment of the cen-
tred variable � equals the variance of �n and with the centred variables
defined above by (7.4.8), one has

E(�2
n) =

∑
I,J∈Pn(D)

E(YIYJ ). (7.4.9)

From this last equation, we need to analyse pairs of positions (I, X),
(J, X) = (I, J, X) relative to a common text X. We denote by O2 this
set, that is,

O2 = {(I, J, X) ; I, J ∈ P|X|(D)},
and we weight each element (I, J, X) by YI (X)YJ (X)P (X). The corre-
sponding generating function, which enumerates pairs of occurrences, is

O2(z) =
∑

(I,J,X)∈O2

YI (X)YJ (X)P (X) z|X|

=
∑
X

⎛
⎝ ∑

I,J∈P|X|(D)

YI (X)YJ (X)

⎞
⎠ P (X)z|X|
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and, with (7.4.9),

O2(z) =
∑
n≥0

∑
I,J∈Pn(D)

E(YIYJ ) zn =
∑
n≥0

E(�2
n) zn.

The process entirely parallels the derivation of (7.4.3) and (7.4.4), and one
has [zn]O2(z) = E(�2

n), so that O2(z) serves as the generating function (in
the usual sense) of the sequence of moments E(�2

n).
There are two kinds of pairs (I, J ) depending upon whether they inter-

sect. When I and J do not intersect, the corresponding random variables YI

and YJ are independent, and the corresponding covariance E[YIYJ ] reduces
to 0. As a consequence, one may restrict attention to pairs of occurrences
I, J that intersect at one place at least. Suppose that there exist two oc-
currences of pattern W at positions I and J which intersect at � distinct
places. We then denote by WI∩J the subpattern of W that occurs at posi-
tion I ∩ J , and by P (WI∩J ) the probability of this subpattern. Since the
expectation E(ZIZJ ) equals P (W)2/P (WI∩J ) provided that W agrees on
every position of I ∩ J , the expectation E(YIYJ ) = P (W)2e(I, J ) involves
a correlation number e(I, J )

e(I, J ) = [[W agree on I ∩ J ]]

P (WI∩J )
− 1. (7.4.10)

Note that this relation remains true even if the pair (I, J ) is not intersecting,
since, in this case, one has P (WI∩J ) = P (ε) = 1.

The asymptotic behaviour of the variance is driven by the overlapping
of blocks involved in I and J , rather than plainly by the cardinality of
I ∩ J . In order to formalize this, define first the (joint) aggregate α(I, J )
to be the system of blocks obtained by merging together all intersecting
blocks of the two aggregates α(I ) and α(J ). The number of blocks β(I, J )
of α(I, J ) plays a fundamental rôle here, since it measures the degree of
freedom of pairs; we also call β(I, J ) the degree of pair (I, J ). Figure 7.3
illustrates graphically this notion.

Example 7.4.2. Consider the pattern W = a#3b#4r # a#4c com-
posed of two blocks. Then the text aarbarbccaracc contains
several valid occurrences of W including two at positions I =
(2, 4, 6, 10, 13) and J = (5, 7, 11, 12, 13). The individual aggregates are
α(I ) = {[2, 6], [10, 13]}, α(J ) = {[5, 11], [12, 13]} so that the joint quan-
tities are: α(I, J ) = [2, 13] and β(I, J ) = 1. This pair has exactly
degree 1.

When I and J intersect, there exists at least one block of α(I ) that
intersects a block of α(J ), so that the degree β(I, J ) is at most equal
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�� �� �� ��

Figure 7.3. A pair of position tuples I, J with b = 6 blocks each and the
joint aggregates; the number of degrees of freedom here is β(I, J ) = 4.

�� �� �� ��

Figure 7.4. A full pair of position tuples I, J with b = 6 blocks each.

to 2b − 1. Next, we partition O2 according to the value of β(I, J ) and
write

O[p]
2 = {(I, J, X) ∈ O2 ; β(I, J ) = 2b − p}

for the collection of intersecting pairs (I, J, X) of occurrences for which
the degree of freedom equals 2b − p. From the preceding discussion, only
p ≥ 1 needs to be considered and

O2(z) = O
[1]
2 (z) + O

[2]
2 (z) + O

[3]
2 (z) + · · · + O

[2b]
2 (z).

As we see next, it is only the first term of this sum that matters asymptoti-
cally.

In order to conclude the discussion, we need the notion of full pairs: a
pair (I, J ) ofPq(D) × Pq(D) is full if the joint aggregate α(I, J ) completely
covers the interval [1, q]; see Figure 7.4. (Clearly, the possible values of
length q are finite, since q is at most equal to 2�, where � is the length of
the constraint D.)

Example 7.4.3. Consider the pattern W = a#3b#4r#a#4c. The text
aarbarbccaracc also contains two other occurrences of W , at po-
sitions I ′ = (1, 4, 6, 12, 13) and J ′ = (5, 7, 11, 12, 14). Now, I ′ and J ′
are intersecting, and the aggregates are α(I ′) = {[1, 6], [12, 13]}, α(J ′) =
{[5, 11], [12, 14]} so that α(I ′, J ′) = {[1, 11], [12, 14]. We have here
an example of a full pair of occurrences with a number of blocks
β(I ′, J ′) = 2.

There is a fundamental translation invariance due to the independence
of symbols in the Bernoulli model that gives the relation

O[p]
2 = (A∗)2b−p+1 × B[p]

2 ,
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where B[p]
2 is the subset of O2 formed of full pairs such that β(I, J ) equals

2b − p. In essence, the gaps can be all grouped together (their number is
2b − p + 1, which is translated by the prefactor (A∗)2b−p+1), while what
remains constitutes a full occurrence. The generating function of O[p]

2 is
accordingly

O
[p]
2 (z) =

(
1

1 − z

)2b−p+1

× B
[p]
2 (z)

where B
[p]
2 (z) is the generating function of the collection B[p]

2 . From our
earlier discussion, it is a polynomial. Now, an easy dominant pole analysis
entails that [zn]O [p]

2 = O(n2b−p). This proves that the dominant contribu-
tion to the variance is given by [zn]O [1]

2 , which is of order O(n2b−1).
The variance E(�2

n) involves the constant B
[1]
2 (1) that is the total weight

of the collection B[1]
2 . Recall that this collection is formed of intersecting

full pairs of occurrences of degree 2b − 1. The polynomial B
[1]
2 (z) is itself

the generating function of the collection B[1]
2 , and it is conceptually an

extension of Guibas and Odlyzko’s autocorrelation polynomial. We shall
later make precise the relation between both polynomials.

We summarize our findings in the following theorem.

Theorem 7.4.4. Consider a general constraint D with a number of blocks
equal to b. The mean and the variance of the number of occurrences �n of
a pattern W subject to constraint D satisfy

E(�n) = P (W)

b!

( ∏
j : dj <∞

dj

)
nb
(
1 + O(n−1)

)
,

Var(�n) = σ 2(W)n2b−1
(
1 + O(n−1)

)
,

where the “variance coefficient” σ 2(W) involves the autocorrelation κ(W)

σ 2(W) = P 2(W)

(2b − 1)!
κ2(W) with κ2(W) =

∑
(I,J )∈B[1]

2

e(I, J )

(7.4.11)

The set B[1]
2 is the collection of all pairs of position tuple (I, J ) that satisfy

three conditions: (i) they are full; (ii) they are intersecting; (iii) there is a
single pair (r, s) with 1 ≤ r, s ≤ b for which the rth block B[r] of α(I ) and
the sth block C[s] of α(J ) intersect.

The computation of the autocorrelation κ(W) reduces to b2 computa-
tions of correlations κ(Wr ,Ws), relative to pairs (Wr ,Ws) of blocks. Note
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that each correlation of the form κ(Wr ,Ws) involves a totally constrained
problem and is discussed below. Let D(D) =∏i: di<∞ di . Then, one has

κ2(W) = D2(D)
∑

1≤r,s≤b

1

D(Dr )D(Ds)

(
r + s − 2

r − 1

)

×
(

2b − r − s

b − r

)
κ(Wr ,Ws), (7.4.12)

where κ(Wr ,Ws) is the sum of the e(I, J ) taken over all full intersecting
pairs (I, J ) formed with a position tuple I of block Wr subject to constraint
Dr and a position tuple J of block Ws subject to constraint Ds . Let us
explain the formula (7.4.12) in words: for a pair (I, J ) of the set B[1]

2 , there
is a single pair (r, s) of indices with 1 ≤ r, s ≤ b for which the rth block
B[r] of α(I ) and the sth block C[s] of α(J ) intersect. Then, there exist
r + s − 2 blocks before the block α(B[r], C[s]) and 2b − r − s blocks after
it. We then have three different degrees of freedom: (i) the relative order of
blocks B[i](i < r) and blocks C[j ](j < s), and similarly the relative order
of blocks B[i](i > r) and blocks C[j ](j > s); (ii) the lengths of the blocks
(there are Dj possible lengths for the j th block); (iii) finally the relative
positions of the blocks B[r] and C[s].

