
Implementation Techniques

In the previous chapter we showed how the training of a Support Vector Machine
can be reduced to maximising a convex quadratic form subject to linear constraints.
Such convex quadratic programmes have no local maxima and their solution can
always be found efficiently. Furthermore this dual representation of the problem
showed how the training could be successfully effected even in very high dimen-
sional feature spaces. The problem of minimising differentiable functions of many
variables has been widely studied, especially in the convex case, and most of the
standard approaches can be directly applied to SVM training. However, in many
cases specific techniques have been developed to exploit particular features of this
problem. For example, the large size of the training sets typically used in appli-
cations is a formidable obstacle to a direct use of standard techniques, since just
storing the kernel matrix requires a memory space that grows quadratically with
the sample size, and hence exceeds hundreds of megabytes even when the sample
size is just a few thousand points.

Such considerations have driven the design of specific algorithms for Support
Vector Machines that can exploit the sparseness of the solution, the convexity of
the optimisation problem, and the implicit mapping into feature space. All of these
features help to create remarkable computational efficiency. The elegant mathemat-
ical characterisation of the solutions can be further exploited to provide stopping
criteria and decomposition procedures for very large datasets.

In this chapter we will briefly review some of the most common approaches
before describing in detail one particular algorithm, Sequential Minimal Optimisa-
tion (SMO), that has the additional advantage of not only being one of the most
competitive but also being simple to implement. As an exhaustive discussion of opti-
misation algorithms is not possible here, a number of pointers to relevant literature
and on-line software is provided in Section 7.8.

7.1 General Issues

The optimisation problem associated to classification Support Vector Machines
can be written as follows:
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maximise W{<£) = Y?t=\ a* - \ E y = i ^i^jyiyjK(xu xy),

fsubject to Yft=\ Wi = °> t7-1)
0 < a,- < C, z= 1,... y ,

where C = oo gives the hard margin case and with an adaptation of the kernel
function the 2-norm soft margin optimisation, while C < oo gives the 1-norm
soft margin case. In the regression case, the problem for the linear a-insensitive
loss is

maximise W(<£) = £f=1 y&i - e Ef=i \*t\ ~ I Efj=i <*i<*jK(xi> xy)> /y 2)
subject to Ef=i a* = 0, - C < a, < C, i = 1,... y ,

where setting C = oo and adding a constant to the diagonal of the kernel matrix
delivers the quadratic ^-insensitive loss optimisation.

The convexity of the functional W (a) and of the feasible region ensure that
the solution can always be found efficiently. The solution satisfies the Karush-
Kuhn-Tucker complementarity conditions. For the classification maximal margin
case they are

a,-[>,-«w • x,-) + 6) - 1] = 0 , i = l , . . . J.

For the 2-norm soft margin optimisation they are

oa [yt «w • x,-) + b) - 1 + ti\ = 0, i = 1,... , A

while for the 1-norm soft margin optimisation

on [yt «w • x,-) + b) - 1 + it] = 0, i = l , . . . y ,

In the regression case for the quadratic e-insensitive loss function they are

QCi ((w • x,-) +b — yi — e — €i)=0, i = 1 , . . . , / ,

«i (^i - <W • X,-) — ft — 8 — £,-J = 0 , i = 1,. . . , / ,

&£• = o, « A = o, i = i , . . . y ,

and for the linear e-insensitive loss function they are

oct ((w • x,-) +b — yi — e —

Si ( ^ - ( w - x I ) - f t - 8 - | ^ =0 , f = 1,... J,

^ • = 0 , ^ ^ = 0, i = l , . . . y ,
(a, - C)& = 0, (a, - C)l = 0, i = 1,... ,<f,

As discussed below, in practice such conditions will only be approximated
to a certain tolerance level. Most numerical strategies follow the approach of
starting from an arbitrary feasible point and iteratively increasing the value of
the dual objective function without leaving the feasible region, until a stopping
criterion is satisfied. Additionally, some approaches implement heuristics that
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7.1 General Issues 121

achieve this by acting only on a small subset of the a, at each time, in order to
improve the computational efficiency. Such techniques, which somehow exploit
the sparseness of the problem, make it possible to scale to very large datasets
(tens or hundreds of thousands of examples).

Stopping criteria can be obtained by exploiting the properties of convex
optimisation problems in different ways. Based on the fact that the feasibility gap
vanishes at the solution, one can monitor convergence by checking this quantity.
Alternatively, one can stop when the increase in the dual objective function is less
than a certain pre-fixed threshold. Finally, the Karush-Kuhn-Tucker conditions
can be explicitly calculated and monitored in order to determine whether the
solution has been found. We describe these three stopping criteria in more detail.

1. Monitoring the growth of the dual objective function. The quadratic dual
objective function for the particular SVM optimisation problem achieves
its maximum at the solution. Monitoring the value of the function, and
especially the increase in that value at each step, provides the simplest
stopping criterion. The training can be stopped when the fractional rate of
increase of the objective function W (a) falls below a given tolerance (e.g.
10~9). Unfortunately, this criterion has been shown to be unreliable and in
some cases can deliver poor results.

2. Monitoring the Karush-Kuhn-Tucker conditions for the primal problem.
They are necessary and sufficient conditions for convergence, so they
provide the natural criterion. For example in the classification case the
following criteria must be checked for the 1-norm soft margin optimisation:

0 < a, < C,

{ > 1 for points with a* = 0,
= 1 for points with 0 < a* < C,
< 1 for points with a,- = C.

Notice that one does not need to compute the slack variables £, for this
case. For the 2-norm soft margin optimisation the criteria are:

<*i > 0,

> 1 for points with a, = 0,
= i _ a . / C for points with a, > 0.

