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Support Vector Machines

The material covered in the first five chapters has given us the foundation on which
to introduce Support Vector Machines, the learning approach originally developed
by Vapnik and co-workers. Support Vector Machines are a system for efficiently
training the linear learning machines introduced in Chapter 2 in the kernel-induced
Jeature spaces described in Chapter 3, while respecting the insights provided by
the generalisation theory of Chapter 4, and exploiting the optimisation theory of
Chapter 5. An important feature of these systems is that, while enforcing the learn-
ing biases suggested by the generalisation theory, they also produce ‘sparse’ dual
representations of the hypothesis, resulting in extremely efficient algorithms. This is
due to the Karush—Kuhn—Tucker conditions, which hold for the solution and play a
crucial role in the practical implementation and analysis of these machines. Another
important feature of the Support Vector approach is that due to Mercer’s conditions
on the kernels the corresponding optimisation problems are convex and hence have
no local minima. This fact, and the reduced number of non-zero parameters, mark
a clear distinction between these system and other pattern recognition algorithms,
such as neural networks. This chapter will also describe the optimisation required
to implement the Bayesian learning strategy using Gaussian processes.

6.1 Support Vector Classification

The aim of Support Vector classification is to devise a computationally efficient
way of learning ‘good’ separating hyperplanes in a high dimensional feature
space, where by ‘good’ hyperplanes we will understand ones optimising the gen-
eralisation bounds described in Chapter 4, and by ‘computationally efficient” we
will mean algorithms able to deal with sample sizes of the order of 100000
instances. The generalisation theory gives clear guidance about how to control
capacity and hence prevent overfitting by controlling the hyperplane margin mea-
sures, while optimisation theory provides the mathematical techniques necessary
to find hyperplanes optimising these measures. Different generalisation bounds
exist, motivating different algorithms: one can for example optimise the maxi-
mal margin, the margin distribution, the number of support vectors, etc. This
chapter will consider the most common and well-established approaches which
reduce the problem to minimising the norm of the weight vector. At the end of

93

https://doi.org/10.1017/CBO9780511801389.008 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.008

94 6 -Support Vector Machines

the chapter we will provide pointers to other related algorithms, though since
research in this field is still in progress, we make no attempt to be exhaustive.

6.1.1 The Maximal Margin Classifier

The simplest model of Support Vector Machine, which was also the first to be
introduced, is the so-called maximal margin classifier. It works only for data
which are linearly separable in the feature space, and hence cannot be used in
many real-world situations. Nonetheless it is the easiest algorithm to understand,
and it forms the main building block for the more complex Support Vector
Machines. It exhibits the key features that characterise this kind of learning
machine, and its description is therefore crucial for understanding the more
advanced systems introduced later.

Theorem 4.18 in Chapter 4 bounds the generalisation error of linear machines
in terms of the margin mg(f) of the hypothesis f with respect to the training
set S. The dimensionality of the space in which the data are separated does not
appear in this theorem. The maximal margin classifier optimises this bound by
separating the data with the maximal margin hyperplane, and given that the
bound does not depend on the dimensionality of the space, this separation can be
sought in any kernel-induced feature space. The maximal margin classifier forms
the strategy of the first Support Vector Machine, namely to find the maximal
margin hyperplane in an appropriately chosen kernel-induced feature space.

This strategy is implemented by reducing it to a convex optimisation problem:
minimising a quadratic function under linear inequality constraints. First we note
that in the definition of linear classifiers there is an inherent degree of freedom,
due to the fact that the function associated with the hyperplane (w,b) does
not change if we rescale the hyperplane to (iw,Ab), for 1 € R*. There will,
however, be a change in the margin as measured by the function output as
opposed to the geometric margin. We refer to the margin of the function output
as the functional margin. Theorem 4.18 involves the geometric margin, that is
the functional margin of a normalised weight vector. Hence, we can equally
well optimise the geometric margin by fixing the functional margin to be equal
to 1 (hyperplanes with functional margin | are sometimes known as canonical
hyperplanes) and minimising the norm of the weight vector. If w is the weight
vector realising a functional margin of 1 on the positive point x* and the
negative point X, we can compute its geometric margin as follows. Recall that
a functional margin of 1 implies

(w-x™y+b = +1,
(w-x)+b = -1,

while to compute the geometric margin we must normalise w. The geometric
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6.1 Support Vector Classification 95

margin y is then the functional margin of the resulting classifier

- ) ()

1
— ({w-xty — (w-x~
1
Iwil,”
Hence, the resulting geometric margin will be equal to 1/||w|, and we have
demonstrated the following result.
Proposition 6.1 Given a linearly separable training sample

S = ((bel)"“ a(xf’yf))
the hyperplane (w,b) that solves the optimisation problem

minimiseyp, (W' W),
subject to  y; ((W-x;) +b) > 1,
i=1,...,7,

realises the maximal margin hyperplar;e with geometric margin y = 1/ ||w],.

We now consider how to transform this optimisation problem into its corre-
sponding dual problem following the strategy outlined in Section 5.3. The primal
Lagrangian is

¢

L(w,b,a) = % (w-w) —Z%' (i (W xi) +b) —1]
i=1

where a; > 0 are the Lagrange multipliers, as described in Chapter 5.
The corresponding dual is found by differentiating with respect to w and b,
imposing stationarity,

oL(w,b,a) £ 3
e = w—gyla,x,—ﬂ,

Lwba) < B
T = ;y;%—O,

and resubstituting the relations obtained,

¢

w = Z,Vitxixi,
i=1
¢

0 = ZJ’:‘%
i=1
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96 6 Support Vector Machines

into the primal to obtain

£
Liwba) = Za, ((w-x;) +b) —1]

i=1

= Zylyj‘xlaj X; ° X] Zylyjaaj X; - Xj)"‘zal

1_[ 1 ij=1
4

¢
= zai - % Zyiyjaiaj (xi - X;).
i=1

ij=1

Remark 6.2 The first of the substitution relations shows that the hypothesis can
be described as a linear combination of the training points: the application
of optimisation theory naturally leads to the dual representation introduced in
Chapter 2. The dual representation is also required for the use of kernels.

We have therefore shown the main part of the following proposition, which
follows from Proposition 6.1.

Proposition 6.3 Consider a linearly separable training sample

S =((X1,¥1)s--- (X2, ¥2)),

and suppose the parameters a” solve the following quadratic optimisation problem:

maximise  W(a) = Z, 1% =3 ZiJ.:l yiyjdiotj (X - X;),
subject to ¢, yiay = 0, (6.1)
o = 0, i= 1, ,/‘

Then the weight vector w* = 3"¢_, yo;x; realises the maximal margin hyperplane
with geometric margin

y=1/1w,.

