
CHAPTER 7

Linear models

A
FTER DEALING WITH logical models in the preceding chapters we now move on to a

quite different kind of model. The models in this chapter and the next are defined in

terms of the geometry of instance space. Geometric models most often assume that

instances are described by d real-valued features, and thus X = Rd . For example, we

could describe objects by their position on a map in terms of longitude and latitude

(d = 2), or in the real world by longitude, latitude and altitude (d = 3). While most real-

valued features are not intrinsically geometric – think of a person’s age or an object’s

temperature – we can still imagine them being plotted in a d-dimensional Cartesian

coordinate system. We can then use geometric concepts such as lines and planes to

impose structure on this space, for instance in order to build a classification model. Al-

ternatively, we can use the geometric notion of distance to represent similarity, on the

basis that if two points are close together they have similar feature values and thus can

be expected to behave similarly with respect to the property of interest. Such distance-

based models are the subject of the next chapter. In this chapter we will look at models

that can be understood in terms of lines and planes, commonly called linear models.

Linearity plays a fundamental role in mathematics and related disciplines, and the

mathematics of linear models is well-understood (see Background 7.1 for the most im-

portant concepts). In machine learning, linear models are of particular interest be-

cause of their simplicity (remember our rule of thumb ‘everything should be made as
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7. Linear models 195

If x1 and x2 are two scalars or vectors of the same dimension and α and β are arbitrary

scalars, then αx1+βx2 is called a linear combination of x1 and x2. If f is a linear function

of x, then

f (αx1+βx2)=α f (x1)+β f (x2)

In words, the function value of a linear combination of some inputs is a linear combina-

tion of their function values. As a special case, if β= 1−α we are taking a weighted average

of x1 and x2, and the linearity of f then means that the function value of the weighted av-

erage is the weighted average of the function values.

Linear functions take particular forms, depending on the domain and codomain of f . If x

and f (x) are scalars, it follows that f is of the form f (x)= a+bx for some constants a and

b; a is called the intercept and b the slope. If x= (x1, . . ., xd ) is a vector and f (x) is a scalar,

then f is of the form

f (x)= a+b1x1+ . . .+bd xd = a+b ·x (7.1)

with b = (b1, . . .,bd ). The equation f (x) = 0 defines a plane in Rd perpendicular to the

normal vector b.

The most general case is where f (x) is a d ′-dimensional vector, in which case f is of the

form f (x)=Mx+t, where M is a d ′-by-d matrix representing a linear transformation such

as a rotation or a scaling, and t is a d ′-vector representing a translation. In this case f is

called an affine transformation (the difference between linear and affine transformations

is that the former maps the origin to itself; notice that a linear function of the form of

Equation 7.1 is a linear transformation only if the intercept is 0).

In all these forms we can avoid representing the intercept a or the translation t separately

by using homogeneous coordinates. For instance, by writing b◦ = (a,b1, . . .,bd ) and x◦ =
(1, x1, . . ., xd ) in Equation 7.1 we have f (x)= b◦ ·x◦ (see also Background 1.2 on p.24).

Examples of non-linear functions are the polynomials in x of degree p > 1: g (x) =
a0+a1x+a2x2+. . .+ap xp =∑p

i=0 ai xi . Other non-linear functions can be approximated

by a polynomial through their Taylor expansion. The linear approximation of a function

g at x0 is g (x0)+ g ′(x0)(x − x0), where g ′(x) is the derivative of x. A piecewise linear ap-

proximation is obtained by combining several linear approximations at different points

x0.

Background 7.1. Linear models.

simple as possible, but not simpler’ that we introduced on p.30). Here are a couple of

manifestations of this simplicity.

� Linear models are parametric, meaning that they have a fixed form with a small

number of numeric parameters that need to be learned from data. This is
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196 7. Linear models

different from tree or rule models, where the structure of the model (e.g., which

features to use in the tree, and where) is not fixed in advance.

� Linear models are stable, which is to say that small variations in the training data

have only limited impact on the learned model. Tree models tend to vary more

with the training data, as the choice of a different split at the root of the tree

typically means that the rest of the tree is different as well.

� Linear models are less likely to overfit the training data than some other models,

largely because they have relatively few parameters. The flipside of this is that

they sometimes lead to underfitting: e.g., imagine you are learning where the

border runs between two countries from labelled samples, then a linear model

is unlikely to give a good approximation.

The last two points can be summarised by saying that linear models have low variance

but high bias. Such models are often preferable when you have limited data and want

to avoid overfitting. High variance–low bias models such as decision trees are prefer-

able if data is abundant but underfitting is a concern. It is usually a good idea to start

with simple, high-bias models such as linear models and only move on to more elabo-

rate models if the simpler ones appear to be underfitting.