In this case the slack variable is implicitly defined by •̂ = a,-/C. Naturally
these criteria must again be verified to within some chosen tolerance, for
example a good choice in this case is to within 10~2.

3. Another way to characterise the solution is by means of the gap between
the primal and dual objective functions, since this vanishes only at the
optimal point. We call this difference the feasibility gap to distinguish it
from the duality gap of an optimisation problem, which is the difference
between the values of the primal and dual solutions. For convex quadratic
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optimisation problems this difference is zero. In the case of the 1-norm
soft margin optimisation the feasibility gap can be computed as described
in Subsection 6.1.2. We first set

it = max I 0,1 -

where a is the current estimate for the dual problem and b has been chosen
so that yif(xt) = 1 for some i with C > a, > 0. The difference between
primal and dual objectives is then given by

E<

i=l i=\

where W(OL) is the dual objective. The ratio

primal obj. - dual obj. _ Ef=i qt- - 2W(<x) + C Ef=i ^

primal objective +1 ~ W(<x) + X)f=i a,- - 2P^(a) + C X)f=1 ^ + 1

provides a useful measure of progress, and checking if this is less than say
10~3 can be used as a stopping criterion.

For the maximal margin and 2-norm margin slack optimisation (imple-
mented by adding a constant to the diagonal of the kernel matrix) we
can imagine introducing a box constraint equal to the largest a, at each
iteration t, Ct = max, (a[) + 1. This will mean that the actual running
of the algorithm will not be affected, but at any iteration the current a
can be regarded as a feasible solution of the corresponding box constraint
optimisation. For this problem we can compute the feasibility gap using
the above equations and for large enough C > max, (a*), where a* is the
optimal solution of the unconstrained problem, the two solutions coincide.

Remark 7.1 Note that the tolerance level used to verify the stopping criteria is
very important. Achieving high levels of accuracy can be very time consuming
but may not give any significant advantage in prediction accuracy. So in practice
one needs to set tolerance levels to ensure approximately optimal conditions.

Remark 7.2 An important consequence of the stopping criteria is that they can
also motivate heuristics to speed convergence: for example one can expect to
approach the solution faster by acting on points that contribute more to the
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feasibility gap, for example those for which

/ <
a,-

is large, or by performing operations that lead to a larger increase in the dual
objective function. These considerations will be exploited in the following sections
to design more effective training algorithms.

Remark 7.3 It should be noted that even if the solution w is unique, its expansion
in terms of a may not be if the kernel matrix is only positive semi-definite.

In the rest of the chapter, we will first discuss a simple gradient ascent
algorithm that does not optimise the bias. This will provide a vehicle for
introducing a series of important concepts that will be needed for the more
sophisticated approaches in the later sections.

7.2 The Naive Solution: Gradient Ascent

The simplest numerical solution of a convex optimisation problem is obtained
by gradient ascent, sometimes known as the steepest ascent algorithm. The
algorithm starts with an initial estimate for the solution, denoted by a0, and then
iteratively updates the vector following the steepest ascent path, that is moving
in the direction of the gradient of W(<x) evaluated at the position a1 for update
1-f1. At each iteration the direction of the update is determined by the steepest
ascent strategy but the length of the step still has to be fixed. The length of the
update is known as the learning rate.

In the sequential or stochastic version, this strategy is approximated by
evaluating the gradient for just one pattern at a time, and hence updating a
single component a- by the increment

where the parameter rj is the learning rate. If rj is chosen carefully, the objective
function will increase monotonically, and the average direction approximates the
local gradient. One can modify n as a function of time, or as a function of the
input pattern being learned, in order to improve the convergence. The choice of
n is a delicate one; too large values can cause the system to oscillate without
converging to the solution, while too small values result in very slow rates of
convergence. Following this strategy means that the direction of each step is
parallel to one of the £ axes and so is known a priori. The algorithm determines
the step length and more importantly its sign. One further freedom available
is the choice of the ordering in which the points are updated, as some points
may cause a greater movement along the path towards a solution. This will be
discussed further below.
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Another way of looking at the same algorithm is that the quantity W(a) is
iteratively increased by freezing all variables but one. Hence a multi-dimensional
problem is reduced to a sequence of one dimensional ones. The uniqueness of
the global maximum guarantees that for suitable choices of rj the algorithm will
always find the solution. Such a strategy is usually not optimal from the point of
view of speed, but is surprisingly good for datasets of up to a couple of thousand
points and has the advantage that its implementation is very straightforward. As
we will see later, another major advantage is that it only acts on one training
point at a time, and so does not require that we store all the data simultaneously
in fast memory.

Using this approach, one source of problems is the linear constraint

iVi = 0 (7.4)

derived from optimising the bias b in the decision function. This constraint
defines a hyperplane in the *f dimensional space of parameters, and restricts the
feasible region to the intersection between this hyperplane and the hypercube of
side C for the 1-norm soft margin optimisation or the positive orthant in the
case of the maximal margin and 2-norm soft margin optimisation. A natural
strategy for enforcing such a constraint is to make sure that the current solution
never leaves the feasible region. Unfortunately, updating one component at a
time makes this impossible: if at the time t the constraint of equation (7.4) is
satisfied, then after performing a non-trivial update on one a,- it will cease to
hold. The minimum number of multipliers that can be simultaneously updated
without leaving the feasible region is hence 2, and this consideration will form
the basis of the SMO algorithm, described later, in Section 7.5. Other strategies
also exist, such as for example enforcing the constraint

where £t is decreased at each iteration. In this section we will discuss the
algorithm for the case where the bias b is fixed a priori and hence the equality
constraint does not need to be enforced.

Remark 7.4 Fixing the bias beforehand may seem restrictive, but if we consider
the embedding of the input space X into a space X of one extra dimension,
in which we denote the new vector by x = (X,T), for some fixed value T, then
the linear function on X represented by a unit weight vector w and bias b is
equivalent to the function with weight vector w = (w, b/z) and zero bias in the
space X, since

(w • x) + b = (w • x).