In particular, in the unconstrained case, the parameter b equals m,
and each block Wr is reduced to the symbol wr . Then the “correlation
coefficient” κ2(W) simplifies to

κ2(W) =
∑

1≤r,s≤m

(
r + s − 2

r − 1

)(
2m − r − s

m − r

)
[[wr = ws]]

(
1

pwr

− 1

)
.

(7.4.13)

In words, once you fix the position of the intersection, called pivot, then
among the r + s − 2 elements smaller than the pivot one assigns freely
r − 1 to the first occurrence and the remaining s − 1 to the second. One
proceeds similarly for the 2m − r − s elements larger than the pivot.

7.4.2. Autocorrelation polynomial revisited

Finally, we compare the autocorrelation coefficient κ(W) with the autocor-
relation polynomial Sw(z) introduced in the last section for the exact string
matching problem. Let now w = w1w2 . . . wm be again a string of length
m, and all the symbols of w must occur at consecutive places, so that a valid
position I is an interval of length m. We recall that the autocorrelation set
P(w) ⊂ [1..m] involves all indices k such that the prefix wk

1 coincides with
the suffix wm

m−k+1. Here, an index k ∈ P(w) is relative to an intersecting
pair of positions (I, J ) and one has wk

1 = wI∩J .
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In the previous section, we introduced the autocorrelation polynomial
Sw(z) as

Sw(z) =
∑
k∈Pw

P (wm
k+1)zm−k = P (w)

∑
k∈P(w)

1

P (wk
1)

zm−k.

We also define

Cw(z) =
∑

k∈P(w)

zm−k.

Since the polynomial B
[1]
2 involves coefficients e(I, J ) this polynomial can

be written as a function of the two autocorrelations polynomials Aw and!Cw,

B
[1]
2 (z) = P (w)zm [Aw(z) − P (w) Cw(z)].

Put simply, the variance coefficient of the hidden pattern problem extends
the classical autocorrelation quantities associated with strings.

7.4.3. Central limit laws

Our goal is to prove that the sequence �n appropriately centred and scaled
tends to the normal distribution. We consider the following standardized
random variable �̃n which is defined for each n by

�̃n = �n

nb−1/2
= �n − E(�n)

nb−1/2
, (7.4.14)

where b is the number of blocks of the constraint D. We shall show that �̃n

behaves asymptotically as a normal variable with mean 0 and standard de-
viation σ . By the classical moment convergence theorem this is established
once all moments of �̃n are known to converge to the appropriate moments
of the standard normal distribution.

We remind the reader that if G is a standard normal variable (i.e. a
Gaussian distributed variable with mean 0 and standard deviation 1), then
for any integral s ≥ 0

E(G2s) = 1 · 3 · · · (2s − 1), E(G2s+1) = 0. (7.4.15)

We shall accordingly distinguish two cases based on the parity of r , r = 2s,
and r = 2s + 1, and prove that

E[�2s+1
n ] = o(n(2s+1)(b−1/2)), E(�2s

n ) ∼ σ 2s (1 · 3 · · · (2s − 1)) n2sb−s,

(7.4.16)

which implies Gaussian convergence of �̃n.

Theorem 7.4.5. The random variable �n over a random text of length n

generated by a memoryless source asymptotically obeys a Central Limit
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Law in the sense that its distribution is asymptotically normal: for all x =
O(1), one has

lim
n→∞ P

(
�n − E(�n)√

Var(�n)
≤ x

)
= 1√

2π

∫ x

−∞
e−t2/2 dt. (7.4.17)

Proof. The proof is combinatorial; it basically reduces to grouping and
enumerating adequately the various combinations of indices in the sum that
expresses E(�r

n). Once more, Pn(D) is formed of all the sets of positions
in [1, n] subject to the constraint D and we set P(D) =⋃n Pn(D). Then
totally distributing the terms in �r yields

E(�r
n) =

∑
(I1,...,Ir )∈Pr

n(D)

E(YI1 · · · YIr
). (7.4.18)

An r-tuple of sets (I1, . . . , Ir ) in P r (D) is said to be friendly if each Ik

intersects at least one other I�, with � �= k and we let Q(r)(D) be the set of
all friendly collections in P r (D). For P r , Q(r), and their derivatives below,
we add the subscript n each time the situation is particularized to texts
of length n. If (I1, . . . , Ir ) does not lie in Q(r)(D), then E(YI1 · · · YIr

) = 0,

since at least one of the YI s is independent of the other factors in the product
and the YI s have been centred, E(YI ) = 0. One can thus restrict attention
to friendly families and get the basic formula

E(�r
n) =

∑
(I1,...,Ir )∈Q(r)

n (D)

E(YI1 · · ·YIr
), (7.4.19)

where the expression involves fewer terms than in (7.4.18). From there,
we proceed in two stages. First, restrict attention to friendly families that
give rise to the dominant contribution and introduce a suitable subfamily
Q(r)

∗ ⊂ Q(r); in so doing, moments of odd order appear to be negligible.
Next, for even order r , the family Q(r)

∗ involves a symmetry and it suffices
to consider another smaller subfamily Q(r)

∗∗ ⊂ Q(r)
∗ that corresponds to a

“standard” form of position tuple intersection; this last reduction precisely
gives rise to the even Gaussian moments.

Odd moments. Given (I1, . . . , Ir ) ∈ Q(r), the aggregate α(I1, I2, . . . , Ir )
is defined as the aggregation (in the sense of the variance calculation above)
of α(I1) ∪ · · · ∪ α(Ir ). Next, the number of blocks of (I1, . . . , Ir ) is the num-
ber of blocks of the aggregate α(I1, . . . , Ir ); if p is the total number of inter-
secting blocks of the aggregate α(I1, . . . , Ir ), the aggregate α(I1, I2, . . . Ir )
has rb − p blocks. As before, we say that the family (I1, . . . , Ir ) of Q(r)

q is
full if the aggregate α(I1, I2, . . . Ir ) completely covers the interval [1, q].
In this case, the length of the aggregate is at most rd(m − 1) + 1, and
the generating function of full families is a polynomial Pr (z) of degree at
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most rd(m − 1) + 1 with d = maxj∈F dj . Then, the generating function of
families of Q(r) whose block number equals k is of the form(

1

1 − z

)k+1

× Pr (z),

so that the number of families of Q(r)
n whose block number equals k is

O(nk). This observation proves that the dominant contribution to (7.4.19)
arises from friendly families with a maximal block number. It is clear
that the minimum number of intersecting blocks of any element of Q(r)

equals �r/2�, since it coincides exactly with the minimum number of edges
of a graph with r vertices which contains no isolated vertex. Then the
maximum block number of a friendly family equals rb − �r/2�. In view
of this fact and the remarks above regarding cardinalities, we immediately
have

E
[
�2s+1

n

] = O
(
n(2s+1)b−s−1

) = o
(
n(2s+1)(b−1/2)

)
which establishes the limit form of odd moments in (7.4.16).

Even Moments. We are thus left with estimating the even moments. The
dominant term is relative to friendly families of Q(2s) with an intersecting
block number equal to s, whose set we denote by Q(2s)

∗ . In such a family,
each subset Ik intersects one and only one other subset I�. Furthermore, if
the blocks of α(Ih) are denoted by B

[u]
h , 1 ≤ u ≤ b, there exists only one

block B
[uk]
k of α(Ik) and only one block B

[u�]
� that contains the points of

Ik ∩ I�. This defines an involution τ such that τ (k) = � and τ (�) = k for all
pairs of indices (�, k) for which Ik and I� intersect. Furthermore, given the
symmetry relation E(YI1 · · · YI2s

) = E(YIρ(1) · · · YIρ(2s) ) it suffices to restrict
attention to friendly families of Q(2s)

∗ for which the involution τ is the
standard one with cycles (1, 2), (3, 4), etc; for such “standard” families
whose set is denoted by Q(2s)

∗∗ , the pairs that intersect are thus (I1, I2), . . . ,
(I2s−1, I2s). Since the set K2s of involutions of 2s elements has cardinality
K2s = 1 · 3 · 5 · · · (2s − 1) , the equality∑

Q(2s)
∗n

E(YI1 · · ·YI2s
) = K2s

∑
Q(2s)

∗∗n

E(YI1 · · · YI2s
), (7.4.20)

entails that we can now work solely with standard families.
The class of position tuples relative to standard families is A∗ ×

(A∗)2sb−s−1 × B[s]
2s × A∗; this class involves the collection B[s]

2s of all full
friendly 2s-tuples of position tuples with a number of blocks equal to s.
Since B[s]

2s is exactly a shuffle of s copies of B[1]
2 (as introduced in the study
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of the variance), the associated generating function is

(
1

1 − z

)2sb−s+1

(2sb − s)!