Remark 6.4 The value of b does not appear in the dual problem and so " must
be found making use of the primal constraints:

maxy,——; ({W" - x;)) + miny,=; ((W" - X))
2

b =—

Theorem 5.21 in Chapter 5 applies to this optimisation problem. The Karush—
Kuhn-Tucker complementarity conditions provide useful information about the
structure of the solution. The conditions state that the optimal solutions a”,
(w",b") must satisfy

o [yi (W x)+b7)=1] =0, i=1,...,¢
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6.1 Support Vector Classification 97

Figure 6.1: A maximal margin hyperplane with its support vectors highlighted

This implies that only for inputs x; for which the functional margin is one and
that therefore lie closest to the hyperplane are the corresponding «; non-zero.
All the other parameters «; are zero. Hence, in the expression for the weight
vector only these points are involved. It is for this reason that they are called
support vectors, see Figure 6.1 We will denote the set of indices of the support
vectors with sv.

Furthermore the optimal hyperplane can be eXpressed in the dual represen-
tation in terms of this subset of the parameters: ’

¢ ,
f(x,a’,b") = Zy,-oc;(xi "Xy +b°
= Z yiO('; (X,’ . X> + b.

iesv

The Lagrange multipliers associated with each point become the dual variables,
giving them an intuitive interpretation quantifying how important a given training
point is in forming the final solution. Points that are not support vectors have
no influence, so that in non-degenerate cases slight perturbations of such points
will not affect the solution. A similar meaning was found in the case of the dual
representations for the perceptron learning algorithm, where the dual variable
was proportional to the number of mistakes made by the hypothesis on a given
point during the training.
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Another important consequence of the Karush—Kuhn-Tucker complemen-
tarity conditions is that for j € sv,

yif(xpa’,b%) =y, (Z yio; (Xi - X;) + V) =1,
iesv
and therefore

¢
(w* - w")

* »*
Yiy,%; 0 (x; - xj)
ij=1

= DGy Yy (% x)

jesv iesv

= > o (1—yb)

jesv

_ z:*
- Oti.

iesv
We therefore have the following proposition.

Proposition 6.5 Consider a linearly separable training sample

S =X, ¥1)s--- » (Xt ¥2)).,

and suppose the parameters a* and b* solve the dual optimisation problem (6.1).
Then the weight vector w = Zf;l yio} X; realises the maximal margin hyperplane
with geometric margin

—1/2
y=1/|wl, = (Za{) :

iesv

Both the dual objective and the decision function have the remarkable prop-
erty that the data only appear inside an inner product. This will make it possible
to find and use optimal hyperplanes in the feature space through the use of
kernels as shown in the following proposttion.

Proposition 6.6 Consider a training sample

S =(xt,y1),--. , (X2, ¥¢))

that is linearly separable in the feature space implicitly defined by the kernel K(x,z)
and suppose the parameters &' and b" solve the following quadratic optimisation
problem:

- ¢ ¢
maximise ~ W(a) =3 7_ 0 — 3 2 jet Yiviotio K (Xi, X ),

subject to S0_, yii =0, (6.2)
o 20, l= 1, ,/.
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6.1 Support Vector Classification 99

Then the decision rule given by sgn(f(x)), where f(x) = Zf;l yios K(x;,X) + b, is
equivalent to the maximal margin hyperplane in the feature space implicitly defined
by the kernel K(x,z) and that hyperplane has geometric margin

Note that the requirement that the kernel satisfy Mercer’s conditions is
equivalent to the requirement that the matrix with entries (K(x;,X f))Zj=1 be
positive definite for all training sets. This in turn means that the optimisation
problem (6.2) is convex since the matrix ( yiyiK(xi, x j)) Zj=1 is also positive definite.
Hence, the property required for a kernel function to define a feature space also
ensures that the maximal margin optimisation problem has a unique solution that
can be found efficiently. This rules out the problem of local minima encountered
in training neural networks.

Remark 6.7 The maximal margin classifier is motivated by Theorem 4.18 which
bounds the generalisation error in terms of the margin and the radius of a
ball centred at the origin containing the data. One advantage of motivating
an algorithm using such a theorem is that we can compute a bound on the
generalisation as an output of the learning algorithm. The value of the margin
is given in Proposition 6.6, while the radius of the ball centred at the origin in
feature space can be computed as

R = max (K(x;,%;)).
I<i<t

Unfortunately, though the strategy suggested by the theorem has been shown to
be very effective, the constants involved typically make the actual value of the
resulting bound unrealistic. There is still, however, the potential for using the
bounds to choose between for example different kernels, where it is the relative
size that is important, though the accuracy of the bounds is still the subject of
active research.

An important result from the optimisation theory chapter is Theorem 5.15
stating that the primal objective is always bigger than the dual objective. Since
the problem we are considering satisfies the conditions of Theorem 5.20, there
is no duality gap at the optimal solution. We can therefore use any difference
between the primal and dual values as an indicator of convergence. We will call
this difference the feasibility gap. Let & be the current value of the dual variables.
The weight vector is calculated from setting the derivative of the Lagrangian
equal to zero, and so the current value of the weight vector W is the one which
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minimises L(w,b,&) for the given & Hence, this difference can be computed as
follows:

A 1 A M A 1 A
W@ — 5 I%)° = infL(w.b&)— 5 %]’

o ba— L
= L(W.b,8)— 5 [#]’

£
1

i=

I3
= Z i Z &yiyjo; (X - Xi),

i=1 i,j=1

which is minus the sum of the Karush—-Kuhn-Tucker complementarity condi-
tions. Note that this will correspond to the difference between primal and dual
feasible solutions provided W satisfies the primal constraints, that is provided
vi ({(W-x;) +b) > 1 for all i, which is equivalent to

4
Zyj&j <Xj'Xi>+b > 1.
j=1

There is no guarantee that this will hold, and so computation of a feasibility
gap is not straightforward in the maximal margin case. We will see below that
for one of the soft margin cases we can estimate the feasibility gap.

The fact that only a subset of the Lagrange multipliers is non-zero is referred
to as sparseness, and means that the support vectors contain all the information
necessary to reconstruct the hyperplane. Even if all of the other points were
removed the same maximal separating hyperplane would be found for the
remaining subset of the support vectors. This can also be seen from the dual
problem, since removing rows and columns corresponding to non-support vectors
leaves the same optimisation problem for the remaining submatrix. Hence, the
optimal solution remains unchanged. This shows that the maximal margin
hyperplane is a compression scheme according to the definition of Section
4.4, since given the subset of support vectors we can reconstruct the maximal
margin hyperplane that will correctly classify the whole training set. Applying
Theorem 4.25, we obtain the following result.