Note that for a non-trivial classification of a training set

S =
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12 The Naive Solution: Gradient Ascent 131

we must have b < R = maxi<j</ (||x/||). Adding this extra dimension to a feature
space induced by the kernel K is equivalent to adding T2 to create the adapted
kernel

X ( X , Z ) = K ( X , Z ) + T2.

The only drawback of taking this route is that the geometric margin of the
separating hyperplane in the augmented space will typically be less than that
in the original space. For poor choices of x this difference can be very large,
affecting both the convergence of the algorithm and generalisation performance
of the resulting classifier. Assuming that w is normalised, the functional margin
of the new weight vector w on the set S is equal to the geometric margin y of w
on S. Hence the geometric margin of w is

The quantity that measures the fat-shattering dimension in the space X (see
Theorem 4.16 in Chapter 4) is the ratio

/ (||x;||2)
=

f
while in X this ratio becomes

The right hand side of the inequality is minimised by taking x = R, when it
becomes 4R2/y2. Hence, a safe choice of x is R, in that it will only increase the
bound on the fat-shattering dimension by a factor of 4.

If we set the bias to a fixed value then the dual of the optimisation problem
becomes

maximise W(<x) = £)f=1 a,- - \ T,{j
subject to 0 < a, < C, i = 1,... , / !

The ith component of the gradient of W(<x) is

d0Ci

so one can maximise W(<x) simply by iterating the update rule

https://doi.org/10.1017/CBO9780511801389.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.009


132 7 Implementation Techniques

Given

a<-0
repeat

training set S

for i = 1 to

if a
else
if di

end for

and learning rates tj e

/

- (Xi + rji ( l -ytYfj^iXj}
< 0 then oct <— 0

> C then a, <- C

until stopping criterion satisfied
return a

;R+)'

Table 7.1: Simple on-line algorithm for the 1-norm soft margin

with a suitable learning rate rj, and maintaining simultaneously all the a,- in the
positive orthant. This can be enforced by resetting a* <— 0 if it becomes negative,
that is performing the update

/ dW(a)
(Xi <— max 0, a,- + w —

Similarly, the upper bound on the a,- due to the soft margin technique can be
enforced by setting a, <— C each time a multiplier becomes larger than C, that is
performing the update

. ( ^ («
oct <— mm C, max 0, a, + n

\ Vwhich is also known as the 'projection method'.
The resulting simple algorithm for training SVMs in the non-bias case is

shown in Table 7.1. Note that each training example has been given its own
learning rate rjf.

The algorithm fails to implement strict gradient ascent in two ways. Firstly,
using a different learning rate for each training example biases the gradient
direction. Secondly, if we wish to implement the gradient strictly, we should
create a new vector <x,new inside the for loop and then set a = (xnew after completion
of the loop. In practice it is convenient and efficient to use the new values of
a, as soon as they have been obtained. This approach is known as stochastic
gradient ascent and is related to successive overrelaxation techniques for solving
matrix equations. As a stopping criterion one can use any of the methods given
above, namely monitoring the Karush-Kuhn-Tucker conditions, or the feasibility
gap, or simply the rate of increase of the objective function W(a). Indeed, the
stationarity conditions for the algorithm correspond to the KKT conditions of
the problem. It is possible to show that for suitable choices of rjt the algorithm
converges. More precisely, since we are optimising a quadratic function of a, the
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update that causes the derivative to go to zero is

since

dW(i)

J=l

__ Q

Hence, provided 0 < a, < C the maximal gain is made by choosing

1

while a sufficient condition for convergence is 0 < f/,^(x,-,Xi) < 2. When the
update is constrained by the boundary of the feasible region, the step length
is shorter and the gain correspondingly smaller, but still positive. Despite this
apparent unreliability it can be shown that using the above value for r\i there
exist constants /i, S e (0,1), and x € (0,1), such that

and

W (a*) - W (a'+1) < T (W (a*) - W (a ' ) ) .

Such rates of convergence are reassuring, though in practice the performance
of the algorithm can vary very significantly. One important way in which the
convergence rate can be improved is to exploit the freedom to vary the order
in which the parameters are updated. Table 7.1 shows the parameters being
updated sequentially but clearly the order can be varied from one cycle to the
next or indeed the update can be made iteratively on any point provided points
are not overlooked. Clearly, if we can identify points that will give significant
increases to the dual objective function, it will be preferable to choose them first.
This suggests the heuristic of choosing from among those points that violate the
Karush-Kuhn-Tucker conditions. The outer loop of the algorithm goes through
the training set looking for points that violate KKT conditions and selects any
it finds for update. In order to increase the chances of finding KKT violations,
the outer loop first considers the points for which the corresponding parameter
a, satisfies 0 < a,- < C implying that its value is not on the boundary of the
feasible region, and only when all such points satisfy the KKT conditions to
the specified tolerance level is a complete loop through all the training set again
undertaken. A simpler variant of this approach is described in Remark 7.8.
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Remark 7.5 The algorithm which optimises one dual variable at a time is known
in the optimisation literature as Hildreth's method, while in machine learning it
is often referred to as kernel-Adatron, because ignoring the use of kernels it is
equivalent to the Adatron algorithm for training single neurons.

Remark 7.6 A recently developed variant of the on-line gradient algorithm uses
an additional parameter co G (0,2) to implement successive over-relaxation,
giving the update

before clipping, though in the experiments with this approach co was chosen
equal to 1, equivalent to choosing rjt = (K(xi9Xi))~l

9 in the algorithm of Table
7.1.