(
B

[1]
2 (z)

(2b − 1)!

)s

,

where B
[1]
2 (z) is the already introduced autocorrelation polynomial. Upon

taking coefficients, we obtain the estimate∑
Q(2s)

∗∗n

E(YI1 · · ·YI2s
) ∼ n(2b−1)sσ 2s . (7.4.21)

In view of formulæ (7.4.18), (7.4.19), (7.4.20), and (7.4.21), this yields the
estimate of even moments and leads to the second relation of (7.4.16). This
completes the proof of Theorem 7.4.5.

The even Gaussian moments eventually come out as the number of invo-
lutions, which corresponds to a fundamental asymptotic symmetry present
in the problem. In this perspective the specialization of the proof to the
fully unconstrained case is reminiscent of the derivation of the usual central
limit theorem (dealing with sums of independent variables) by moments
methods.

7.4.4. Limit laws for fully constrained pattern

In this section, we strengthen our results for fully constrained patterns in
which all gaps dj are finite. We set D =∏j dj , and � =∑j dj . Observe
that in this case, we can reduce the subsequence problem to a generalized
string matching problem with the generalized pattern W consisting of all
words that satisfy (W,D). Thus our previous results apply, in particular,
Theorems 7.3.8 and 7.3.10. This leads to the following result.

Theorem 7.4.6. Consider a fully constrained pattern with mean and vari-
ance found in Theorem 7.4.4 for b = 1.

(i) The random variable �n satisfies a Central Limit Law with speed of
convergence 1/

√
n:

sup
x

∣∣∣∣P
(

�n − DP (W)n

σ (W)
√

n
≤ x

)
− 1√

2π

∫ x

−∞
e−t2/2 dt

∣∣∣∣ = O

(
1√
n

)
.

(7.4.22)

(ii) Large deviations from the mean value have exponentially small prob-
ability: there exist a constant η > 0 and a nonnegative function I (x)
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defined throughout (0, η) such that I (x) > 0 for x �= DP(W) and⎧⎪⎪⎨
⎪⎪⎩

lim
n→∞

1

n
log P

(
�n

n
≤ x

)
= −I (x) if 0 < x < DP(W)

lim
n→∞

1

n
log P

(
�n

n
≥ x

)
= −I (x) if DP(W) < x < η

,

(7.4.23)

except for at most a finite number of exceptional values of x. More
precisely,

I (x) = −log
λ(ζ )

ζ x
with ζ ≡ ζ (x) defined by

ζλ′(ζ )

λ(ζ )
= x

(7.4.24)

where λ(u) is the largest eigenvalue of the matrix T(u) of
the associated de Bruijn graph constructed for W = {v : v =
w1u1w2 · · ·wm−1um−1wm, where ui ∈ Adi−1, 1 ≤ i ≤ m − 1}.

(iii) For primitive patterns (cf. Section 7.3.2) a Local Limit Law holds:

sup
k

∣∣∣∣∣P (�n = k) − 1

σ (W)
√

n

ex(k)2/2

√
2π

∣∣∣∣∣ = o

(
1√
n

)
, (7.4.25)

where

x(k) = k − DP (W)n

σ (W)
√

n

for n → ∞.

Example 7.4.7. We illustrate the subsequence problem by an example
from computer security. Indeed, if one wants to detect “suspicious” activi-
ties (e.g., signatures viewed as subsequences in an audit file), it is important
to set up a threshold in order to avoid false alarms. This problem can be
rephrased as one of finding a threshold α0 = α0(W; n, β) such that

P(�n > α0) ≤ β,

for small given β (say β = 10−5). Based on frequencies of letters and
the assumption that a memoryless model is (at least roughly) relevant,
one can estimate the mean value and the standard deviation coefficients
P (W), σ (W) as discussed above. The Gaussian limits granted by Theo-
rems 7.4.5 and 7.3.8 then reduce the problem to solving an approximate
system, which in the (fully) constrained case reads

α0 = nP (W) + x0σ (W)
√

n, β = 1√
2π

∫ ∞

x0

e−t2/2 dt.
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This system admits the approximate solution

α0 ≈ nπ(ω) + σ (W)
√

2n log(1/β). (7.4.26)

for small β.

7.5. Generalized subsequence problem

In the generalized subsequence problem the pattern is W = (W1, . . . ,Wd )
whereWi is a set of strings (a language). We say that the generalized pattern
W occurs in the text X if X contains W as a subsequence (w1, w2, . . . , wd )
where wi ∈ Wi . An occurrence of the pattern in X is a sequence

(u0, w1, u1, . . . , wd, ud)

such that X = u0w1u1 · · ·wdud . We shall study the associated language L
that can be described as

L = A∗ · W1 · A∗ · · ·Wd · A∗. (7.5.1)

More precisely, an occurrence of W is a sequence of d disjoint inter-
vals I = (I1, I2, . . . Id ) such that Ij = [k1

j , k
2
j ] where 1 ≤ k1

j ≤ k2
j ≤ n is a

portion of text Xn
1 where wj ∈ Wj occurs. We denote by Pn = Pn(W) the

set of all valid occurrences I . The number of occurrences �n of W in the
text X of size n is then

�n =
∑

I∈Pn(L)

ZI , (7.5.2)

where ZI (X) = [[W occurs at position I in X]].
In passing, we observe that the generalized subsequence problem is the

most general pattern matching considered so far. It contains the exact string
matching (cf. Section 7.2), generalized string matching (cf. Section 7.3),
and the subsequence pattern matching known also as hidden patterns (cf.
Section 7.4). In this section we present an analysis of the first two mo-
ments of �n for the generalized subsequence pattern matching problem for
dynamic sources discussed in Section 7.1.

7.5.1. Generating operators for dynamic sources

In Section 7.1 we have introduced a general probabilistic source known as
a dynamical source. In this section we analyse the generalized subsequence
model for such sources.

We start with a brief description of the methodology of generating
operators that are used in the analysis of dynamical sources. We recall
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from Section 7.1 that the generating operator Gw is defined as Gw[f ](t) =
|h′

w(t)|f ◦hw(t) for a density function f and a word w. In particular, in
(7.1.2) we proved that P (w)

∫ 1
0 f (t) dt = ∫ 1

0 Gw[f ](t) dt for any function
f (t), which implies that P (w) is an eigenvalue of the operator Gw. Further-
more, the generating operator for w · u is Gw·u = Gu ◦ Gw, where w and u

are words (cf. (7.1.3)) and ◦ is the composition of operators.
Consider now a language B ⊂ A∗. Its generating operator B(z) is then

defined as

B(z) =
∑
w∈B

z|w| Gw.

We observe that the ordinary generating function of a language B is related
to the generating operators. Indeed,

B(z) =
∑
w∈B

z|w|P (w) =
∑
w∈B

z|w|
∫ 1

0
Gw[f ](t) dt =

∫ 1

0
B(z)[f ](t) dt.

(7.5.3)

If B(z) is well defined at z = 1, then B(1) is called the normalized operator
of B. In particular, using (7.1.1) we can compute

P (B) =
∑
w∈B

P (w) =
∫ 1

0
B(1) dt.

Furthermore, the operator

G =
∑
a∈A

Ga, (7.5.4)

is the normalized operator of the alphabet A and plays a fundamental role
in the analysis.