Theorem 6.8 Consider thresholding real-valued linear functions £ with unit weight
vectors on an inner product space X. For any probability distribution 9 on X x
{=1,1}, with probability 1 — 6 over ¢ random examples S, the maximal margin
hyperplane has error no more than

1
err(f) 7 d(dlogd + log - )

where d = # v is the number of support vectors.
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The theorem shows that the fewer the number of support vectors the better
generalisation can be expected. This is closely related to the Ockham approach of
finding a compact representation of the classification function. The nice property
of the bound is that it does not depend explicitly on the dimension of the feature
space.

Remark 6.9 A slightly tighter bound on the expected generalisation error in
terms of the same quantities can be obtained by a leave-one-out argument. Since,
when a non-support vector is omitted, it is correctly classified by the remaining
subset of the training data the leave-one-out estimate of the generalisation error
is

#sv

7.
A cyclic permutation of the training set shows that the expected error of a
test point is bounded by this quantity. The use of an expected generalisation
bound gives no guarantee about its variance and hence its reliability. Indeed
leave-one-out bounds are known to suffer from this problem. Theorem 6.8 can
be seen as showing that in the case of maximal margin classifiers an only very
slightly weaker bound does hold with high probability and hence that in this
case the variance cannot be too high.

The maximal margin classifier does not attempt to control the number of
support vectors and yet in practice there are frequently very few support vectors.
This sparseness of the solution will also motivate a number of implementation
techniques for dealing with large datasets, which we will discuss in more detail
in Chapter 7.

The only degree of freedom in the maximal margin algorithm is the choice
of kernel, which amounts to model selection. Any prior knowledge we have of
the problem can help in choosing a parametrised kernel family, and then model
selection is reduced to adjusting the parameters. For most classes of kernels, for
example polynomial or Gaussian, it is always possible to find a kernel parameter
for which the data become separable. In general, however, forcing separation of
the data can easily lead to overfitting, particularly when noise is present in the
data.

In this case, outliers would typically be characterised by a large Lagrange
multiplier, and the procedure could be used for data cleaning, since it can rank
the training data according to how difficult they are to classify correctly.

This algorithm provides the starting point for the many variations on this
theme proposed in the last few years and attempting to address some of its
weaknesses: that it is sensitive to the presence of noise; that it only considers
two classes; that it is not expressly designed to achieve sparse solutions.

Remark 6.10 Note that in SVMs the margin has two effects. On the one
hand, its maximisation ensures low fat-shattering dimension, and hence better
generalisation, while on the other hand the margin is the origin of the sparseness
of the solution vector, as the inequality constraints generate the Karush-Kuhn—
Tucker complementarity conditions.
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Figure 6.2: For caption see facing page
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6.1 Support Vector Classification 103

6.1.2 Soft Margin Optimisation

The maximal margin classifier is an important concept, as a starting point for
the analysis and construction of more sophisticated Support Vector Machines,
but it cannot be used in many real-world problems (we will see an exception in
Chapter 8): if the data are noisy, there will in general be no linear separation in
the feature space (unless we are ready to use very powerful kernels, and hence
overfit the data). The main problem with the maximal margin classifier is that
it always produces perfectly a consistent hypothesis, that is a hypothesis with
no training error. This is of course a result of its motivation in terms of a
bound that depends on the margin, a quantity that is negative unless the data
are perfectly separated.

The dependence on a quantity like the margin opens the system up to the
danger of falling hostage to the idiosyncrasies of a few points. In real data, where
noise can always be present, this can result in a brittle estimator. Furthermore,
in the cases where the data are not linearly separable in the feature space, the
optimisation problem cannot be solved as the primal has an empty feasible
region and the dual an unbounded objective function. These problems motivate
using the more robust measures of the margin distribution introduced in Chapter
4. Such measures can tolerate noise and outliers, and take into consideration the
positions of more training points than just those closest to the boundary.

Recall that the primal optimisation problem for the maximal margin case is
the following:

minimiseyp (W- w),
subject to  y; ((w-x;) +b) 2 1,i=1,...,¢

In order to optimise the margin slack vector we need to introduce slack variables

Figure 6.2: The figures show the result of the maximum margin SVM for learning
a chess board from points generated according to the uniform distribution using
Gaussian kernels with different values of ¢. The white dots are the positive
points and the black dots the negative ones. The support vectors are indicated
by large dots. The red area comprises those points that are positively classified by
the decision function, while the area classified negative is coloured blue. Notice
that in both cases the classification of the training set is consistent. The size
of the functional margin is indicated by the level of shading. The images make
clear how the accuracy of the resulting classifier can be affected by the choice of
kernel parameter. In image (b) with the large value of &, each region has only a
small number of support vectors and the darker shading clearly indicates where
the machine has more confidence of its classification. In contast image (a) has a
more complex boundary, significantly more support vectors, and there are very
few regions with darker shading
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to allow the margin constraints to be violated

subject to  y; ((W-xi) +b) = 1=¢,i=1,...,¢,
E20i=1,... ¢

Theorem 4.22 in Chapter 4 bounds the generalisation error in terms of the
2-norm of the margin slack vector, the so-called 2-norm soft margin, which
contains the &; scaled by the norm of the weight vector w. Hence, the equivalent
expression on which the generalisation depends is

R + 1 2
wls 2 2, €5
— = wli [RP+ 2
Y Iwil3
= |wI3R®+ €13,

suggesting that an optimal choice for C in the objective function of the resulting
optimisation problem should be R~2:

minimisezwp (W' W) +C Zf=1 &2
subject to  yi((W-xi) +b) 2 1-¢,i=1,....¢, (6.3)
éi = 0, i= 1,... ,[.

Notice that if &; < 0, then the first constraint will still hold if we set ¢; = 0, while
this change will reduce the value of the objective function. Hence, the optimal
solution for the problem obtained by removing the positivity constraint on &;
will coincide with the optimal solution of equation (6.3). Hence we obtain the
solution to equation (6.3) by solving the following optimisation problem:

minimisegyp (W-Ww)+C Zf=l &, (6.4)
subject to vi(iwxi) +b) 21-¢,i=1,....7, :
In practice the parameter C is varied through a wide range of values and
the optimal performance assessed using a separate validation set or a technique
known as cross-validation for verifying performance using only the training set.
As the parameter C runs through a range of values, the norm |w]|, varies
smoothly through a corresponding range. Hence, for a particular problem,
choosing a particular value for C corresponds to choosing a value for ||wl[,, and
then minimising ||€]|, for that size of w. This approach is also adopted in the
I-norm case where the optimisation problem minimises a combination of the
norm of the weights and the 1-norm of the slack variables that does not exactly
match that found in Theorem 4.24:

minimisegwy (W-W) +C 0, &,
subject to yi(lwex)+b) = 1=¢,i=1,....7, (6.5)
é,’ 2> 0, i= 1, ,/.
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Since there is a value of C corresponding to the optimal choice of ||w|,,
that value of C will give the optimal bound as it will correspond to finding the
minimum of ||§]|, with the given value for ||w],.