Remark 7.7 One can reduce the training time by caching the values of the kernel
matrix K(xi9Xj) during initialisation, since these values are used repeatedly and
the kernel can be a costly function to evaluate. This approach to a certain
extent sacrifices the inherently on-line character of the algorithm, but is practical
if the training set size is moderate. It is adopted in most of the standard
techniques described in the following sections, sometimes in conjunction with
the subset-selection methods discussed in Section 7.4. For larger datasets one
can re-evaluate the kernels at every iteration, reducing the space complexity
but increasing the running time. Stochastic gradient ascent is typically used
in practice for moderate sample sizes (see Chapter 8 for an example) though,
combined with sample selection heuristics, it can also prove effective for massive
datasets where other algorithms would fail anyway. We describe one heuristic
that proved successful for datasets of one million points in the next remark.

Remark 7.8 Heuristics for choosing the order in which the data points are
processed can have a very significant impact on the rate of convergence. A par-
ticularly simple ranking is to use the size of the parameters a,-. This is combined
with the two-stage strategy described above of optimising on the current support
vectors and, only when this optimum is reached, again considering points with
a, = 0. This suggests only holding those parameters with non-zero a, in memory.
These are the current estimates of the support vectors. They are repeatedly
processed in order of ascending size of a* until no further progress is observed
in the objective. At this point an iteration through the rest of the dataset is
undertaken, which produces a new set of support vectors to begin the cycle
over again. We give references in Section 7.8 to papers reporting the successful
application of this method to solving the Support Vector optimisation of one
million points.

Remark 7.9 Notice that the perceptron algorithm described in Chapter 2 can be
regarded as a gradient descent algorithm. The cost function is Yft=i it where £f
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is defined as max (0,— )>j((w • x,) + b)). This function is sometimes referred to as
the hinge loss and is equal to the linear e-insensitive loss with s = 0. An inclusive
theory of gradient descent algorithms has been developed in recent years, see
Section 7.8 for more information.

Remark 7.10 The algorithm described above solves the 1-norm soft margin
optimisation problem. Clearly the maximal margin algorithm is recovered if
we ignore the a, < C constraint. If we wish to solve the 2-norm soft margin
optimisation, we simply add a diagonal shift K <— K + £ l to the kernel matrix.

Of course the simple procedures outlined in this section suffer from many of
the problems associated with naive gradient ascent: they can be extremely slow
on some datasets; they can oscillate before converging; and so on. However,
their conceptual and computational simplicity makes them ideal candidates for
a first implementation of Support Vector Machines, and also for small size
applications. More advanced techniques are discussed in the following sections.

7.3 General Techniques and Packages

A number of optimisation techniques have been devised over the years, and
many of them can be directly applied to quadratic programmes. The Newton
method, conjugate gradient, primal dual interior-point methods, not only can
be straightforwardly applied to the case of Support Vector Machines, but given
the specific structure of the objective function also can be considerably simpli-
fied. Conceptually they are not very different from the simple gradient ascent
strategy described above, as they all iteratively climb the objective function to
its maximum, but they are all likely to be more efficient, essentially because the
direction and the length of each step are chosen in a more sophisticated way.
Some care should however be paid to the computational issues arising from the
size of the problem. Many of them require that the kernel matrix is stored in
memory, implying that the space complexity is quadratic in the sample size. For
large size problems, these approaches can be inefficient, and should therefore be
used in conjunction with the decomposition techniques described in Section 7.4.
As it is impossible to describe the plethora of methods in this chapter, pointers
to surveys will be given in Section 7.8.

One of the main advantages of such techniques is that they are well under-
stood, and widely available in a number of commercial and freeware packages,
some also accessible through the Internet. It is these packages that were used for
Support Vector Machines before specially tailored algorithms were developed.
One of the most common choices is the package MINOS, from the Stanford
Optimization Laboratory, which uses a hybrid strategy; another standard choice
is LOQO, which uses a primal dual interior-point method. In contrast, the
quadratic programme subroutine provided in the MATLAB optimisation tool-
box is very general but the routine quadprog is significantly better than qp.
Pointers to these and other packages are provided in Section 7.8.
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Finally, a very convenient solution is to use one of the existing Support Vector
packages, like SVMlight by Joachims, the package of Royal Holloway, University
of London, and the others freely available through the Internet. Similarly,
packages for Gaussian processes are freely available on the Internet. Pointers to
literature and on-line software are provided in Section 7.8.

7.4 Chunking and Decomposition

Techniques like those described in the previous section do not have the on-line
flavour of stochastic gradient ascent as they require that the data are held in
memory in the form of the kernel matrix. The complexity of the training problem
grows with the size of this matrix, limiting the approaches to datasets of a few
thousand points.

For larger problems we wish to take advantage of an approach that forms
the basis of the so-called 'active set' or 'working set' methods in optimisation:
if one knew in advance which constraints were active, it would be possible to
discard all of the inactive constraints and simplify the problem. This leads to
several strategies, all based on somehow guessing the active set, and restricting
training to this guess. Iterative heuristics that gradually build the active set are
the most common. Although these techniques are very often heuristics, the fact
that at each step they reduce the feasibility gap or increase the dual objective
function can be used to guarantee the eventual convergence of the algorithm.

The simplest heuristic is known as chunking. It starts with an arbitrary subset
or 'chunk' of the data, and trains an SVM using a generic optimiser on that
portion of the data. The algorithm then retains the support vectors from the
chunk while discarding the other points and then it uses the hypothesis found to
test the points in the remaining part of the data. The M points that most violate
the KKT conditions (where M is a parameter of the system) are added to the
support vectors of the previous problem, to form a new chunk. This procedure
is iterated, initialising a for each new sub-problem with the values output from
the previous stage, finally halting when some stopping criterion is satisfied. The
chunk of data being optimised at a particular stage is sometimes referred to as
the working set. Typically the working set grows, though it can also decrease,
until in the last iteration the machine is trained on the set of support vectors
representing the active constraints. Pseudocode for this algorithm is given in
Table 7.2.