From the product formula (7.1.3) of the generating operators Gw we
conclude that unions and Cartesian products of languages translate into
sums and compositions of the associated operators. For instance, the oper-
ator associated with A∗ is

(I − zG)−1 =
∑
i≥0

ziGi ,

where Gi = G ◦ Gi−1.
In order to proceed, we must restrict our attention to a class of dynamical

sources called decomposable that satisfy two properties: (i) there exists a
unique positive dominant eigenvalue λ and a dominant eigenvector denoted
as ϕ (which is unique under the normalization

∫
ϕ(t) dt = 1); (ii) there is a
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spectral gap between the dominant eigenvalue and other eigenvalues. These
properties entail the separation of the operator G into two parts

G = λP + N (7.5.5)

such that the operator P is the projection relative to the dominant eigenvalue
λ while N is the operator relative to the remainder of the spectrum (cf.
Section 7.3). Furthermore (cf. Problem 7.5.1)

P ◦ P = P, (7.5.6)
P ◦ N = N ◦ P = 0. (7.5.7)

The last property implies that for any i ≥ 1

Gi = λiP + Ni . (7.5.8)

In particular, for the density operator G the dominant eigenvalue λ =
P (A) = 1 and ϕ is the unique stationary distribution. The function 1 is the
left eigenvector. Then using (7.5.8) we arrive at

(I − zG)−1 = 1

1 − z
P + R(z), (7.5.9)

where

R(z) = (I − zN)−1 − P =
∑
k≥0

zk(Gk − P). (7.5.10)

Observe that the first part of (7.5.9) has a pole at z = 1 and due to the
spectral gap the operator N has spectral radius ν < λ = 1. Furthermore, the
operator R(z) is analytic in |z| < (1/ν) and again thanks to the existence
of the spectral gap, the series R(1) is of geometric type. We shall point out
that the speed of convergence of R(z) is closely related to the decay of
the correlation between two consecutive symbols. Finally, we list some
additional properties of just introduced operators (cf. Problem 7.5.2) true
for any function g(t) defined between 0 and 1.

N[ϕ] = 0, P[g](t) = ϕ(t)
∫ 1

0
g(t ′) dt ′ (7.5.11)∫ 1

0
P[g](t) dt =

∫ 1

0
g(t) dt,

∫ 1

0
N[g](t) dt = 0, (7.5.12)

where ϕ is the stationary density.
Theory built so far allows us, among other things, to define precisely the

correlation between languages in terms of the generating operators. From
now on we restrict our analysis to the so-called nondense languages B for
which the associated generating operator B(z) is analytic in a disk |z| > 1.
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First, observe that for a nondense language B, the normalized generating
operator B satisfies∫ 1

0
P ◦ B ◦ P[g](t) = P (B)

(∫ 1

0
g(t) dt

)
. (7.5.13)

Let us now define the correlation coefficient between two languages,
say B with the generating operator B and C with the generating operator C.
Two types of correlations may occur between such languages. If B and C do
not overlap, then B may be before C, or after C. We define the correlation
coefficient c(B, C) (and in an analogous way c(C,B)) as

P (B)P (C)c(B, C) =
∑
k≥0

[
P (B × Ak × C) − P (B)P (C)

]
(7.5.14)

=
∫ 1

0
C ◦ R(1) ◦ B[ϕ](t).

To see this we observe, using (7.5.5)–(7.5.13),∫ 1

0
C ◦ R(1) ◦ B[ϕ](t) dt =

∫ 1

0
C ◦

(∑
k≥0

(Gk − P)

)
◦ B[ϕ](t) dt

=
∑
k≥0

(∫ 1

0
C ◦ Gk ◦ B[ϕ](t) dt

−
∫ 1

0
C ◦ P ◦ B[ϕ](t)

)
=
∑
k≥0

(
P (B × Ak × B) − P (B)P (C)

)
.

We say that B and C overlap if there exist words b, u, and c such that
u �= ε and (bu, uc) ∈ (B × C) ∪ (C × B). Then we denote by B ↑ C the
set of words that is obtained by overlapping words from B and C. The
correlation coefficient of the overlapping languages B and C is defined
as

d(B, C) = P (B ↑ C)

P (B)P (C)
. (7.5.15)

Finally, the total correlation coefficient m(B, C) between B and C is defined
as

m(B, C) = c(B, C) + c(C,B) + d(B, C), (7.5.16)
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that is,

P (B)P (C)m(B, C)

= P (B ↑ C) +
∑
k≥0

[
P (B × Ak × C) + P (C × Ak × B) − 2P (B)P (C)

]
.

We shall need these coefficients in the analysis of the generalized subse-
quence problem for dynamical sources.

7.5.2. Mean and variance

In this section we shall derive the mean and the variance of the number
of occurrences �n(W) of the generalized pattern as a subsequence for a
dynamical source.

We first give a sketch of the forthcoming proof:
• We first describe the generating operators of the language L defined

in (7.5.1) that we repeat here

L = A∗ × W1 × A∗ · · ·Wd × A∗.

It turns out that the quasi-inverse (I − zG)−1 operator is involved in
such a generating operator.

• We then decompose the operator with the help of (7.5.9). We obtain
a term related to (1 − z)−1P that gives the main contribution to the
asymptotics, and another term coming from the operator R(z).

• We then compute the generating function of L using (7.5.3).
• Finally, we extract asymptotic behaviour from the generating

function.
The main finding of this section is summarized in the next theorem.

Theorem 7.5.1. Consider a decomposable dynamical source endowed
with the stationary density ϕ and let W = (W1,W2, . . . ,Wd ) be a gener-
alized nondense pattern.

(i) The expectation E(�n) of the number of occurrences of the general-
ized pattern W in a text of length n satisfies asymptotically

E(�n(W)) =
(

n + d

d

)
P (W)

+
(

n + d − 1

d − 1

)
P (W) [C(W) − T (W)] +O(nd−2),

where

T (W) =
d∑

i=1

∑
w∈Wi

|w|P (w)

P (Wi)
(7.5.17)
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is the average length, and the correlation coefficient C(W) is the sum
of the correlations c(Wi−1,Wi) between languages Wi and Wi+1 as
defined in (7.5.14).

(ii) The variance of �n is asymptotically equal to

Var(�n(W)) = σ 2(W) n2d−1
(
1 + O(n−1)

)
, (7.5.18)

where the coefficient

σ 2(W) = P 2(W)

[
d − 2T (W)

d!(d − 1)!
+ m(W)

(2d − 1)!

]

and the total correlation coefficient m(W) can be computed as

m(W) =
∑

1≤i,j≤d

(
i + j − 2

i − 1

)(
2d − i − j

d − i

)
m(Wi ,Wj ),

where m(Wi ,Wi+1) are defined in (7.5.16).

Proof. We only prove part (i) leaving the proof of part (ii) as an exercise (cf.
Problem 7.5.3). We shall start with the language representation L defined
in (7.5.1) that we recalled above. Its generating operator is

L(z) = (I − zG)−1 ◦ Lr (z) ◦ (I − zG)−1 ◦ · · · ◦ L1(z) ◦ (I − zG)−1.

(7.5.19)

After applying the transformation (7.5.8) to L(z), we obtain an operator
M1(z)

M1(z) =
(

1

1 − z

)d+1

P ◦ Lr (z) ◦ P ◦ · · · ◦ P ◦ L1(z) ◦ P

that has a pole of order r + 1 at z = 1. Near z = 1, each operator Li(z) is
analytic and admits the expansion

Li(z) = Li + (z − 1)L′
i(1) + O(z − 1)2.

Therefore, the leading term of the expansion is(
1

1 − z

)d+1

P ◦ Lr ◦ P ◦ · · · ◦ P ◦ L1 ◦ P. (7.5.20)

The second main term is a sum of r terms, each of them obtained by replac-
ing the operator Li(z) by its derivative L′

i(1) at z = 1. The corresponding
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generating function M1(z) satisfies near z = 1

M1(z) =
(

1

1 − z

)d+1

P (W) −
(

1

1 − z

)d

P (W)T (W) + O

(
1

1 − z

)d−1

,

(7.5.21)

where the average length T (W) is defined in (7.5.17).
After applying (7.5.8) in L(z), we obtain an operator M2(z) that has

a pole of order r at z = 1. This is a sum of d + 1 terms, each of the
term containing an occurrence of the operator R(z) between two generating
operators of languages Wi−1,Wi . The corresponding generating function
M2(z) also has a pole of order r at z = 1 and satisfies near z = 1

M2(z) =
(

1

1 − z

)d

P (W)
d∑

i=2

c(Li−1,Li) + O

(
1

1 − z

)d−1

.

Here, the correlation number c(B, C) betweenB and C is defined in (7.5.14).
To complete the proof we only need to extract the coefficients of P (z)/
(1 − z)d , as already discussed in previous sections.

7.6. Self-repetitive pattern matching

In this last section of the chapter, we change the model. So far we postulated
that the pattern w is given. Hereafter, we make the pattern part of the text,
which is still randomly generated. To simplify our presentation, we assume
that the text is emitted by a memoryless source. We should point out that
the quantity analysed here is in fact the typical depth in a (compact) suffix
trie built over the suffixes of a randomly generated text.