We will devote the next two subsubsections to investigating the duals of the
two margin slack vector problems creating the so-called soft margin algorithms.

2-Norm Soft Margin — Weighting the Diagonal
The primal Lagrangian for the problem of equation (6.4) is

/

L(w,b,&,a) = 1 2262 Za, [vi ((w-x;) +b) —1+¢&]

=1

where o; > 0 are the Lagrange multipliers, as described in Chapter 5.
The corresponding dual is found by differentiating with respect to w, £ and b,
imposing stationarity,

4
LEULA-LN o S

ow
OL(w,b,§,a) o
———5&——— Cé 4—0,
LwbEa) _ <~
— = ;)’zax =0,

and resubstituting the relations obtained into the primal to obtain the following
adaptation of the dual objective function:

1 1
Zcx, - = Zy,y,ot,a, X" Xj) + 3 (o &) — ol (o - @)

lj—-

= Za, Zy,y,aa,(x, X;) — 21C (- a).

lj—l

L(w,b,&,a)

It

Hence, maximising the above objective over a is equivalent to maximising
W(a) = Z o — Z Viyjoidj ((Xl Xj) + 61])
1_)—1

where d;; is the Kronecker 6 defined to be 1 if i = j and 0. The corresponding
Karush-Kuhn-Tucker complementarity conditions are

o [yil(xi-wy +b)—1+&] =0, i=1,... .2

Hence, we have the following result in which we have moved directly to the more
general kernel version.
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Proposition 6.11 Consider classifying a training sample

S = ((Xl’yl)’-" a(X{,)’/))’

using the feature space implicitly defined by the kernel K(x,z), and suppose the
parameters " solve the following quadratic optimisation problem:

maximise  W(a) =30 o —} Z,{Fl yiyjous; (K(xi,x5) + £6855).
subject to 30, yii = 0,
=20i=1,...,7.

Let f(x) = Zf=l yio; K(xi,x) + b*, where b* is chosen so that yif(x;) =1—«;/C
Sfor any i with af #+ 0. Then the decision rule given by sgn(f(x)) is equivalent to
the hyperplane in the feature space implicitly defined by the kernel K(x,z) which
solves the optimisation problem (6.3 ), where the slack variables are defined relative
to the geometric margin

~1/2
(St a) "

iesv

Proof The value of b° is chosen using the relation o; = C¢; and by reference
to the primal constraints which by the Karush-Kuhn-Tucker complementarity
conditions

o [y, ((WX,)+b)—1+£,] =O,i= 1,...,/,

must be equalities for non-zero «;. It remains to compute the norm of w* which
defines the size of the geometric margin.

¢
wew) = iy aiK (% x;)

ij=1

= > a4y Yy K(xi,x;)
JjEsv iesv

= Lo (=g -ub)
jesv

= Ya-Yud
i€sy i€sv

= Ya-ha).

i€sv

O

This is still a quadratic programming problem, and can be used with the
same methods as used for the maximal margin hyperplane. The only change
is the addition of 1/C to the diagonal of the inner product matrix associated
with the training set. This has the effect of adding 1/C to the eigenvalues of
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the matrix, rendering the problem better conditioned. We can therefore view the
new problem as simply a change of kernel

K'(x,2) = K(x,z) + ééx(z).

1-Norm Soft Margin — the Box Constraint

The corresponding Lagrangian for the 1-norm soft margin optimisation problem
18

Lwbgar) = zww+C3 ¢

4
i=1

¢ ¢
=3 e [y w) +B)— 1+ &) =) g
=1 i=1

with o; > 0 and r; > 0. The corresponding dual is found by differentiating with
respect to w, ¢ and b, imposing stationarity,

13
HWDSBD 3 o =0,
i=1

aw
oL(w,b,¢,a,1) _
__—a—f_i__ = C o r,—O,
¢
oL(w,b, &, a,1)
= " ;yidi =0,

and resubstituting the relations obtained into the primal; we obtain the following
adaptation of the dual objective function:

¢ ¢
1
L(w,b,&,a,r) = E %5 E Viy oo (Xi * X;),
i=1 ij=1

which curiously is identical to that for the maximal margin. The only difference is
that the constraint C—o;—r;=0, together with r; > 0, enforces o; < C, while &; # 0
only if r;, = 0 and therefore «; = C. The Karush—-Kuhn-Tucker complementarity
conditions are therefore

o [yi((xi W)+ b)—1+¢] =0, i=1,....,7
£i(i—C)=0, i=1,..,2

Notice that the KKT conditions implies that non-zero slack variables can only
occur when o; = C. The points with non-zero slack variables are 1/ ||w]-margin
errors, as their geometric margin is less than 1/ ||wj|. Points for which 0 < o; < C
lie at the target distance of 1/ ||w| from the hyperplane. We therefore have the
following proposition.
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Proposition 6.12 Consider classifying a training sample

S = ((X1,¥1),... ,{(Xz, V¢)),

using the feature space implicitly defined by the kernel K(x,z), and suppose the
parameters a* solve the following quadratic optimisation problem:

maximise W (a) = 37 o — %Zf#l viy oK (X5, X;),
subject to S0, yioy =0, (6.6)
Czo;20,i=1,...,7¢.

Let f(x) = Zle yio; K(Xi,X) + b", where b is chosen so that y;f(x;) = 1 for any
i with C > o] > 0. Then the decision rule given by sgn(f(x)) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel K(x,z) that solves
the optimisation problem (6.5), where the slack variables are defined relative to
the geometric margin

—1/2

y={ D vy oK (xi %))

i,jEsv

Proof The value of b” is chosen using the Karush—-Kuhn-Tucker complemen-
tarity conditions which imply that if C > a; > 0 both &7 =0 and

yil{xi-w") +b") — 1+ & =0.

The norm of w” is clearly given by the expression

¢
(W - w')

* *
yiyjo; och(x,-, X;)
ij=1

= Z Z yiyjo; o K (X, X;).

