8

Matrix Completion

In earlier chapters, we saw the power of sparsity. It’s possible to recover a
sparse vector from many fewer measurements than its dimension. And if we
don’t know the basis where our vectors are sparse, with enough examples we
can learn it. But sparsity is just the beginning. There are many other ways to
make the objects we are working with be low-complexity. In this chapter, we
will study the matrix completion problem, where the goal is to reconstruct a
matrix even when we observe just a few of its entries. Without any assumptions
on the matrix, this is impossible, because there are just too many degrees of
freedom. But when the matrix is low-rank and incoherent, it turns out that there
are simple convex programs that work. You can take these ideas much further
and study all sorts of structured recovery problems via convex programs, such
as decomposing a matrix into the sum of a sparse matrix and a low-rank matrix.
We won’t get to these here, but will give pointers to the literature.

8.1 Introduction

In 2006, Netflix issued a grand challenge to the machine learning community:
Beat our prediction algorithms for recommending movies to users by more
than 10 percent, and we’ll give you a million dollars. It took a few years, but
eventually the challenge was won and Netflix paid out. During that time, we
all learned a lot about how to build good recommendation systems. In this
chapter, we will cover one of the main ingredients, which is called the matrix
completion problem.

The starting point is to model our problem of predicting movie ratings as
a problem of predicting the unobserved entries of a matrix from the ones we
do observe. More precisely, if user i rates movie j (from one to five stars),
we set M;; to be the numerical score. Our goal is to use the entries M;; that
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we observe to predict the ones that we don’t know. If we could predict these
accurately, it would give us a way to suggest movies to users in a way that we
are suggesting movies that we think they might like. A priori, there’s no reason
to believe you can do this. If we think about the entire matrix M that we would
get by coercing every user to rate every movie (and in the Netflix dataset there
are 480, 189 users and 17,770 movies), then in principle the entries M;; that
we observe might tell us nothing about the unobserved entries.

We’re in the same conundrum we were in when we talked about compressed
sensing. A priori, there is no reason to believe you can take fewer linear
measurements of a vector x than its dimension and reconstruct x. What we need
is some assumption about the structure. In compressed sensing, we assumed
that x is sparse or approximately sparse. In matrix completion, we will assume
that M is low-rank or approximately low-rank. It’s important to think about
where this assumption comes from. If M were low-rank, we could write it as

M = 1O DY 4 @ D) 0 )T

The hope is that each of these rank-one terms represents some category of
movies. For example, the first term might represent the category drama, and
the entries in «'") might represent for every user, to what extent does he or she
like drama movies? Then each entry in v(!) would represent for every movie,
to what extent would it appeal to someone who likes drama? This is where the
low-rank assumption comes from. What we’re hoping is that there are some
categories underlying our data that make it possible to fill in missing entries.
When I have a user’s ratings for movies in each of the categories, I could then
recommend other movies in the category that he or she likes by leveraging the
data I have from other users.

The Model and Main Results

Now let’s be formal. Suppose there are n users and m movies so that M is an
nxmmatrix. Let Q@ C [n] x [m] be the indices where we observe the value M; .
Our goal is, under the assumption that M is low-rank or approximately low-
rank, to fill in the missing entries. The trouble is that in this level of generality,
finding the matrix M of lowest rank that agrees with our observations is NP-
hard. However, there are some by now standard assumptions under which we
will be able to give efficient algorithms for recovering M exactly:

(a) The entries we observe are chosen uniformly at random from [n] x [m].

(b) M has rank r.

(c) The singular vectors of M are uncorrelated with the standard basis (such a
matrix is called incoherent and we define this later).
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134 8 Matrix Completion

In this chapter, our main result is that there are efficient algorithms for
recovering M exactly if m ~ mrlogm where m > n and rank(M) < r.
This is similar to compressed sensing, where we were able to recover a k-
sparse signal x from O(k log n/k) linear measurements, which is much smaller
than the dimension of x. Here too we can recover a low-rank matrix M from a
number of observations that is much smaller than the dimension of M.

Let us examine the assumptions above. The assumption that should give
us pause is that 2 is uniformly random. This is somewhat unnatural, since it
would be more believable if the probability that we observe M;; depended on
the value itself. Alternatively, a user should be more likely to rate a movie if he
or she actually liked it.

We already discussed the second assumption. In order to understand the
third assumption, suppose our observations are indeed uniformly random.