This heuristic assumes that the kernel matrix for the set of support vectors fits
in memory and can be fed to the optimisation package being used. In general, it
can happen that the problem is not sparse, or simply that the size is so large that
the set of support vectors is still too large to be dealt with by the optimisation
routine. One can still deal with such problems by using the more advanced
decomposition algorithm, which was inspired by the use of chunking in working
set methods. The decomposition algorithm only updates a fixed size subset of
multipliers a,, while the others are kept constant. So every time a new point is
added to the working set, another point has to be removed. In this algorithm, the
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Given training set S

select an arbitary working set S cz S
repeat

solve optimisation problem on S
select new working set from data not satisfying

Karush-Kuhn-Tucker conditions
until stopping criterion satisfied
return a

Table 7.2: Pseudocode for the general working set method

goal is not to identify all of the active constraints in order to run the optimiser
on all of them, but is rather to optimise the global problem by only acting on
a small subset of data at a time. Also in this system, as in the previous one,
the 'nucleus' of the algorithm is provided by some generic quadratic programme
optimiser, possibly one of the many available packages.

Although no theoretical proof has been given of the convergence of these
methods, in practice they work very well and make it possible to deal with
datasets of several tens of thousands of points.

The important point is to select the working set in such a way that the
optimisation of the corresponding quadratic programme sub-problem leads to
an improvement in the overall objective function. Several heuristics for this can be
used. An efficient heuristic for choosing the working set at each step is to use the
stopping criteria: for example one could include the points that contribute most
to the feasibility gap or equivalently that most violate the Karush-Kuhn-Tucker
conditions.

7.5 Sequential Minimal Optimisation (SMO)

The Sequential Minimal Optimisation (SMO) algorithm is derived by taking
the idea of the decomposition method to its extreme and optimising a minimal
subset of just two points at each iteration. The power of this technique resides in
the fact that the optimisation problem for two data points admits an analytical
solution, eliminating the need to use an iterative quadratic programme optimiser
as part of the algorithm.

The requirement that the condition YM=I Wi = 0 is enforced throughout the
iterations implies that the smallest number of multipliers that can be optimised
at each step is 2: whenever one multiplier is updated, at least one other multiplier
needs to be adjusted in order to keep the condition true.

At each step SMO chooses two elements a,- and a, to jointly optimise, finds the
optimal values for those two parameters given that all the others are fixed, and
updates the a vector accordingly. The choice of the two points is determined by a
heuristic, while the optimisation of the two multipliers is performed analytically.
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Despite needing more iterations to converge, each iteration uses so few operations
that the algorithm exhibits an overall speed-up of some orders of magnitude.
Besides convergence time, other important features of the algorithm are that it
does not need to store the kernel matrix in memory, since no matrix operations
are involved, that it does not use other packages, and that it is fairly easy to
implement. Notice that since standard SMO does not use a cached kernel matrix,
its introduction could be used to obtain a further speed-up, at the expense of
increased space complexity.

7.5.1 Analytical Solution for Two Points

Without loss of generality we will assume that the two elements that have
been chosen are oc\ and 0C2. In order to compute the new values for these two
parameters, one can observe that in order not to violate the linear constraint
YM=I

 aiyi ~ 0> the n e w values of the multipliers must lie on a line,

+ a2)>2 = constant = af dyi + afdy2,

in (ai,a2) space, and in the box defined by 0 < ai,a2 < C The one dimensional
problem resulting from the restriction of the objective function to such a line
can be solved analytically.

Without loss of generality, the algorithm first computes a§ew and successively
uses it to obtain a\ew. The box constraint 0 < <x.u<x>2 ^ C, together with the linear
equality constraint, provides a more restrictive constraint on the feasible values

U < an
2

ew < V

where

F = min(C,C-af + a f ) , (7'5)

if yi =£ y2, and

r - ^ K ^ x T ~ 2
l ) , ( ? - 6 )

if yi = y2.

Remark 7.11 In the following theorem we will use the above definitions of U and
V. We also introduce some more notation that will simplify the statement and
proof of the theorem. We use / (x) to denote the current hypothesis determined
by the values of a and b at a particular stage of learning. Let

, + A . 12
) + b \ — yt, i = 1,2,
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be the difference between function output and target classification on the training
points xi or X2. Note that this may be large even if a point is correctly classified.
For example if y\ = 1, and the function output is f(x\) = 5, the classification is
correct, but E\ = 4. A further quantity that we will require is the second derivative
of the objective function along the diagonal line, which can be expressed as — K,
where

K = K(xl9xx) + X(x2,x2) - 2K(xi,x2) = IMxi) - <£(x2)||
2, (7.8)

where <f> (•) is the mapping into the feature space.

It is now possible to prove the following theorem.

Theorem 7.12 The maximum of the objective function for the optimisation problem
(7.1), when only <x\ and oc2 are allowed to change, is achieved by first computing
the quantity

^newjmc = ^old ,
2 2 K

and clipping it to enforce the constraint U < a™™ < V:

V, ifof2
ew>mc>V,

ane»,unc^ {f y < ^unc < y^

U, i /a™c <U,

where Et is given in equation (7.7), K is given by equation (7.8), and U and V
are given by equation (7.5) or (7.6). The value of(x\ew is obtained from a"ew as
follows:

Proof Define

7=3 7=1

and consider the objective as a function of oc\ and a2:

K\ K2W(au a2) = ai + a2 - -Kna\ - -K22oc2
2

—y\y2Ki2a\a2 — y\cc\V\ — y2oc2v2 + constant,

where Ky = K(xi9Xj), i,j = 1,2. Note also that the constraint 5Zf=1 afwy,- =
Z)f=i Wi = 0 implies the condition

ai + soc2 = constant = ocfd + saS^d = y,

https://doi.org/10.1017/CBO9780511801389.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.009


140 7 Implementation Techniques

where s = y\y2. This equation demonstrates how a\e™ is computed from a"e

The objective function along the constraint becomes

W ( a 2 ) = y - SGC2 + o c 2 - ^ K n ( y - s a 2 f - - ^ l

—sKi2(y — S(x2)oc2 — yi(y — SOL2)V\ — y2a2v2 + constant

and the stationary point satisfies

—-z—— = 1 - s + sKn(y - soc2) - K22ot2

ooc2

+ K1 2a2 - sK12(y ~ scc2) + y2vx - y2v2

= 0.