JEsv iesv

(W
So surprisingly this problem is equivalent to the maximal margin hyperplane,
with the additional constraint that all the «; are upper bounded by C. This
gives rise to the name box constraint that is frequently used to refer to this
formulation, since the vector « is constrained to lie inside the box with side
length C in the positive orthant. The trade-off parameter between accuracy and
regularisation directly controls the size of the «;. This makes sense intuitively as
the box constraints limit the influence of outliers, which would otherwise have
large Lagrange multipliers. The constraint also ensures that the feasible region
is bounded and hence that the primal always has a non-empty feasible region.

Remark 6.13 One problem with the soft margin approach suggested is the choice
of parameter C. Typically a range of values must be tried before the best choice
for a particular training set can be selected. Furthermore the scale of the
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parameter is affected by the choice of feature space. It has been shown, however,
that the solutions obtained for different values of C in the optimisation problem
(6.6) are the same as those obtained as v is varied between O and 1 in the
optimisation problem

maximise W(x) = —1 Zij=1 yiyjouo K (xi, X;)
subj. to Z{=1 yioy =0,
¢
2=t % =Y

1/ 20, =20,i=1,...,¢.

In this parametrisation v places a lower bound on the sum of the o;, which
causes the linear term to be dropped from the objective function. It can be
shown that the proportion of the training set that are margin errors is upper
bounded by v, while v provides a lower bound on the total number of support
vectors. Therefore v gives a more transparent parametrisation of the problem
which does not depend on the scaling of the feature space, but only on the noise
level in the data. For details of this approach and its application to regression
see pointers in Section 6.5.

In the case of the 1-norm margin slack vector optimisation the feasibility gap
can be computed since the &; are not specified when moving to the dual and so
can be chosen to ensure that the primary problem is feasible, by taking

£
& =max | 0,1—y [ Y yjoKxpx)+b] |,
j=1

where a is the current estimate for the dual problem and b has been chosen so
that y;f(x;) = 1 for some i with C > &; > 0. Once the primal problem is feasible
the gap between the value of the primal and dual objectives becomes the sum
of the Karush-Kuhn-Tucker complementarity conditions by the construction of
the Lagrangian:

1 ¢
—'L(W,b,é,d,l’)‘i‘ '2‘ (W'W> +Clz=1:é, =

1 4

3
=Y o |wi [ Yo ywK g x)+b | -1+ &+ ng;,
i=1 j

j=1 i=1
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110 6 Support Vector Machines

where r; = C —o;. Hence, using the constraint on «, the difference between
primal and dual objectives is given by

/

¢
Zdi [yil(xi - w) +b) — 1+ &/] +Zri5i =

i=1 i=1

¢ ¢ ¢
=Zdi Vi ZyjajK(xj,xi) -1 +C25i
i=1 =1 i=1

¢ ¢ ¢
.= Z a; iy o K (X, X;) — Z o+ C Z &
im1 i=1

ij=1
3 4

=Y u—2W@+CH &
i=1 i=1

Remark 6.14 This explains why we noted that the maximal (or hard) margin
case is an important concept in the solution of more sophisticated versions of the
machine: both the 1- and the 2-norm soft margin machines lead to optimisation
problems that are solved by relating them to the maximal margin case.

Remark 6.15 Historically, the soft margin machines were introduced before
their justification in terms of margin distribution generalisation bounds. For this
reason the 1-norm was preferred as it appeared closer to the percentile error
bound. The results show that both 1- and 2-norm bounds on generalisation exist.
The approach that performs better in practice will depend on the data and may
be influenced by the type of noise that has influenced it.

Remark 6.16 The techniques developed for two-class classification have been
generalised to the case where there are several categories. References to relevant
papers will be given at the end of the chapter in Section 6.5.

Figure 6.3: This figure shows the decision boundaries that arise when using a
Gaussian kernel with a fixed value of ¢ in the three different machines: (a) the
maximal margin SVM, (b) the 2-norm soft margin SVM, and (c) the 1-norm
soft margin SVM. The data are an artificially created two dimensional set,
the white points being positive examples and the black points negative: the
larger sized points are the support vectors. The red area comprises those points
that are positively classified by the decision function, while the area classified
negative is coloured blue. The size of the functional margin is indicated by
the level of shading. Notice that the hard margin correctly classifies the whole
training set at the expense of a more complex decision boundary. The two soft
margin approaches both give smoother decision boundaries by misclassifying
two positive examples
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Figure 6.3: For caption see facing page
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6.1.3 Linear Programming Support Vector Machines

Rather than using generalisation bounds based on margin distribution, one could
try to enforce other learning biases, such as the sample compression bounds, as
given in Theorems 4.25 and 6.8. This would lead for example to an algorithm for
finding the sparsest separating hyperplane, regardless of its margin. The problem
is computationally hard but can be approximated by minimising an estimate
of the number of positive multipliers, Zf___l o;, while enforcing a margin of 1.
Introducing slack variables in a way similar to that given above and working
directly in the dual representation, one obtains the following linear optimisation
problem:

minimise L(a, &) = Ef;l o +C Zf;l &
subject to  y; [Z§=1 o (X, X;5) + b] >1-¢,i=1,...,¢,
%>0,&>0i=1,..,7

This type of approach was developed independently of the 2-norm maximal

margin implicit in the definition of a standard Support Vector Machine. It has
the advantage of relying on solving a linear programming problem as opposed
to a convex quadratic one. The application of kernels to move to implicit feature
spaces has also been made in this setting. Bounds on the generalisation directly
in terms of 3°7_; «; have been derived more recently.

6.2 Support Vector Regression

The Support Vector method can also be applied to the case of regression, main-
taining all the main features that characterise the maximal margin algorithm: a
non-linear function is learned by a linear learning machine in a kernel-induced
feature space while the capacity of the system is controlled by a parameter that
does not depend on the dimensionality of the space. As in the classification case
the learning algorithm minimises a convex functional and its solution is sparse.

As with the classification approach we motivate the approach by seeking
to optimise the generalisation bounds given for regression in Chapter 4. These
relied on defining a loss function that ignored errors that were within a certain
distance of the true value. This type of function is referred to as an ¢-insensitive
loss function. Since this terminology is quite standard, we will risk using ¢ for
this loss despite previously reserving this symbol for the generalisation error,
that is the probability of misclassifying a randomly drawn test example.

Figure 6.4 shows an example of a one dimensional linear regression function
with an ¢-insensitive band. The variables £ measure the cost of the errors on the
training points. These are zero for all points inside the band. Figure 6.5 shows a
similar situation for a non-linear regression function.