Consider
Ir O T
M =TI IT

where IT is a uniformly random permutation matrix. M is low-rank, but unless
we observe all of the ones along the diagonal, we will not be able to recover
M uniquely. Indeed, the top singular vectors of M are standard basis vectors.
But if we were to assume that the singular vectors of M are incoherent with
respect to the standard basis, we would avoid this snag, because the vectors in
our low-rank decomposition of M are spread out over many rows and columns.

Definition 8.1.1 The coherence | of a subspace U < R" of dimension
dim(u) =ris
n 2
—max ||Pye;||
r i
where Py denotes the orthogonal projection onto U and e; is the standard basis
element.

It is easy to see that if we choose U uniformly at random, then p©(U) = 5(1).
Also we have that 1 < u(U) < n/r and the upper bound is attained if U
contains any e;. We can now see that if we set U to be the top singular vectors
of the above example, then U has high coherence. We will need the following
conditions on M:

(a) Let M = USVT, then u(U), n(V) < po.

®) UV | < % where || - || denotes the maximum absolute value of
any entry.

The main result of this chapter is:
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Theorem 8.1.2 Suppose 2 is chosen uniformly at random. Then there is
a polynomial time algorithm to recover M exactly that succeeds with high
probability if

Q2] > Cmax(u%, o)r(n + m) logz(n + m).

The algorithm in the theorem above is based on a convex relaxation for the rank
of a matrix called the nuclear norm. We will introduce this in the next section
and establish some of its properties, but one can think of it as an analogue to the
£1 minimization approach that we used in compressed sensing. This approach
was first introduced in Fazel’s thesis [70], and Recht, Fazel, and Parrilo [124]
proved that this approach exactly recovers M in the setting of matrix sensing,
which is related to the problem we consider here.

In a landmark paper, Candes and Recht [41] proved that the relaxation
based on nuclear norm also succeeds for matrix completion and introduced the
assumptions above in order to prove that their algorithm works. There has since
been a long line of work improving the requirements on m, and the theorem
above and our exposition will follow a recent paper of Recht [123] that greatly
simplifies the analysis by making use of matrix analogues of the Bernstein
bound and using these in a procedure now called quantum golfing that was
first introduced by Gross [80].

Remark 8.1.3 We will restrict to M € R™" and assume 1, 11 = 5(1) in our
analysis, which will reduce the number of parameters we need to keep track of.

8.2 Nuclear Norm

Here we introduce the nuclear norm, which will be the basis for our algorithms
for matrix completion. We will follow an outline parallel to that of compressed
sensing. In particular, a natural starting point is the optimization problem:

(Po) minrank(X) s.t. X;; = M;; for all (i, ) € Q2

This optimization problem is NP-hard. If o (X) is the vector of singular values
of X, then we can think of the rank of X equivalently as the sparsity of
o (X). Recall, in compressed sensing we faced a similar obstacle: finding the
sparsest solution to a system of linear equations is also NP-hard. But instead
we considered the ¢ relaxation and proved that under various conditions, this
optimization problem recovers the sparsest solution. Similarly, it is natural to
consider the £;-norm of o (X), which is called the nuclear norm:

Definition 8.2.1 The nuclear norm of X denoted by || X ||« is |lo (X)|1.
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We will instead solve the convex program:
(Py) min || X[, s.t. X;; = M;; for all (i,)) € @

and our goal is to prove conditions under which the solution to (P) is exactly
M. Note that this is a convex program because || X||. is a norm, and there are a
variety of efficient algorithms to solve the above program.

In fact, for our purposes, a crucial notion is that of a dual norm. We will
not need this concept in full generality, so we state it for the specific case of
the nuclear norm. This concept gives us a method to lower-bound the nuclear
norm of a matrix:

Definition 8.2.2 Ler (X,B) = ), JXi Bij = trace(XTB) denote the matrix
inner product.