This yields

an
2
ew>unc(Kn+K22-2Kl2) = \ - s

yi+ yyi (Kn - Kn) + vi— v 2 ) .

Hence,

7=1

7 = 1

/(xi)-/(x2)

- 2̂̂ 2̂ 12 + 2̂̂ 2̂ 22 ~

giving

new,unc _ old , ^2 ( ^ 1 —
a2 - a2 H

Finally, we must clip aL™w'unc if necessary to ensure it remains in the interval

[u,n a

7.5.2 Selection Heuristics

In order to speed up the convergence, it is possible to choose the set of two
points to optimise, based on their contribution to the general progress towards
the solution. If the amount of computation required to implement the selection
strategy is smaller than that saved by the reduction in the number of iterations,
one obtains a gain in the rate of convergence.

The chosen stopping criterion can give a good indication of which points are
more likely to make a larger contribution towards convergence. For example,
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if one monitors the feasibility gap, a natural choice is to optimise the points
that most violate the KKT conditions, as they contribute most to that gap
(see stopping criterion 3 in Section 7.1). Computing the KKT conditions of
each point at each iteration is, however, computationally expensive, and cheaper
heuristics can deliver a better overall performance.

SMO uses two criteria for selecting the two active points to ensure that the
objective function enjoys a large increase from their optimisation. There are two
separate heuristics for choosing the first and the second point.

First Choice Heuristic The first point xi is chosen from among those points
that violate the Karush-Kuhn-Tucker conditions. The outer loop of the
algorithm goes through the training set looking for points that violate
KKT conditions and selects any it finds for update. When one such point
is found, the second heuristic is used to select the second point, and the
values of the respective multipliers are updated. Then the outer loop is
resumed looking for new KKT violations. In order to increase the chances
of finding KKT violations, the outer loop goes through the points for
which the corresponding parameter a, satisfies 0 < a, < C implying that
its value is not on the boundary of the feasible region, and only when all
such points satisfy the KKT conditions to the specified tolerance level is a
complete loop through all the training set again undertaken.

Second Choice Heuristic The second point X2 must be chosen in such a way that
updating on the pair ai, 0C2 causes a large change, which should result
in a large increase of the dual objective. In order to find a good point
without performing too much computation, a quick heuristic is to choose
X2 to maximise the quantity |£i — £21? where Ef is defined in Theorem
7.12. If Ei is positive, SMO chooses an example x2 with minimum error
E2, while if E\ is negative, SMO maximises the error E2. A cached list
of errors for every non-bound point in the training set is kept to further
reduce the computation. If this choice fails to deliver a significant increase
in dual objective, SMO tries each non-bound point in turn. If there is still
no significant progress SMO looks through the entire training set for a
suitable point. The loops through the non-bound points, and the whole
training set, start from random locations in the respective lists, so that
no bias is introduced towards the examples occurring at the beginning of
either of them.

We have included pseudocode for the SMO classification algorithm due to
John Platt in Appendix A. Note also that in Section 7.8, pointers are provided
to on-line software implementing SMO, as well as to references with a complete
and detailed description of SMO.

Remark 7.13 Note that the SMO algorithm makes apparent use of the parameter
C, and so at first appears only applicable to the 1-norm soft margin optimisation
problem. We can, however, run SMO treating C as infinite, and hence reducing
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the constraints on the interval [U, V], which subsequently only provides a lower

,af* - ocf)
bound on a"ew of

when y\ ^= y^ and is given by

U = 0,

F = otfd + oif

if yi =

Remark 7.14 The SMO algorithm makes no provision for choosing the bias,
and yet uses it in calculating the values Eu i= 1,2. This apparent indeterminacy
does not change the algorithm since whatever value of b is used both Ets are
equally affected and so the resulting update, being determined by their difference,
is identical. Hence, b can be taken to be zero throughout the computation and
set after convergence using the Karush-Kuhn-Tucker conditions as described at
the beginning of this chapter for the particular optimisation being performed.
Note, however, that we may need to compute b in order to evaluate the stopping
criterion.

Remark 7.15 The stopping criterion 3 in Section 7.1 can be used to assess
convergence. Note that this will require setting the bias. As indicated as part
of that calculation the b should be chosen by reference to some a, satisfying
0 < oct < C. The original SMO algorithm calculated the bias based on an estimate
derived from the updated points. If neither satisfies the required inequalities, this
could lead to an over-estimate of the feasibility gap.

Remark 7.16 Notice that SMO is not directly applicable in the fixed bias case,
since the choice of a"ew was made using the constraint resulting from the variable
bias. For fixed bias the SMO algorithm reduces to the algorithm described in
Table 7.1 with

For regression the SMO algorithm can again update ai and 0C2 from the
optimisation problem given in problem (7.2). The equations encode four separate
problems depending on the signs of the two parameters. Here, the constraint on
the a vector does not involve the classifications and so the interval for %2 is given
by

( f f v )
V = min (C2

V, < d + < -Cl
v),

where the four problems each have different settings of the parameters C
Ov that are specified in the following table:

and

a,->0
0
C

<Xi < 0

-c
0

(7.10)
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Remark 7.17 In the following theorem we will use the above definitions of U
and V. We also introduce some more notation that will simplify the statement
and proof of the theorem. We use / ( x ) to denote the current hypothesis
determined by the values of a and b at a particular stage of learning. Let

Et = f (xt) - y t = [ Y l "JK(XJ> x<-) + b ] ~ yi> l = !> 2>

be the difference between function output and target value on the training points
xi or X2.