With many reasonable choices of loss function, the solution will be char-
acterised as the minimum of a convex functional. Another motivation for
considering the e-insensitive loss function is that as with classification Support
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Figure 6.4: The insensitive band for a one dimensional linear regression problem

X

Figure 6.5: The insensitive band for a non-linear regression function
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Vector Machines it will ensure sparseness of the dual variables. The idea of
representing the solution by means of a small subset of training points has
enormous computational advantages. Using the c-insensitive loss function has
that advantage, while still ensuring the existence of a global minimum and the
optimisation of a reliable generalisation bound.

In this section we will first describe the ¢-insensitive loss and then derive two
algorithms from the bounds of Chapter 4, relating to the 1- or 2-norm of the
loss vector. For comparison we will then give an algorithm for ridge regression
in feature space, which does not enforce sparseness and hence presents more
implementation problems. Finally, we will show how a popular regression algo-
rithm based on Gaussian processes is equivalent to performing ridge regression
in a feature space, and hence is intimately related to Support Vector Machines.

6.2.1 ¢-Insensitive Loss Regression

Theorems 4.28 and 4.30 bound the generalisation performance of a linear re-
gressor in terms of the norm of the weight vector and the 2- and 1-norms of the
slack variables. The ¢-insensitive loss function is equal to these slack variables.

Definition 6.17 The (linear) e-insensitive loss function L:(X,y, f) is defined by

Le(x’y7f) = Iy —f(x)lg = max (0’ Iy —f(X)| - 8) 5

where f is a real-valued function on a domain X, x € X and y € R. Similarly
the quadratic e-insensitive loss is given by

Ly(x,y,f) =y — fx)I.

If we compare this loss function with the margin slack vector defined in
Definition 4.27 it is immediate that the margin slack variable & ((x;, i), f,6,7)
satisfies

f((xb yl) ’f’ 0’ V) = Lo—y(xi’ Yis f)

Hence as indicated above the results of Chapter 4 use an e-insensitive loss
function with ¢ = 8 —y. Figures 6.6 and 6.7 show the form of the linear and
quadratic e-insensitive losses for zero and non-zero ¢ as a function of y — f(x).

Quadratic ¢-Insensitive Loss

Theorem 4.28 suggests that we can optimise the generalisation of our regressor
by minimising the sum of the quadratic e-insensitive losses

¢
R [wl* + > L5(xi, yio ),
i=1

where f is the function defined by the weight vector w. Minimising this quantity
has the advantage of minimising the bound for all values of y, which implies
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L

0 Yi -<W.X;>-b

Figure 6.6: The linear ¢-insensitive loss for zero and non-zero ¢

L

0 y,--<w.x,~>-b

Figure 6.7: The quadratic e-insensitive loss for zero and non-zero &
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that it is minimised for all values of @ = ¢ + 9. As the classification case we
introduce a parameter C to measure the trade-off between complexity and losses.
The primal problem can therefore be defined as follows:

minimise  (w”+C S/, (67 + &),

subject to ((W-X;) +b)—yi<e+¢ni=1,....7, ©67)
yi—(w-x)+by<e+&,i=1,... .7
fi,fi >0,i=1,...,¢,

where we have introduced two slack variables, one for exceeding the target value
by more than &, and the other for being more than ¢ below the target. We will
again typically consider solving this for a range of values of C and then use
some validation method to select the optimal value of this parameter. The dual
problem can be derived using the standard method and taking into account that
é,@ ; = 0 and therefore that the same relation o;&; == 0 holds for the corresponding
Lagrange multipliers:

maximise Zf;l yil&i — o) — ¢ Zf;l(&,- + o)
— 3318 — oY@ — o) ({xi - x;) + £8y5),
subject to Y7 (& — o) =0,
4 =>0,0=0,i=1,....,7.

The corresponding Karush—Kuhn-Tucker complementarity conditions are

w (W x)+b—yi—e—¢)=0, i=1..,7

& (yi—<w-x,~)—b—s—§,~) =0, i=1,..,7/
fiéi =0, 48 =0, i=1,....,7

Remark 6.18 Note that by substituting § = & —a and using the relation o;&; = 0,
it is possible to rewrite the dual problem in a way that more closely resembles
the classification case.

maximise Y yif; — & Xy 1Bil — 3 iy BiB; ((xi - x;) + L6yp),
subject to 30, Bi=0,i=1,..,2

For y; € {—1,1}, the similarity becomes even more apparent when ¢ = 0 and if
we use the variables fii = y;f;, the only difference being that [Ai’i is not constrained
to be positive unlike the corresponding «; in the classification case. We will in
fact use « in place of g when we use this form later.

Remark 6.19 For non-zero ¢ the effect is to introduce an extra weight decay
factor involving the dual parameters. The case ¢ = 0 corresponds to considering
standard least squares linear regression with a weight decay factor controlled
by the parameter C. As C — oo, the problem tends to an unconstrained
least squares, which is equivalent to leaving the inner product matrix diagonal
unchanged. Note that references to investigations of more general loss functions
will be given at the end of the chapter.
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Hence, we have the following result in which we have moved directly to the
more general kernel version.

Proposition 6.20 Suppose that we wish to perform regression on a training set

S = ((Xlayl)a“- ,(XJ:J’/))»

using the feature space implicitly defined by the kernel K(x,z), and suppose the
parameters & solve the following quadratic optimisation problem:

maximise W(a) = Z,%l yiot; — 82?:1 o]
-3 Dt 0L (K (xi,x;) + %‘Sii)'
subject to Zf=1 o =0.

Let f(x) = Z;l o; K(x;,x)+b", where b* is chosen so that f(x))—y; = —e—a; /C
Jor any i with o > 0. Then the function f(x) is equivalent to the hyperplane in the
Jfeature space implicitly defined by the kernel K(x,z) that solves the optimisation
problem (6.7).

Linear c-Insensitive Loss

In Theorem 4.30 we must minimise the sum of the linear e-insensitive losses
1 ¢
5 Wl +C Y Lo,y f),
i=1

for some value of the parameter C, which as in the classification case can be
seen to control the size of ||w| for a fixed training set. The equivalent primal
optimisation problem is as follows.

minimise  } Iwi?+C S+ &),

subject to  ({(w-x;) +b)—y; < e+ &,
yi— (W x)) +b) <e+&,
EnE=0,i=1,2,....¢

(6.8)

The corresponding dual problem can be derived using the now standard
techniques:

maximise Zf;l(&i — o)y — € E;=1(°A‘i + o)
—3 2ij=1 (@ — @)@ — o)) {xi " x;),
subjectto O0<o;,&; <C,i=1,...,¢,
S Bi—a)=0,i=1,...,/

The corresponding Karush-Kuhn-Tucker complementarity conditions are
ai((w'xi>+b_%‘_3_fi)=09 i=19"'9[7
&i(y,»—(w~x,~)—b—s—2,<>=0, i=1,..,

£
£i€i =0, 08 =0, i=1,..,7
(i —C) & =0,(8—C)¢E; =0, i=1,... .7
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Again as mentioned in Remark 6.18 substituting «; for & — «;, and taking into
account that o;&; = 0, we obtain the following proposition.