7.6.1. Formulation of the problem

Let i be an arbitrary integer smaller than or equal to n. We define Dn(i) to
be the largest value of k ≤ n such that Xi+k−1

i occurs at least twice in the
text Xn

1 of length n; in other words, such that Nn(Xi+k−1
i ) ≥ 2. We recall

that Nn(w) is the number of times pattern w occurs in the text Xn
1 . Clearly,

Nn(Xi+k−1
i ) ≥ 1. Our goal is to determine the probabilistic behaviour of

a “typical” Dn(i), that is, we define Dn to be equal to Dn(i) when i is
randomly and uniformly selected between 1 and n. More precisely,

P(Dn = �) = 1

n

n∑
i=1

P(Dn(i) = �)

for any 1 ≤ � ≤ n.
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Let w ∈ Ak be an arbitrary word of size k. Observe that

P(Dn(i) ≥ k & Xi+k−1
i = w) = P(Nn(w) ≥ 2 & Xi+k−1

i = w),

and
n∑

i=1

P(Nn(w) = r & Xi+k−1
i = w) = rP(Nn(w) = r).

Recall that Nn(u) = E(uNn(w)) =∑r≥0 P(Nn(w) = r)ur is the probability
generating function of Nn(w). We sometimes shall write Nn,w(u) to under-
line the fact that the pattern w is given. From the foregoing we conclude
that

P(Dn ≥ k) = 1

n

n∑
i=1

P(Dn(i) ≥ k)

=
∑
w∈Ak

1

n

n∑
i=1

P(Dn(i) ≥ k & Xi+k−1
i = w)

= 1

n

∑
w∈Ak

∑
r≥2

rP(Nn(w) = r)

=
∑
w∈Ak

(
P(w) − 1

n
N ′

n,w(0)

)

= 1 − 1

n

∑
w∈Ak

N ′
n,w(0),

where N ′
n,w(0) denotes the derivative of Nn(u) at u = 0.

Let now Dn(u) = E(uDn) =∑k P(Dn = k)uk be the probability gener-
ating function of Dn. Then the foregoing implies that

Dn(u) = 1

n

(1 − u)

u

∑
w∈A∗

u|w|N ′
n,w(0),

and the bivariate generating function D(z, u) =∑n nDn(u)zn becomes

D(z, u) = 1 − u

u

∑
w∈A∗

u|w| ∂

∂u
Nw(z, 0) (7.6.1)

where Nw(z, u)=∑∞
n=0

∑∞
r=0 P(Nn(w)=r)znur . In Section 7.2 we worked

with
∑∞

n=0

∑∞
r=1 P(Nn(w) = r)znur and in (7.2.20) of Theorem 7.2.7 we

provided a formula for it. Adding the term N0(z) = Sw(z)/Dw(z) we finally
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arrive at

Nw(z, u) = z|w|P(w)

D2
w(z)

u

1 − uMw(z)
+ Sw(z)

Dw(z)
,

where Mw(z) is defined in (7.2.21) and Dw(z) = (1 − z)Sw(z) + z|w|P(w)
(cf. 7.2.24) with Sw(z) being the autocorrelation polynomial for w. Since

∂

∂u
Nw(z, 0) = z|w| P(w)

D2
w(z)

,

we finally arrive at the following lemma that is the starting point of the
subsequent analysis.

Lemma 7.6.1. The bivariate generating function for Dn is

D(z, u) = 1 − u

u

∑
w∈A∗

(zu)|w| P(w)

((1 − z)Sw(z) + z|w|P(w))2
(7.6.2)

for |u| < 1 and |z| < 1, where Sw(z) is the autocorrelation polynomial
for w.

In this section, we prove the following result for a random text generated
by a memoryless source over a finite alphabet A of size V with pi being the
probability of emitting symbol i ∈ A. We denote by h = −∑V

i=1 pi log pi

the entropy rate of the source, and h2 =∑V
i=1 pi log2 pi . The reader is

asked in Problem 7.6.1 to extend the following theorem to Markov sources.

Theorem 7.6.2. For
(i) a biased memoryless source (i.e. pi �= pj for some i �= j ) and any

ε > 0

E(Dn) = 1

h
log n + γ

h
+ h2

h2
+ P1(log n) + O(n−ε), (7.6.3)

Var(Dn) = h2 − h2

h3
log n + O(1) (7.6.4)

where P1(·) is a periodic function with small amplitude in the case
where the tuple (log p1, . . . , log pV ), is collinear with a rational tuple
(i.e. log pj/ log p1 = r/s for some integers r and s) and converges to
zero otherwise.

Furthermore, (Dn − E(Dn))/Var(Dn) is asymptotically normal
with mean zero and variance one that is, for fixed x ∈ R

lim
n→∞ P{Dn ≤ E(Dn) + x

√
Var(Dn)} = 1√

2π

∫ x

−∞
e−t2/2 dt,
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and for all integers m

lim
n→∞ E

[
Dn − E(Dn)√

VarDn

]m

=
{

0 when m is odd
m!/(2m/2(m/2)!) when m is even.

(ii) an unbiased source (i.e. p1 = · · · = pV = 1/V ), h2 = h2, the ex-
pected value E(Dn) is given by (7.6.3), and for any ε > 0

Var(Dn) = π2

6 log2 V
+ 1

12
+ P2(log n) + O(n−ε)

where P2(log n) is a periodic function with small amplitude. The
limiting distribution of Dn does not exist, but one finds

lim
n→∞ sup

x

| P(Dn ≤ x) − exp(−nV −x) |= 0

for any fixed real x.

In passing we observe that the quantity Dn is also the depth of a
randomly selected suffix in a compact suffix trie. Such a trie is a com-
pacted version of suffix tries defined in Chapter 2. In a compact suffix
trie one deletes all unary nodes at the bottom of the noncompact suffix
trie. Observe that in a compact suffix trie, which we further call simply
a suffix trie, the path from the root to node i (representing the ith suf-
fix) is the shortest prefix of a suffix that distinguishes it from all other
suffixes. The quantity Dn(i) defined above represents the depth of the i

suffix in the associated suffix trie, while Dn is the typical depth, that is
the depth of a randomly selected terminal node in the suffix trie. The-
orem 7.6.2 tells us that the typical depth is normally distributed with the
average depth asymptotically equal to (1/h) log n and variance �(log n) for
a biased memoryless source. In the unbiased case variance is O(1) and the
(asymptotic) distribution is of the extreme distribution type. Interestingly,
as proved below, the depth in a suffix trie (built over one sequence gener-
ated by a memoryless source) is asymptotically equivalent to the depth in a
trie built over n independently generated strings. Thus suffix tries resemble
tries!

7.6.2. Random tries resemble suffix tries

The proof of Theorem 7.6.2 hinges on establishing asymptotic equivalence
between Dn introduced above and a new random variable DT

n defined as
follows: First, for n independently generated texts (by the same memoryless
source as for Dn) we denote by DT

n (i) for an integer i ≤ n the length of the
longest prefix of the ith text that is also a prefix of another text, say the j th
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text, j �= i. Then the random variable DT
n is defined by selecting integer i

uniformly between 1 and n. We also define DT
n (u) =∑k P(DT

n = k)uk and
DT (z, u) =∑n nDT

n (u)zn. Observe that DT
n is in fact the typical depth in

a trie built over these n independent texts.
It is relatively easy to derive the generating function of DT

n , as shown
below.

Lemma 7.6.3. For all n ≥ 1

DT
n (u) = 1 − u

u

∑
w∈A∗

u|w|P(w)(1 − P(w))n−1,

DT (z, u) = 1 − u

u

∑
w∈A∗

u|w| zP(w)

(1 − z + P(w)z)2

for all |u| ≤ 1 and |z| < 1.

Proof. It suffices to observe that

P(DT
n (i) < k) =

∑
w∈Ak

P(w)(1 − P(w))n−1.

Indeed, DT
n (i) < k if there is a word w ∈ Ak such that a prefix of the

ith string is equal to w and none of the other text prefixes are equal to
w.

Our goal now is to prove that Dn(u) and DT
n (u) are asymptotically close

as n → ∞. This requires several preparatory steps outlined below that will
lead to

DT
n (u) − Dn(u) = (1 − u)O(n−ε) (7.6.5)

for some ε > 0 and all |u| < β for β > 1. Consequently,

|P(Dn ≤ k) − P(DT
n ≤ k)| = O(n−εβ−k)

for all positive integers k. In Lemma 7.6.11 we shall prove that DT
n is

asymptotically normal, hence Dn is normal. This will prove Theorem 7.6.2.
We start with a lemma indicating that for most words w the autocor-

relation polynomial Sw(z) is very close to 1 when z is nonnegative. This
lemma provides information about analytical properties of the autocorrela-
tion polynomial.