It is now possible to prove the following theorem showing how to apply
SMO for the regression case. Note that this theorem is effectively giving four
update rules, one for each quadrant of the space of current values of oc\ and oc2.
It is important that the optimisation is performed and hence the new values are
sought within a chosen quadrant containing the current values. If the current
values fall in more than one quadrant then the corresponding optimisations
can be performed for each quadrant and the one giving greater increase in the
objective function chosen.

Theorem 7.18 The maximum of the objective function for the optimisation problem
(7.1), when only <xi and a2 are allowed to change in a specified quadrant containing
them both, is achieved by first computing the quantity

new,unc old , ( # 1 ~ E2) - S ( s g n (<X2) ~ Sgn (<Xi))
ou = cXo i

K

and clipping it to enforce the constraint U < a"ew < V:

an
2

eV, ifan
2
ewMnc>V,

a ^ ifJJ ^ a , < ^
U, ifa\ewmc<U,

where the values of the sgn function are determined by the chosen quadrant, E[ is
given in equation (7.11), K is given by equation (7.8), and U and V are given by
equation (7.9) or (7.10). The value ofa\ew is obtained from a^w as follows:

aneW = ajW + aold _ a n ^

Proof We define

t 2

) = / ( x / ) - ] T (XjK(xu Xj) -b,i= 1,2,
;=1

and consider the objective as a function of ai and a2:

W(otuot2) = yioci +^2^2 — ^ (|ai| + |a2|) - -Xnaf - -

—K\2OL\OL2 — oc\Vi — oc2v2 + constant,
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where Kij = K(x,,xy), i,j — 1,2. Note also that the constraint 5^-=i ctfd —
^2i=i ccf — 0 implies the condition

a i -f a2 = constant = ajw + a2
w = y.

This equation demonstrates how an
x
ew is computed from a2

ew. The objective
function along the constraint becomes

W(oc2) = jiy - j^ia2 + y2a2 - s (|<xi | + |a2|) — ^ n ( y ~ a2)2 - ^

—Kn(y ~ ^2)^2 — (7 — a2)^i — a2^2 + constant

and the stationary point satisfies

J2
-yi-s (sgn (a2) - sgn (aj) + ^ n ( y - a2) -

Ki2(y - a2) + ui - 2̂

- 0.

This yields

an
2
ew>unc(Kn+K22-2Kl2) = y2 - yx - £(sgn(a2) - sgn(ai))

Hence,

2

- / ( x 2 ) + J ^ a;K2; - 7^12 - e (sgn (a2) - sgn (a]))
7 = 1

-\-(x2K\i — OL2K\2 + <x2K22 — (X2K{2 — e (sgn (a2) — !

= <X2K + (/(xi) - yi) - (/(x2) -y2)-s (sgn (a2) - sgn (ai)),

giving

new,unc old , E\ - E2 - 2, (sgn (a2) - sgn (ai))
a2 = a2 + .

Finally, we must clip a2
ew'""c if necessary to ensure it remains in the interval

[U,V]. D

7.6 Techniques for Gaussian Processes

The solution of the Bayesian learning problem for the training set

S = ( ( x i , v i ) , . . . , ( x
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using Gaussian processes was described in Subsection 6.2.3 where it was shown
to be equivalent to ridge regression using the covariance matrix as a kernel.
Solving this problem involves computing (see equation (6.10)) the parameter
vector a satisfying

f (x) = y'(K + G2!)-^ = «'k

where

a = (K + ̂ irV, or
y = (K + <72I)a,

where k is a vector whose ith entry is K(x,,x) and K the kernel matrix with
entries K,7 = K(xi9Xj). Hence, the solution of the problem is obtained by solving
a system of linear equations of size £ x / , while the evaluation of the solution on
a novel input requires the computation of an inner product involving the values
of the kernel between the new point and each of the training examples. Note
that in the case of a Gaussian process there is no reason to expect the parameter
vector a to be sparse.

Several methods exist for solving systems of linear equations, for example
LU decomposition, Gauss Jordan elimination and in our case of a symmetric
matrix Cholesky decomposition. Most off-the-shelf numerical packages will offer
a choice of methods. Unfortunately the complexity of solving a system of linear
equations scales with /3 , making the approach impractical for very large datasets.

The problem can be tackled by a naive gradient descent method. Indeed
Exercise 1 of Chapter 2 asked the reader to rewrite the Widrow-Hoff algorithm
in dual form. If this is implemented without a bias and using the augmented
kernel K -f a2l, it will converge to the solution of the Gaussian process. A more
sophisticated way of tackling the computational complexity problems is provided
by conjugate gradient techniques. Table 7.3 shows the sequence of calculations
that perform the conjugate gradient calculation.

The process is guaranteed to converge to the solution in n = t iterations, but
an early stopping will deliver an approximation of amax with a complexity that
scales only as n x *f2. The quality of the approximation can be estimated using
so-called Skilling methods, which hence give a good stopping criterion for the
iterative procedure (for more details, follow the links in Section 7.8).