Proposition 6.21 Suppose that we wish to perform regression on a training sample

S =((xXt,y1)s--- (X5 y2))

using the feature space implicitly defined by the kernel K(x,z), and suppose the
parameters a* solve the following quadratic optimisation problem:

. ¢ ¢ ‘
maximise  W(a) =30 yii —e 3 i_; lou] — 1 > j=1 oK (i, X5),
subject to Zle =0 -C<uo;<C,i=1,....,7 ’

Let f(x) = Zf;l o K(x;,X)+b", where b" is chosen so that f(x;)—y; = —¢ for any
i with 0 < af < C. Then the function f(x) is equivalent to the hyperplane in the
Jfeature space implicitly defined by the kernel K(x,z) that solves the optimisation
problem (6.8).

Remark 6.22 If we consider the band of +¢ around the function output by the
learning algorithm, the points that are not strictly inside the tube are support
vectors. Those not touching the tube will have the absolute value of that
parameter equal to C.

Remark 6.23 We have again described the most standard optimisations consid-
ered. A number of variations have been considered in the literature including
considering different norms as well as adapting the optimisation to control the
number of points lying outside the ¢-band. In this case the number of points is
given as an input to the problem rather than the value of ¢. References to this
and other developments in the use of SVMs for regression will be given at the
end of the chapter in Section 6.5.

6.2.2 Kernel Ridge Regression

As mention in Remark 6.19 the case ¢ = 0 for the quadratic loss corresponds to
least squares regression with a weight decay factor. This approach to regression is
also known as ridge regression, and we will see shortly that it is equivalent to the
techniques derived from Gaussian processes. So we will give it an independent
derivation, which highlights the connections with those systems. These systems
also ignore the bias term. The (primal) problem can therefore be stated as
follows:

minimise 4 |w|? + Zf=1 2 (6.9)
subject to  y;i—(w-x;))=¢&,i=1,...,¢, )

from which we derive the following Lagrangian

minimise  L(w, & a) = A |w|* + 0, & + 30, oilyi — (W xi) — &)).
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Differentiating and imposing stationarity, we obtain that

¢
1 _ &
W= 37 ;:1 o;x; and &; = >

Resubstituting these relations gives the following dual problem:
. ¢ ¢
maximise W(x) = S, yiti — % 2= %y (Xi - X;) — v
that for convenience we rewrite in vector form:

R 1,
W) =ya 4/lazl(az %%

where K denotes the Gram matrix K;; = (x; - x;), or the kernel matrix K;; =
K(x;,x;), if we are working in a kernel-induced feature space. Differentiating
with respect to « and imposing stationarity we obtain the condition

1 1
—ﬁKa—§a+y—0,

giving the solution
a= 24K+ )y
and the corresponding regression function
f(x) = (w-x) = y(K+ )"k

where k is the vector with entries k; = (x;-x), i = 1,...,7. Hence, we have the
following proposition.

Proposition 6.24 Suppose that we wish to perform regression on a training sample

S = ((Xl,J’l),--- ,(XJ,YZ)).

using the feature space implicitly defined by the kernel K(x,z), and let f(x) =
Y (K + A)'k, where K is the ¢ x ¢ matrix with entries K;j = K(x;,X;) and k is
the vector with entries k; = K(x;,x). Then the function f(Xx) is equivalent to the
hyperplane in the feature space implicitly defined by the kernel K(x,z) that solves
the ridge regression optimisation problem (6.9).

This algorithm has appeared independently under a number of different
names. It is also known as Krieging and the solutions are known as regularisation
networks, where the regulariser has been implicitly selected by the choice of
kernel. We will see in the next subsection that the same function results when
we solve the Bayesian learning problem using Gaussian processes.
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6.2.3 Gaussian Processes

This subsection will bring together the discussion of Bayesian learning from
Section 4.6 with the idea of a Gaussian process introduced in Section 3.5. The
posterior distribution is given by

P(1,t]x,5) oc P(y|t)P(t, t|x, X),

y are the output values from the training set, which are assumed to be corrupted
by noise and t are the true target output values related to y by the distribution,

PO o exp [~y = /0ty =],

where Q = ¢I. The Gaussian process distribution was introduced in Section 3.5
and is defined as

P(t,t1x,X) = Pr.g [(f(X), f(X1),..., f(X¢)) = (L, t1,... , t,)]

Loya_qa
oC exp (—Et'2_1t> ,

where t = (tt,...,t;) and $ is indexed with rows and columns from 0 to Z. The
principal submatrix on the rows 1 to /, is the matrix X, where Z;; = K(x;, x;) for
the covariance function K(x,z), while the entry £ = K(x,x) and the entries in
the 0 row and column are

S0 = £ = K(x%,x)).

The distribution of the variable ¢ is the predictive distribution. It is a Gaussian
distribution with mean f (x) and variance V (x), given by

f(x)=y(K+aD'k,
V(%) = K (x, %) — K'(K + 021k, (6.10)
where K is the / x / matrix with entries K;; = K(x;,x;) and k is the vector
with entries k; = K(x;,x). Hence, the prediction made by the Gaussian process
estimate coincides exactly with the ridge regression function of Proposition 6.24,
where the parameter 4 has been chosen equal to the variance of the noise
distribution. This reinforces the relationship between margin slack optimisation
and noise in the data. It suggests that optimising the 2-norm (see problem (6.7))
corresponds to an assumption of Gaussian noise, with variance equal to %
The Gaussian process also delivers an estimate for the reliability of the
prediction in the form of the variance of the predictive distribution. More
importantly the analysis can be used to estimate the evidence in favour of a
particular choice of covariance function. This can be used to adaptively choose
a parameterised kernel function which maximises the evidence and hence is most
likely given the data. The covariance or kernel function can be seen as a model
of the data and so this provides a principled method for model selection.
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6.3 Discussion

This chapter contains the core material of the book. It shows how the learning
theory results of Chapter 4 can be used to avoid the difficulties of using linear
functions in the high dimensional kernel-induced feature spaces of Chapter 3.
We have shown how the optimisation problems resulting from such an approach
can be transformed into dual convex quadratic programmes for each of the
approaches adopted for both classification and regression. In the regression case
the loss function used only penalises errors greater than a threshold &. Such
a loss function typically leads to a sparse representation of the decision rule
giving significant algorithmic and representational advantages. If, however, we
set ¢ = 0 in the case of optimising the 2-norm of the margin slack vector, we
recover the regressor output by a Gaussian process with corresponding covariance
function, or equivalently the ridge regression function. These approaches have
the disadvantage that since ¢ = 0 , the sparseness of the representation has been
lost.