Lemma 8.2.3 | X],. = maxp<1(X,B)

To get a feel for this, consider the special case where we restrict X and B to be
diagonal. Moreover, let X = diag(x) and B = diag(b). Then || X]|. = ||x||; and
the constraint ||B|| < 1 (the spectral norm of B is at most one) is equivalent to
Iblloc < 1.So we can recover a more familiar characterization of vector norms
in the special case of diagonal matrices:
[lxli = max bTx
Ibl0o=1

Proof: We will only prove one direction of the above lemma. What B should
we use to certify the nuclear norm of X? Let X = UxZx VL, then we will
choose B = UXV; Then

(X,B) = trace(B' X) = trace(Vx Uy Ux Zx V)
= trace(VxExvg) = trace(Xyx) = || X||«

where we have used the basic fact that trace(ABC) = trace(BCA). Hence this
proves |[X|lx < max)p<i(X,B), and the other direction is not much more

difficult (see, e.g., [88]). W

How can we show that the solution to (Py) is M? Our basic approach will
be a proof by contradiction. Suppose not; then the solution is M + Z for some
Z that is supported in Q. Our goal will be to construct a matrix B of spectral
norm at most one for which

IM+Z|s > (M+Z,B) > M|,

Hence M +Z would not be the optimal solution to (P;). This strategy is similar
to the one in compressed sensing, where we hypothesized some other solution
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w that differs from x by a vector y in the kernel of the sensing matrix A. There,
our strategy was to use geometric properties of ker(A) to prove that w has
strictly larger £; norm than x. The proof here will be in the same spirit, but
considerably more technical and involved.

Let us introduce some basic projection operators that will be crucial in our
proof. Recall, M = UX VT letuy,...,u, be columns of U, and let vy, ..., v,

be columns of V. Choose 441, ..., u, so that uy, . .., u, form an orthonormal
basis for all of R"; i.e., u#y41,...,u, is an arbitrary orthonormal basis of U+,
Similarly, choose v,11,...,v, so that vy, ..., v, form an orthonormal basis for

all of R”. We will be interested in the following linear spaces over matrices:
Definition 8.2.4 7 = span{uiva |1 <i<rorl <j<rorboth}

Then T+ = span{uiva s.t. r+1 < i,j < n}. We have dim(T) = r2 +2(n — r)r
and dim(T+) = (n — r)z. Moreover, we can define the linear operators that
project into 7 and T+, respectively:

n n
PrlZl= Y > (Zuw]) up] =PyiZPy..
i=r+1j=r+1

And similarly,
PriZ] = > (Z.upv]) - upy] = PyZ+ZPy — PyZPy.
(ij)elnlx[n]—[r+1,n]x[r+1,n]
We are now ready to describe the outline of the proof of Theorem 8.1.2. The

proof will be based on the following:

(a) We will assume that a certain helper matrix Y exists, and show that this is
enough to imply ||M + Z||« > ||[M||« for any Z supported in 2.
(b) We will construct such a Y using quantum golfing [80].

Conditions for Exact Recovery

Here we will state the conditions we need on the helper matrix ¥ and prove that
if such a Y exists, then M is the solution to (P1). We require that Y is supported
in 2 and

(@) |Pr(Y) —UVT|lp < /r/8n
) P < 1/2.

We want to prove that for any Z supported in Q, |M +Z||; > ||M||+. Recall,
we want to find a matrix B of spectral norm at most one so that (M + Z, B) >
|M]|«. Let U, and V| be singular vectors of Pr.[Z]. Then consider
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T

B=[U UL]{V

VT } =0V + U VI
1

Claim 8.2.5 |B| < 1

Proof: By construction, UTU, = 0 and VTV, = 0, and hence the above
expression for B is its singular value decomposition, and the claim now
follows. W

Hence we can plug in our choice for B and simplify:

IM+Z|x = (M+Z,B)
=M+zuvl +u vl
=M, ovhy+z,uvT + U v
—
1M1
where in the last line we use the fact that M is orthogonal to U VJT_. Now, using

the fact that Y and Z have disjoint supports, we can conclude:

IM+ Z|l« > IM|ls + (Z,UVT + U, V] —Y)

Therefore, in order to prove the main result in this section, it suffices to prove
that (Z, UVT + U, VI —Y) > 0. We can expand this quantity in terms of its
projection onto T and 7+ and simplify as follows:
IM +Zllx — IMlls = (Pr(Z), Pr(UVT + ULV] = Y))
+{Pri(Z), Pro(UVT + ULV — 1))

= (Pr(2),UV" — Pr(Y)) + (Pp1(2), ULV — Pr(Y))

= (Pr(2), UV'=Pr (1)) + 1PrL(Z) = (P (2), Ppo(Y))
where in the last line we used the fact that U and V| are the singular vectors
of P71 [Z], and hence <ULV£,PTL [Z]) = |1P7L[Z]]«.