Lemma 7.6.4. There exist δ < 1, θ > 0 and ρ > 1 such that ρδ < 1 and∑
w∈Ak

[[|Sw(ρ) − 1| ≤ (ρδ)kθ]]P(w) ≥ 1 − θδk. (7.6.6)
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Proof. To simplify notations, let Pk be the probability measure on Ak

such that Pk(A) =∑w∈Ak [[w ∈ A]]P(w). Thus we need to prove that
Pk(Sw(ρ) ≤ 1 + (ρδ)kθ) ≥ 1 − θδk .

Let i be an integer smaller than k ∈ P(w), where P(w) is the autocor-
relation set for w. It is easy to see that (cf. Problem 7.6.2)

Pk(k − i ∈ P(w)) =
⎛
⎝ V∑

j=1

p
�k/i�+1
j

⎞
⎠

r ⎛
⎝ V∑

j=1

p
�k/i�
j

⎞
⎠

i−r

(7.6.7)

where r = k − �k/i�i. Denoting p = maxi pi we have

Pk(k − i ∈ P(w)) ≤ pk−i .

Thus Pk(max(P(w) − {k}) ≥ k/2) ≤∑�k/2�
i=1 Pk(k − i ∈ P(w)) ≤ (pk/2/

(1 − p)). Now, if the word w is such that max(P(w) − {k}) < k/2, then
Sw(ρ) ≤ 1 +∑k

i>�k/2� ρipi ≤ 1 + ρk(pk/2/(1 − p)). Therefore, it suffices
for (7.6.6) to select δ = √

p, θ = (1 − p)−1 and ρ > 1 such that ρδ < 1.

In the next lemma we show that D(z, u) can be analytically continued
above the unit disk, that is, for |u| > 1.

Lemma 7.6.5. The generating function D(z, u) can be analytically con-
tinued for all |u| < δ−1 and |z| < 1 where δ < 1.

Proof. Let |u| < 1 and |z| < 1. Consider the following identity∑
w

(uz)|w| P(w)

(1 − z)2
= 1

(1 − uz)(1 − z)2
.

Therefore, for |z| < 1

uD(z, u) − (1 − u)

(1 − uz)(1 − z)2

= (1 − u)
∑
w

(zu)|w|P(w)

(
1

D2
w(z)

− 1

(1 − z)2

)

= (u − 1)
∑
w

(zu)|w|P(w)
1

D2
w(z)(1 − z)2

× (Dw(z) − (1 − z))(Dw(z) + (1 − z)),

where we recall that Dw(z) − (1 − z) = (1 − z)(Sw(z) − 1) + P(w)z|w|. By
Lemma 7.6.4

Pk(|Dw(z) − (1 − z)| ≤ (|1 − z| + 1)δ|w|) ≥ 1 − O(δ|w|)
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for all w such that |w| = k. Moreover, for any bounded function f (w)
such that f (w) ≤ fmax for all w with |w| = k, we also have the following
estimate for all y:∑

|w|=k

P(w)f (w) ≤ y + fmaxPk(f (w) > y). (7.6.8)

In particular, we take f (w) = Dw(z) − (1 − z) and we have fmax = O(1)
since |Sw(z)| < (1 − p)−1 (p is defined in the proof of Lemma 7.6.4). Now
taking y = (|1 − z| + 1)δk , using the above we obtain

uD(z, u) − 1 − u

(1 − uz)(1 − z)2
= (u − 1)

∞∑
k=0

(zu)kO((|1 − z| + 1)δk + δk)

for all w. In conclusion,

uD(z, u) − (1 − u)

(1 − uz)(1 − z)2
= O

(
u − 1

1 − δ|u|
)

for δ < 1 and |z| < 1, which completes the proof.

Before we proceed, we need two technical lemmas.

Lemma 7.6.6. There exist K , a constant ρ ′ > 1, and α > 0 such that for
all w with |w| ≥ K we have

|Sw(z)| ≥ α

for |z| ≤ ρ ′ with ρ ′ > 1 such that pρ ′ < 1.

Proof. Let � be an integer and ρ ′ > 1 such that pρ ′ + (pρ ′)� < 1. Let k > �

and let w be such that |w| > k. Let i = max(P − {k}). If i ≤ �, then for all
z such that |z| ≤ ρ ′ we have

|Sw(z)| ≥ 1 − (pρ ′)�

1 − pρ ′ .

If i > �, let q = �k/i�, then w = uqv where u is the prefix of length i of
word w, and v is the suffix of length k − iq. Thus

Sw(z) = 1 − (P(u)zi)q

1 − P(u)zi
+ (P(u)zi)qSuv(z),

where Suv(z) is the autocorrelation polynomial of uv. This implies

|Sw(z)| ≥ 1 − (pρ ′)qi

1 + (pρ ′)i
− (pρ ′)iq − (pρ ′)k

1 − pρ ′ .
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But since i > �, we obtain

|Sw(z)| ≥ 1 − (pρ ′) − 3(pρ ′)k−�

1 + pρ ′ > 0,

which completes the proof.

Lemma 7.6.7. There exists an integer K ′ such that for |w| ≥ K ′ there is
only one root of Dw(z) in the disk |z| ≤ ρ ′ for ρ ′ > 1.

Proof. Let K1 be such that (pρ ′)K1 < α(ρ ′ − 1) holds for the α and ρ ′ as in
Lemma 7.6.6. Denote K ′ = max{K, K1}, where K is defined above. Note
also that the above condition implies that for all w such that |w| = k > K ′
we have P(w)(ρ ′)k < α(ρ − 1). Hence, for |w| > K ′ we have |P(w)zk| <

|(z − 1)Sw(z)| on the circle |z| = ρ ′ > 1. Therefore, by Rouché’s theorem
the polynomial Dw(z) has the same number of roots as (1 − z)Sw(z) in the
disk |z| ≤ ρ ′. But, the polynomial (1 − z)Sw(z) has only a single root in
this disk since by Lemma 7.6.6 we have |Sw(z)| > 0 in |z| ≤ ρ ′.

We just established that there exists the smallest root of Dw(z) = 0,
which we denote as Aw. Let also Cw and Ew be the first and the second
derivatives of Dw(z) at z = Aw, respectively. Using bootstrapping, one
easily obtains the following expansions

Aw = 1 + 1

Sw(1)
P(w) + O(P(w)2),

Cw = −Sw(1) +
(

k − 2S ′
w(1)

Sw(1)

)
P(w) + O(P(w)2),

Ew = −2S ′
w(1) +

(
k(k − 1) − 3S ′′

w(1)

Sw(1)

)
P(w) + O(P(w)2),

where S ′
w(1) and S ′′

w(1), respectively, denote the first and the second deriva-
tives of Sw(z) at z = 1.

Finally, we are ready to compare Dn(u) with DT
n (u) to conclude that

they do not differ too much as n → ∞. Let us define two new generating
functions Qn(u) and Q(z, u) that represent the difference between Dn(u)
and DT

n (u), that is,

Qn(u) = u

1 − u

(
Dn(u) − DT

n (u)
)
,

and

Q(z, u) =
∞∑

n=0

nQn(u)zn = u

1 − u

(
D(z, u) − DT (z, u)

)
.
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Then

Q(z, u) =
∑
w

u|w|P(w)

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
.

It is not difficult to establish asymptotics of Qn(u) by appealing to the
Cauchy theorem. This is done in the following lemma.

Lemma 7.6.8. There exists B > 1 such that for all |u| ≤ β the following
evaluation holds

Qn(u) = 1

n

∑
w

u|w|P(w)

×
(

A|w|−n−1
w

(
n+1−|w|

C2
wAw

+Ew

C3
w

)
− n(1 − P(w))n−1

)
+O(B−n)

for some β > 1.

Proof. By Cauchy’s formula

nQn(u) = 1

2iπ

∮
Q(z, u)

dz

zn+1
,

where the integration is along a loop contained in the unit disk that encircles
the origin. Let w be such that |w| ≥ K ′, where K ′ is defined in Lemma 7.6.7.
From the proof of Lemma 7.6.7 we conclude that Dw(z) and (1 − z +
P(w)z) have only one root in |z| ≤ ρ for some ρ > 1. Applying Cauchy’s
residue theorem we obtain

1

2iπ

∮
u|w|P(w)

dz

zn+1

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)

= u|w|P(w)

(
A|w|−n−1

w

u

(
n + 1 − |w|

C2
wAw

+ Ew

C3
w

)
− n(1 − P(w))n−1

)
+ Iw(ρ, u),

where

Iw(ρ, u) = P(w)

2iπ

∫
|z|=ρ

u|w| dz

zn+1

(
z|w|

Dw(z)2
− z

(1 − z + P(w)z)2

)
.