The type of criterion that is optimised in all of the algorithms we have
considered also arises in many other contexts, which all lead to a solution with
a dual representation. We can express these criteria in the general form

2
1B +C > Ll fx),
i=1

where L is a loss function, ||, a regulariser and C is the regularisation
parameter. If L is the square loss, this gives rise to regularisation networks
of which Gaussian processes are a special case. For this type of problem the
solution can always be expressed in the dual form.

In the next chapter we will describe how these optimisation problems can be
solved efficiently, frequently making use of the sparseness of the solution when
deriving algorithms for very large datasets.

6.4 Exercises

1. What is the relation between the four expressions W (a), ZLI o,

¢

> yiysmiaK (%, X)),
ij=1

and ;15, when « is the solution of the optimisation problem (6.2) and 7y is
the corresponding geometric margin? What happens to the optimisation
problem if the data are not linearly separable? How is this problem avoided
for the soft margin optimisation problems?

2. Derive the dual optimisation problem of the regression problem (6.7), hence
demonstrating Proposition 6.20.
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3. Consider the optimisation problem

minimisey, (W-w)+ C; Zf=1 &+ G f=l éiz,
subject to  y;i ((w-x;)+b) 21 —¢;,i=1,....7,
& >0,i=1,.. .7

Discuss the effect of varying the parameters C; and C,. Derive the dual
optimisation problem.

6.5 Further Reading and Advanced Topics

Support Vector Machines are a very specific class of algorithms, characterised
by the use of kernels, the absence of local minima, the sparseness of the so-
lution and the capacity control obtained by acting on the margin, or on other
‘dimension independent’ quantities such as the number of support vectors. They
were invented by Boser, Guyon and Vapnik [19], and first introduced at the
Computational Learning Theory (COLT) 1992 conference with the paper [19].
All of these features, however, were already present and had been used in ma-
chine learning since the 1960s: large margin hyperplanes in the input space
were discussed for example by Duda and Hart [35], Cover [28], Vapnik et
al. [166] [161], and several statistical mechanics papers (for example [4]); the
use of kernels was proposed by Aronszajn [7}, Wahba [171], Poggio [116],
and others, but it was the paper by Aizermann et al. [1] in 1964 that in-
troduced the geometrical interpretation of the kernels as inner products in a
feature space. Similar optimisation techniques were used in pattern recogni-
tion by Mangasarian [84], and the sparseness had also already been discussed
[28]. See also [57] for related early work. The use of slack variables to
overcome the problem of noise and non-separability was also introduced in
the 1960s by Smith {143] and improved by Bennett and Mangasarian [15].
However, it was not until 1992 that all of these features were put together
to form the maximal margin classifier, the basic Support Vector Machine,
and not until 1995 that the soft margin version [27] was introduced: it is
surprising how naturally and elegantly all the pieces fit together and com-
plement each other. The papers [138], [10] gave the first rigorous statistical
bound on the generalisation of hard margin SVMs, while the paper [141]
gives similar bounds for the soft margin algorithms and for the regression
case.

After their introduction, an increasing number of researchers have worked
on both the algorithmic and theoretical analysis of these systems, creating in just
a few years what is effectively a new research direction in its own right, merging
concepts from disciplines as distant as statistics, functional analysis, optimisation,
as well as machine learning. The soft margin classifier was introduced a few
years later by Cortes and Vapnik [27], and in 1995 the algorithm was extended
to the regression case [158].

The two recent books written by Vapnik [158, 159] provide a very extensive
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theoretical background of the field and develop the concept of a Support Vector
Machine.

Since most recent advances in kernels, learning theory, and implementation
are discussed at the ends of the relevant chapters, we only give a brief overview
of some of the improvements recently obtained from the point of view of the
overall algorithm. Work has been done on generalisations of the method [88],
and extensions to the multi-class case [178], [159], [113]. More general regression
scenarios have also been studied: Smola, Scholkopf and Mueller discussed a very
general class of loss functions [147], and the use of ridge regression in feature
space was considered by [144] and [125].

Ridge regression is a special case of regularisation networks. The concept
of regularisation was introduced by Tikhonov [153], and applied to learning in
the form of regularisation networks by Girosi et al. [52]. The relation between
regularisation networks and Support Vector Machines has been explored by
a number of authors [51], [171], [172], [146], [38]. The connection between
regularisation networks and neural networks was explored as early as 1990 in
[116], see also [52]and [39] for a full bibliography.

The v-Support Vector algorithm for classification and regression described in
Remark 6.13 was introduced in [135] and further developed in [131] and [130].
Other adaptations of the basic approach have been used for density estimation
[167], transduction [13], Bayes point estimation [59], ordinal regression [60], etc.
Rifkin et al. [121] show that for some degenerate training sets the soft margin
gives a trivial solution.

Theoretical advances that do not fit within the framework of Chapter 4
include the analyses of generalisation given in the article [34], which provides
a statistical mechanical analysis of SVMs, the papers [66], [160], [177], [173],
[107], which provide a cross-validation analysis of the expected error, and the
book [159], which gives an expected error bound in terms of the margin and
radius of the smallest ball containing the essential support vectors.

Extensions of the SVM concept have been made by several authors, for
example Mangasarian’s generalised SVMs [83]. Particularly interesting is the
development of a system, called the Bayes point machine [59], that enforces
another inductive principle, given by Bayesian generalisation theory. Albeit
losing the feature of sparseness, this system exhibits excellent performance, and
illustrates the important point that this class of algorithms is not limited to the
use of margin bounds. Another example of a system similar to SVMs that does
not enforce a margin bound is given by Gaussian processes.

More recently, a number of practical applications of SVMs have been re-
ported, in fields as diverse as bioinformatics, computational linguistics and
computer vision (some of which are reported in Chapter 8). Many of these re-
cent advances are reported in the collections [132], and [149], and in the surveys
(23], [145], [39]. Most of the new contributions are only available from the
internet, and can be accessed via the website [30].

Finally, the PhD dissertations of Cortes [26], Scholkopf [129] and Smola
[148], provide a valuable first hand source of research topics including work on
the feasibility gap.
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Gaussian processes are surveyed in [180], and in the dissertation of Ras-
mussen [120]. Extensions of Gaussian processes to the classification case have
also been undertaken but fall beyond the scope of this book.

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.
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