7.7 Exercises

1. Implement the gradient descent algorithm for the maximum margin opti-
misation problem. Test it on an artificially created dataset. Print out the
Karush-Kuhn-Tucker conditions. Plot the margin as a function of the
number of iterations. Introduce some sample selection heuristics and redo
the plot.
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a r ^ 0 hi^_gi<_y

for k = 1,... ,n

end for
return a

Table 7.3: Pseudocode for the conjugate gradient method

2. Try the same algorithm on non-separable data. Add the soft margin
features to the algorithm. Experiment with the tunable parameters. Run
the above algorithms on a small real-world dataset, taken for example from
the UCI repository [96].

3. Implement SMO for classification and run it on a range of datasets.

7,8 Further Reading and Advanced Topics

The problem of convex optimisation has been extensively studied since the 1950s,
and a number of techniques exist to solve it. This chapter did not attempt to
be exhaustive, but simply to provide the reader with some techniques that are
both easy to implement and exemplify some standard approaches. Discussions
of optimisation algorithms can be found in the books [41], [80], [11], and [86].

For the particular case of Support Vector Machines, see the excellent surveys
by Smola and Scholkopf [145] and Burges [23]. Implementation problems and
techniques are discussed by KaufTman [70], Joachims [68], Platt [114] [112],
Osuna and Girosi [111], and Keerthy et al. [73][74].

The gradient ascent techniques were introduced into the SVM literature
by papers on the kernel-Adatron procedure, [44] [24]; similar ideas have been
used independently by Haussler and Jaakkola [65]. They are also related to
SMO with fixed b [112]; and to Hildreth's QP method [62]. Mangasarian
and his co-workers recently introduced algorithms that can deal with massive
datasets ([90], [91], [20]). Albeit with different motivations, the algorithm SOR
(Successive Over Relaxation) of Mangasarian and Musicant [89] is equivalent to
the stochastic gradient ascent algorithm described in Section 7.2, combined with
sample selection heuristics motivated by Platt's approach [112]. Mangasarian
and Musicant [89] also give the proof of linear convergence of the algorithm
using the link with SOR.

In Remark 7.4, we discussed the case when it is possible to use fixed bias; note
that also Jaakkola and Haussler [65] use this assumption; and Mangasarian and
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Musicant [89] discuss the cases in which such an assumption is not too restrictive.
Similar approaches have also been used in [170] and [45].

An on-line theory of generalisation for gradient descent algorithms has been
developed by Littlestone, Warmuth and others [75]. A discussion of square loss
algorithms can be found in [75], while the theory of hinge loss is developed in
[48]. This theory provides tight bounds on the maximum number of mistakes
an on-line algorithm can make in the worst case, and requires surprisingly few
assumptions. The bounds can also be translated for the case where the data
have been generated by a distribution. One of its best-known consequences is
the motivation of multiplicative updating algorithms, and the characterisation
of the cases in which they are expected to perform better than standard gradient
descent. A multiplicative algorithm for Support Vector Machines has been
studied by Cristianini et al. [29].

The elegant SMO algorithm was devised by Platt [112], and applied to text
categorisation problems. Pseudocode (kindly supplied by John Platt) for SMO
is available in Appendix A of this book. An extension of SMO, differing in the
way it calculates the bias, has been proposed in [74] and shown to be faster.
Alex Smola has generalised SMO for the case of regression [148], [145], and the
code can be found on the GMD website [53].

Keerthy et al. [73] proposed a very elegant algorithm for SVMs that does not
maximise the margin by minimising the norm of the weight vector. Rather, they
note that the distance vector between the nearest points of the convex hulls of the
positive and negative data uniquely determines the maximal margin hyperplane.
This more geometrical view of the problem is discussed for example in [14] and
in [129]. Exercise 2 of Chapter 5 asks the reader to devise an optimisation
problem for this criterion, hence motivating this alternative solution strategy
for the maximum margin problem. Based on the same approach, Kowalczyk
[76] has proved a convergence rate for a new iterative algorithm that can be
applied to the hard and soft margin problems, as well as extensive experimental
comparisons with other iterative algorithms Guyon and Stork [56] give another
variant of an iterative algorithm for soft margin optimisation.

Chunking techniques in Support Vector Machines were already used by
Vapnik and Chervonenkis, and were improved, generalised and discussed in a
number of papers, among others Osuna and Girosi [111], [110], [109], Joachims
[68], Platt [112], Smola and Scholkopf [145], and Kauffman [70]. The work
of Osuna and Girosi inspired the subsequent work on data selection, which
ultimately led to systems like SMO.

Techniques exist for tuning the parameters automatically. For example [31]
adjusts the kernel parameters while the v-SVMs allow the user to set an upper
bound on the number of support vectors for classification [135], and regression
[130]. The stopping criterion based on the feasibility gap is discussed in [148],
who proposes a criterion similar to that of equation (7.3). Other criteria are
discussed in [73] and [74].

The implementation of Gaussian processes is discussed in [50]. An experi-
mental study of Widrow-Hoff with kernels can be found in [46].

The book [100] discusses general techniques for convex optimisation and gives
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pointers to commercial optimisation packages. Early implementations of SVMs
have been based on optimisation packages such as MINOS [101], LOQO [156],
MATLAB optimisation package [92], and others mentioned above. Chapter 1
of the book [149] contains a useful survey of different implementations.

Packages specifically for SVM implementation are available on-line. The
package jointly prepared by the groups at Royal Holloway, ATT and GMD
FIRST as available at the Royal Holloway, University of London, website [126].
The package SVMllght of Joachims [68] is also available on the web via the
website [30]. The package prepared by Alex Smola for SVM classification is
available at the GMD-FIRST website [53]. Web links to this and other software
are available via the website [30].

The original reference for the conjugate gradient algorithm is [61], while
the discussion of Skilling methods for estimating the quality of the approxima-
tion obtained is given in [49]. Software is also available on-line for Gaussian
processes: Radford Neal's code [103]; Gibbs and MacKay [49].

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.
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