To establish a bound for Iw(ρ, u) we argue exactly in the same manner as
in the proof of Lemma 7.6.5. This leads for |w| > K ′ to∑

|w|=k

Iw(ρ, u) = O((δρu)kρ−n)
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since for all w we also have Sw(ρ) ≤ 1/(1 − pρ) and Dw(z) = O(ρk) in
the circle |z| ≤ ρ. Set now β = (δρ)−1 > 1. Then, for |u| < β we have∑

{w: |w|>K ′}
Iw(ρ, u) = O(

∑
w

P(w)ρ|w|−n) = O(ρ−n).

This proves our bound since the other terms (|w| < K ′) contribute only
B−n for some B > 1 due to the fact that all roots of Dw(z) have magnitudes
greater than 1.

In the next lemma we show that Qn(u) → 0 as n → ∞.

Lemma 7.6.9. For all 1 < β < δ−1, there exists ε > 0 such that Qn(u) =
(1 − u)O(n−ε) uniformly for |u| ≤ β.

Proof. The expansion of Ew with respect to P(w), and Lemma 7.6.4 show
that as n → ∞ the following holds

∑
w u|w|P(w)A−n

w Ew/C3
w = O(1).

Therefore, by Lemma 7.6.8 we have

Qn(u) =
∑
w

u|w|P(w)

(
A|w|−n−2

w

C2
w

− (1 − P(w))n−1

)
+ O(1/n).

Let now fw(x) be a function defined for x real by

fw(x) = A|w|−x−2
w

C2
w

− (1 − P(w))x−1.

By the same arguments as those used in proving (7.6.8) in Lemma 7.6.5,
we note that

∑
w u|w|P(w)fw(x) is absolutely convergent for all x and u

such that |u| ≤ β. The function f̄w(x) = fw(x) − fw(0)e−x is exponentially
decreasing when x → + ∞ and is O(x) when x → 0; therefore its Mellin
transform defined as

f̄ ∗
w(s) =

∫ ∞

0
f̄w(x)xs−1dx

is well defined for �(s) > −1. In this region we obtain

f̄ ∗
w(s) = �(s)

(
A|w|−1

w

(log Aw)−s − 1

AwC2
w

− (− log(1 − P(w))−s − 1

1 − P(w)

)
,

where �(s) is the gamma function. Let g∗(s, u) be the Mellin transform
of the series

∑
w u|w|P(w)f̄w(x) which exists at least in the strip (−1, 0).

Formally, we have

g∗(s, u) =
∑
w

u|w|P(w)f̄ ∗
w(s).
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We can reverse the Mellin transform g∗(s, u) provided that the following
holds.

Lemma 7.6.10. The function g∗(s, u) is analytical in �(s) ∈ (−1, c) for
some c > 0.

Assuming Lemma 7.6.10 is granted, we have

Qn(u) = 1

2iπ

∫ ε+i∞

ε−i∞
g∗(s, U )n−sds + O(1/n) +

∑
w

u|w|P(w)fw(0)e−n,

for some ε ∈ (0, c). Notice that the last term of this equation contributes
O(e−n), and can be safely ignored. Furthermore, a simple majorization
under the integral gives the evaluation Qn(u) = O(n−ε) which completes
the proof of Lemma 7.6.9.

Proof of Lemma 7.6.10. We establish the absolute convergence of
g∗(s, u) for all s such that �(s) ∈ (−1, c) and |u| ≤ β. Let us define
h∗(s, u) = (g∗(s, u))/(�(s)). Note that for any fixed s we have the fol-
lowing

(log Aw)−s =
(

P(w)

1 + Sw(1)

)−s

(1 + O(P(w))),

(− log(1 − P(w)))−s = P(w)−s(1 + O(P(w))).

Thus

(log Aw)−s − 1

A
2−|w|
w C2

w

− (− log(1 − P(w)))−s − 1

1 − P(w)

= P(w)−s
[
(1 + aw(1))s(1 + O(|w|P(w)) − (1 + O(P(w))

]
+ O(|w|P(w)).

By Lemma 7.6.4, Pk(Sw(1) ≤ 1 + θδk) ≥ 1 − O(δk), and hence

h∗(s, u) =
∞∑

k=0

(
sup{p−�(s), q−�(s)}|u|δ)k O(1)

that absolutely converges for all values of s such that �(s) < c where
c satisfies sup{p−c, q−c} < (δβ)−1. Since h∗(0, u) = 0 by definition, the
pole of �(s) at s = 0 is cancelled in g∗(s, u), and therefore h∗(s, u) does
not show any singularities in the strip �(s) ∈ (−1, c).

To complete the proof of our main Theorem 7.6.2, we need an asymp-
totic analysis of DT

n (u) which is presented next. We recall that DT
n repre-

sents also the typical depth in a trie built from n independently generated
strings.
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Lemma 7.6.11. There exists ε > 0 such that

DT
n (u) = (1 − u)nκ(u)(�(κ(u)) + P (log n, u))) + O(nε),

where

u

V∑
i=1

p
1−κ(u)
i = 1

and P (log n, u) is a periodic function with small amplitude in the case
where the vector (log p1, . . . , log pV ) is collinear with a rational tuple, and
converges to zero when n → ∞ otherwise.

Proof. We begin with the identity

DT
n (u) = 1 − u

u

∑
w∈A∗

u|w|P(w)(1 − P(w))n−1.

We argue in exactly the same manner as we did in the proof of Lemma 7.6.8.
We find the Mellin transform T ∗(s, u) = ∫∞

0 xs−1dx u/(1 − u)DT
x (u) dx

to be

T ∗(s, u) =
∑
w∈A∗

u|w|P(w)(− log(1 − P(w)))−s�(s).

Using the fact that for s bounded (− log(1 − P(w)))−s = P(w)−s(1 +
O(sP(w))), we conclude

T ∗(s, u) = �(s)

(
u
∑V

i=1 p1−s
i

1 − u
∑V

i=1 p1−s
i

+ g(s, u)

)
,

where

g(s, u) = O

(
us
∑V

i=1 p
2−�(s)
i

1 − |u|∑V
i=1 p

2−�(s)
i

)
.

Let κ(u) be the main root of 1 = u
∑V

i=1 p1−s
i . The other roots of 1 =

u
∑V

i=1 p1−s
i are countable and we denote them by κk(u) for k �= 0 integer.

For all integers k we have �(κk(u)) ≥ κ(u). Using the inverse Mellin we
find

DT
n = 1 − u

2iπu

∫ +i∞

−i∞
T ∗(s, u)n−s ds.

We now consider |u| < δ−1 for δ < 1. Then there exists ε such that for
�(s) ≤ ε the function g(s, u) has no singularity. Moving the integration
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path to the left of �(s) = ε, and applying the residue theorem we find the
following estimate

DT
n (u) = (1 − u)

�(κ(u))

h(u)
nκ(u) + (1 − u)

∑
k

�(κk(u))

hk(u)
nκk(u) + O(n−ε)

(7.6.9)

with h(u) = −∑i p
1−κ(u)
i log pi and hk(u) = −∑i p

1−κk(u)
i log pi . When

log pis are collinear with a rational vector, then there is a subset of κk(u)
that has the same real part as κ(u) and is also equally spaced on the vertical
line �(s) = �(κ(u)). In this case their contribution to (7.6.9) is

nκ(u)
∑

k

�(κk(u))

h(u)
exp((κk(u) − κ(u))i log n).

When the log pis are not collinear with a rational vector the contribution of
the κk(u) divided by nκ(u) converges to zero when n → ∞.

The last lemma completes the proof of Theorem 7.6.2. Indeed, it suffices
to observe that for t → 0

κ(et ) = c1t + c2

2
t2 + O(t3) (7.6.10)

where c1 = 1/h and c2 = (h2 − h2)/h3. We concentrate first on the asym-
metric case. From the expression of DT

n (u) we find immediately the first
and the second moments via the first and the second derivatives of DT

n (u) at
u = 1 with the appropriate asymptotic expansion in c1 log n and in c2 log n.
In order to obtain the limiting normal distribution we prove

e−tc1 log n/
√

c2 log nDT
n

(
et/

√
c2 log n

)
→ et2/2

using nκ(u) = exp(κ(u) log n) and referring to expansion (7.6.10).
For the symmetric case there is no normal limiting distribution since

variance is O(1). However, there are oscillation due to the fact that all κk(u)
are aligned on a vertical line. This completes the proof of Theorem 7.6.2.