Now we can invoke the properties of Y that we have assumed in this

section, to prove a lower bound on the right-hand side. By property (a) of

Y, we have that |Pr(Y) — UVT||p < /ﬁ. Therefore, we know that the first
term (P7(2), UVT — Pr(Y)) = — [ & IPr(Z)r. By property (b) of ¥, we

know the operator norm of P%(Y ) is at most 1/2. Therefore, the third term
(Pr1(Z), Pyi(Y)) is at most %”PTL (Z)|l«. Hence

r 1 ?
1M+ Zllx — M« = —,/ §||PT(Z)||F + EIIPTL(Z)II* > 0.

We will show that with high probability over the choice of €2, the inequality
does indeed hold. We defer the proof of this last fact, since it and the
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construction of the helper matrix ¥ will both make use of the matrix Bernstein
inequality, which we present in the next section.

8.3 Quantum Golfing

What remains is to construct a helper matrix Y and prove that with high prob-
ability over ©, for any matrix Z supported in , ||P7.(Z) s > \/%HPT(Z) IlF,
to complete the proof we started in the previous section. We will make use of
an approach introduced by Gross [80] and follow the proof of Recht in [123],
where the strategy is to construct Y iteratively. In each phase, we will invoke
concentration results for matrix-valued random variables to prove that the error
part of Y decreases geometrically and we make rapid progress in constructing
a good helper matrix.

First we will introduce the key concentration result that we will apply
in several settings. The following matrix-valued Bernstein inequality first
appeared in the work of Ahlswede and Winter related to quantum information
theory [6]:

Theorem 8.3.1 [Noncommutative Bernstein Inequality] Let X1 . .. X; be inde-
pendent mean 0 matrices of size d xd. Let plf = max{|| E[XkaT] Il 1l E[XkTXk] 1}
and suppose | Xi|| < M almost surely. Then for T > 0,

! 22
Pr |:H ZXkH > ri| < 2d exp {2—} .
k=1 Dk Pp +Mt/3

If d = 1, this is the standard Bernstein inequality. If d > 1 and the matrices
X} are diagonal, then this inequality can be obtained from the union bound and
the standard Bernstein inequality again. However, to build intuition, consider
the following toy problem. Let u; be a random unit vector in R? and let
X = uku,{. Then it is easy to see that ,o,f = 1/d. How many trials do we need
so that ), Xj is close to the identity (after scaling)? We should expect to need
®(dlogd) trials; this is true even if uy is drawn uniformly at random from the
standard basis vectors {e] ... ey} due to the coupon collector problem. Indeed,
the above bound corroborates our intuition that ®(dlogd) is necessary and
sufficient.

Now we will apply the above inequality to build up the tools we will need
to finish the proof.

Definition 8.3.2 Let Rq be the operator that zeros out all the entries of a
matrix except those in Q.

https://doi.org/10.1017/9781316882177.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781316882177.009

140 8 Matrix Completion

Lemma 8.3.3 If Q2 is chosen uniformly at random and m > nrlogn, then with
high probability

n? m 1

— HPTRQPT — —2PT” < —.

m n 2

Remark 8.3.4 Here we are interested in bounding the operator norm of a
linear operator on matrices. Let T be such an operator, then ||T | is defined as

max | T(Z)|
IZlr<1

We will explain how this bound fits into the framework of the matrix
Bernstein inequality, but for a full proof, see [123]. Note that E[PTRoPT] =
PrE[Rq]PT = %PT, and so we just need to show that PrRqP7 does not
deviate too far from its expectation. Let eq, e, ...,es be the standard basis
vectors. Then we can expand:

Pr(2) = Z <PT(Z), eae5>eaeg
a,b

= Z <Z, Pr (eae£)>eaeg

a,b

Hence RoPr(Z) = Z(a,b) cQ (Z, PT(ean)>e,,eZ, and finally we conclude that

PrRoPr2) = Y. (ZPrteae))Pr(eae]).
(a,b)e2

We can think of PrRqPr as the sum of random operators of the form 7, :
Z — <Z, PT(eae£)>PT(eaeg), and the lemma follows by applying the matrix
Bernstein inequality to the random operator }_, ) cq Tab-

We can now complete the deferred proof of part (a):

Lemma 8.3.5 If Q2 is chosen uniformly at random and m > nrlogn, then with
high probability for any Z supported in Q we have

I1PrL(D)]l+ > \/;HPT(Z)”F
n

Proof: Using Lemma 8.3.3 and the definition of the operator norm (see the
remark), we have

Z,PrRoPrZ — oprz) = =17/
< »PrRoPrZ — -7 Pr >_—ﬁll Iz
Furthermore, we can upper-bound the left-hand side as
(Z,PrRoPrZ) = (Z,PrR4PrZ) = ||Ra(Z — Pro(2) I}
= [Ra(Pro(Z) |1} < IPr2 ()1}
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where in the last line we used that Z is supported in , and so Rq(Z) = 0.
Hence we have that

1P @I = S IPrD)I3 — —=|1Z]2.
—n2 2n?