Problems

Section 7.2

7.2.1 Prove (7.2.9).
7.2.2 In Theorem 7.2.8 we prove that for an irreducible aperiodic Markov

chain the variance Var(Nn) = nc1 + c2 (cf. (7.2.26)). Prove that
c1 > 0.
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7.2.3 Prove that (Nn − E(Nn))/
√

Var(Nn) converges in moments to the
appropriate moments of the standard normal distribution.

7.2.4 Let ρ(t) be a root of 1 − etMW (eρ) = 0. Observe that ρ(0) = 0.
Prove that ρ(t) > 0 for t �= 0 for pij > 0 for all i, j ∈ A.

7.2.5 Prove the expression (7.2.44) for θa of Theorem 7.2.12 (cf. Denise
and Régnier (2004)).

Section 7.3

7.3.1 Extend the analysis of Section 7.3 to multisets W , that is, a word
wi may occur several times in W .

7.3.2 Prove language relationships (7.3.2)–(7.3.2).
7.3.3 Derive explicit formulas for θa appearing in Theorem 7.3.3(iv).
7.3.4 Find explicit formulae for the values of the mean E(Nn(W)) and

of the variance Var(Nn(W)) for the generalized pattern matching
discussed in Section 7.3.2 for W0 = ∅ and W0 �= ∅.

7.3.5 Derive explicit formulae for σa and θa in (7.3.27) appearing in
Theorem 7.3.10.

7.3.6 Enumerate (�, k) sequences over a nonbinary alphabet (i.e. gener-
alize the analysis of Section 7.3.3).

Section 7.4

7.4.1 Find an explicit formula for the generating function B
[p]
2 (z) of the

collection B[p]
2 .

7.4.2 Design a dynamic programming algorithm to compute the corre-
lation algorithm, κ2(W).

7.4.3 Establish the rate of convergence for the Gaussian law from
Theorem 7.4.5.

7.4.4 For the fully unconstrained subsequence problem establish the
large deviations (cf. Janson 2004).

7.4.5 Provide details of the proof for Theorem 7.4.6.
7.4.6 Let W = {w1, . . . , wd} be a set of patterns wi . The pattern W

occurs as a subsequence in the text if any of wi occurs as a sub-
sequence. Analyse this generalization of the subsequence pattern
matching.

7.4.7 Let w be a pattern. Set W to be a window size with |w| ≤ W ≤ n.
Consider the windowed subsequence pattern matching in which
w must appear as a subsequence within the window W . Analyse
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the number of windows that have at least one occurrence of w

as a subsequence within the window (cf. Gwadera, Atallah, and
Szpankowski 2003).

Section 7.5

7.5.1 Prove the generating operators identities (7.5.5)–(7.5.8).
7.5.2 Prove (7.5.11)–(7.5.13).
7.5.3 Prove the second part of Theorem 7.5.1, that is, derive formula

(7.5.18) for variance of �n(W).
7.5.4 Does the Central Limit Theorem hold for the generalized subse-

quence problem discussed in Section 7.5? What about large devi-
ations?

Section 7.6

7.6.1 Extend Theorem 7.6.2 for Markov sources.
7.6.2 Prove (7.6.7) and extend it to Markov sources (cf. Apostolico and

Szpankowski 1992).

7.6.3 Let κ(u) be the main root of 1 = u
∑V

i=1 p1−s
i , and κk(u) for the

k �= 0 integer are other roots of 1 = u
∑V

i=1 p1−s
i . Prove that for

all integers k we have �(κk(u)) ≥ κ(u).

Notes

Algorithmic aspects of pattern matching are presented in numerous books.
We mention here Crochemore and Rytter (1994) and Gusfield (1997)
(cf. also Apostolico 1985). Public domain utilities like agrep, grappe,
webglimpse for finding general patters were recently developed by Wu
and Manber (1995), Kucherov and Rusinowitch (1997), and others. Vari-
ous data compression schemes are studied in Wyner and Ziv (1989), Wyner
(1997), Yang and Kieffer (1998), Ziv and Lempel (1978), Ziv and Merhav
(1993). Prediction based on pattern matching is discussed in Jacquet, Sz-
pankowski, and Apostol (2002). Algorithmic aspects of pattern matching
can also be found in Chapters 2 and 8 of this book.

In this chapter the emphasis is on analysis of pattern matching problems
by analytic methods in a probabilistic framework. Probabilistic models are
discussed in Section 7.1 and Chapter 1. Markov models are presented in
many standard books (cf. Karlin and Ost 1987). Dynamical sources were
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introduced by Vallée (2001) (cf. also Clement Flajolet, and Vallée 2001;
Bourdon and Vallée 2002). General stationary ergodic sources are discussed
in Shields (1969).

In this chapter analytic tools are used to investigate combinatorial pat-
tern matching problems. The reader is referred to Alon and Spencer (1992),
Szpankowski (2001), Waterman (1995) (cf. also Arratia and Waterman
1989, 1994) for in-depth discussion of probabilistic tools. Analytic tech-
niques are thoroughly explained in Sedgewick and Flajolet (1995) and
Szpankowski (2001). The reader may also consult Atallah, Jacquet, and
Szpankowski (1993), Bender (1973), Clement et al. (2001), Hwang (1996),
Jacquet and Szpankowski (1994, 1998). The Perron–Frobenius theory and
the spectral decomposition of matrices can be found in Gantmacher (1959),
Karlin and Taylor (1975), Kato (1980), Szpankowski (2001). Operator
theory is discussed in Kato (1980).

Exact string matching is presented in Section 7.2. There are numerous
references. Our approach is founded in the work of Guibas and Odlyzko
(1981a, b). The presentation of this section follows very closely recent
work of Régnier and Szpankowski (1998a) and Régnier (2000). A more
probabilistic approach is adopted in Chapter 2 and in Prum et al. (1995).
Example 7.2.13 is taken from Denise, Régnier, and Vandenbogaert (2001).

The generalized string matching problem discussed in Section 7.3 was
introduced in Bender and Kochman (1993). The analysis of string match-
ing over a reduced set of patterns appears in Régnier and Szpankowski
(1998b) (cf. also Guibas and Odlyzko 1981b). An automaton approach to
motif finding was proposed in Nicodème et al. (2002). The general string
matching was first dealt with in Bender and Kochman (1993), however, our
presentation follows a different path simplifying previous analyses. It is
closely related to the subsequence pattern matching analysis presented in
Flajolet, Guivarc’h, Szpankowski, and Vallée (2001). The (�, k) sequence
analysis is taken from Szpankowski (2001). For the Berry–Essen inequality
and the Gartner–Ellis theorem, see Szpankowski (2001).

The subsequence pattern matching or the hidden pattern matching dis-
cussed in Section 7.4 is based on Flajolet et al. (2001). Proceeding along
different tracks, Janson (to appear) has related this particular case to his
treatment of U–statistics via Gaussian Hilbert spaces; see Chapter XI of
Janson’s book (1997) for the type of method employed. Example 7.4.7 was
fully developed in Gwadera et al. (2003).

The generalized subsequence pattern matching discussed in Section 7.5
is taken from Bourdon and Vallée (2002). The operator generating function
approach for dynamic sources was developed by Vallée (2001).

In Section 7.6 we presented some results for the self-repetitive pattern
matching. Theorem 7.6.2 was proved in Jacquet and Szpankowski (1994),
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however, our proof in this section is somewhat simplified. In particular, the
proof of the crucial Lemma 7.6.1 is new and based on results presented in
Section 7.2. Lemma 7.6.11 is due to Jacquet and Régnier (1986) (for an
extension to Markov sources see Jacquet and Szpankowski (1991)). The
Mellin transform is explained in depth in Flajolet, Gourdon, and Dumas
(1995), Szpankowski (2001). Tries are treated in depth in Mahmoud (1992)
and Szpankowski (2001). As mentioned, the quantity Dn analysed in the
section is also the typical depth in a suffix trie introduced in Chapter 2 (cf.
also Apostolico 1985). Probabilistic analysis of suffix tries can be found
in Apostolico and Szpankowski (1992), Devroye, Szpankowski, and Rais
(1992), Szpankowski (1993a, b). As discussed in the section, suffix tries
often appear in the analysis of data compression schemes (cf. Wyner and
Ziv 1989; Wyner 1997; Yang and Kieffer 1998; Ziv and Lempel 1978; Ziv
and Merhav 1993).
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