We can use the fact that | Z||% = ||P71(2)|1% + |Pr(Z)||% and conclude that
IPrL@DNIF = 25 11Pr(Z)||7 Now
IPr @)% = 1P D)7 > %IIPT(Z)II%
> IPr@)I}
2n
which completes the proof of the lemma. W

All that remains is to prove that the helper matrix Y that we made use
of actually does exist (with high probability). Recall that we require that Y
is supported in Q and ||Pr(Y) — UVT||p < /r/8n and |PrL(Y)| < 1/2.
The basic idea is to break up 2 into disjoint sets €21, $20»,...£2,, where
p = logn, and use each set of observations to make progress on the remaining
Pr(Y)—-U vT. More precisely, initialize Yy = 0, in which case the remainder
is Wo = UVT. Then set

2
Yiqi=Yi+ ;RQHI(Wi)

and update Wi = uvT — Pr(Yit1). It is easy to see that E[%RQM] = I
Intuitively, this means that at each step Y;y; — Y; is an unbiased estimator
for W;, and so we should expect the remainder to decrease quickly (here we
will rely on the concentration bounds we derived from the noncommutative
Bernstein inequality). Now we can explain the nomenclature quantum golfing:
at each step, we hit our golf ball in the direction of the hole, but here our target
is to approximate the matrix UV, which for various reasons is the type of
question that arises in quantum mechanics.

It is easy to see that ¥ = Zi Y; is supported in 2 and that P7(W;) = W; for
all i. Hence we can compute

2

n
|Pr(Y:) — UV || = PTZRQiWi—l — Wi

F
2
PTZRSZiPTWi—l —PrWi_y

F

n? m 1
— HPTRQPT - _ZPTH = 5 IIWiztllr
m n 2
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where the last inequality follows from Lemma 8.3.3. Therefore, the Frobenius
norm of the remainder decreases geometrically, and it is easy to guarantee that
Y satisfies condition (a).

The more technically involved part is showing that Y also satisfies condition
(b). However, the intuition is that ||P;1 (Y7)]| is itself not too large, and since
the norm of the remainder W; decreases geometrically, we should expect that
|P71 (Y;)|l does too, and so most of the contribution to

[Pre (M) < Z 1Pro (YD)l

comes from the first term. For full details, see [123]. This completes the proof
that computing the solution to the convex program indeed finds M exactly,
provided that M is incoherent and | 2| > max(,u%, o) r(n + m) logz(n + m).

Further Remarks

There are many other approaches to matrix completion. What makes the above
argument so technically involved is that we wanted to solve exact matrix
completion. When our goal is to recover an approximation to M, it becomes
much easier to show bounds on the performance of (Py). Srebro and Shraibman
[132] used Rademacher complexity and matrix concentration bounds to show
that (P1) recovers a solution that is close to M. Moreover, their argument
extends straightforwardly to the arguably more practically relevant case when
M is only entrywise close to being low-rank. Jain et al. [93] and Hardt [83]
gave provable guarantees for alternating minimization. These guarantees are
worse in terms of their dependence on the coherence, rank, and condition
number of M, but alternating minimization has much better running time and
space complexity and is the most popular approach in practice. Barak and
Moitra [26] studied noisy tensor completion and showed that it is possible to
complete tensors better than naively flattening them into matrices, and showed
lower bounds based on the hardness of refuting random constraint satisfaction
problems.

Following the work on matrix completion, convex programs have proven to
be useful in many other related problems, such as separating a matrix into the
sum of a low-rank and a sparse part [44]. Chandrasekaran et al. [46] gave a
general framework for analyzing convex programs for linear inverse problems
and applied it in many settings. An interesting direction is to use reductions and
convex programming hierarchies as a framework for exploring computational
versus statistical trade-offs [29, 45, 24].
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