Linear models exist for all predictive tasks, including classification, probability es-

timation and regression. Linear regression, in particular, is a well-studied problem that

can be solved by the least-squares method, which is the topic of the next section. We

will look at a number of other linear models in this chapter, including least-squares

classification (also in Section 7.1), the perceptron in Section 7.2, and the support vec-

tor machine in Section 7.3. We will also find out how these models can be turned into

probability estimators in Section 7.4. Finally, Section 7.5 briefly discusses how each of

these methods could learn non-linear models by means of so-called kernel functions.

7.1 The least-squares method

We start by introducing a method that can be used to learn linear models for classifica-

tion and regression. Recall that the regression problem is to learn a function estimator

f̂ : X →R from examples (xi , f (xi )), where in this chapter we assume X =Rd . The dif-

ferences between the actual and estimated function values on the training examples

are called residuals εi = f (xi )− f̂ (xi ). The least-squares method, introduced by Carl

Friedrich Gauss in the late eighteenth century, consists in finding f̂ such that
∑n

i=1 ε
2
i is

minimised. The following example illustrates the method in the simple case of a single

feature, which is called univariate regression.
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Figure 7.1. The red solid line indicates the result of applying linear regression to 10 measure-

ments of body weight (on the y-axis, in kilograms) against body height (on the x-axis, in cen-

timetres). The orange dotted lines indicate the average height h = 181 and the average weight

w = 74.5; the regression coefficient b̂ = 0.78. The measurements were simulated by adding nor-

mally distributed noise with mean 0 and variance 5 to the true model indicated by the blue

dashed line (b = 0.83).

Example 7.1 (Univariate linear regression). Suppose we want to investigate the

relationship between people’s height and weight. We collect n height and weight

measurements (hi , wi ),1 ≤ i ≤ n. Univariate linear regression assumes a lin-

ear equation w = a + bh, with parameters a and b chosen such that the sum

of squared residuals
∑n

i=1(wi − (a+bhi ))2 is minimised. In order to find the pa-

rameters we take partial derivatives of this expression, set the partial derivatives

to 0 and solve for a and b:

∂

∂a

n∑
i=1

(wi − (a+bhi ))2 =−2
n∑

i=1
(wi − (a+bhi ))= 0 ⇒ â =w − b̂h

∂

∂b

n∑
i=1

(wi − (a+bhi ))2 =−2
n∑

i=1
(wi − (a+bhi ))hi = 0

⇒ b̂ =
∑n

i=1(hi −h)(wi −w)∑n
i=1(hi −h)2

So the solution found by linear regression is w = â+ b̂h =w+ b̂(h−h); see Figure

7.1 for an example.
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198 7. Linear models

It is worthwhile to note that the expression for the regression coefficient or slope b̂

derived in this example has n times the covariance between h and w in the enumerator

and n times the variance of h in the denominator. This is true in general: for a feature

x and a target variable y , the regression coefficient is

b̂ = n
σx y

nσxx
= σx y

σxx

(Here I use σxx as an alternative notation for σ2
x , the variance of variable x.) This can

be understood by noting that the covariance is measured in units of x times units of

y (e.g., metres times kilograms in Example 7.1) and the variance in units of x squared

(e.g., metres squared), so their quotient is measured in units of y per unit of x (e.g.,

kilograms per metre).

We can notice a few more useful things. The intercept â is such that the regression

line goes through (x, y). Adding a constant to all x-values (a translation) will affect only

the intercept but not the regression coefficient (since it is defined in terms of deviations

from the mean, which are unaffected by a translation). So we could zero-centre the

x-values by subtracting x, in which case the intercept is equal to y . We could even

subtract y from all y-values to achieve a zero intercept, without changing the problem

in an essential way.

Furthermore, suppose we replace xi with x ′i = xi /σxx and likewise x with x ′ =
x/σxx , then we have that b̂ = 1

n

∑n
i=1(x ′i − x ′)(yi − y) = σx′y . In other words, if we nor-

malise x by dividing all its values by x’s variance, we can take the covariance between

the normalised feature and the target variable as regression coefficient. In other words,

univariate linear regression can be understood as consisting of two steps:

1. normalisation of the feature by dividing its values by the feature’s variance;

2. calculating the covariance of the target variable and the normalised feature.

We will see below how these two steps change when dealing with more than one fea-

ture.

Another important point to note is that the sum of the residuals of the least-squares

solution is zero:
n∑

i=1
(yi − (â+ b̂xi ))= n(y − â− b̂x)= 0

The result follows because â = y − b̂x, as derived in Example 7.1. While this property

is intuitively appealing, it is worth keeping in mind that it also makes linear regres-

sion susceptible to outliers: points that are far removed from the regression line, often

because of measurement errors.
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Figure 7.2. The effect of an outlier in univariate regression. One of the blue points got moved up

10 units to the green point, changing the red regression line to the green line.

Example 7.2 (The effect of outliers). Suppose that, as the result of a transcrip-

tion error, one of the weight values in Figure 7.1 is increased by 10 kg. Figure 7.2

shows that this has a considerable effect on the least-squares regression line.

Despite this sensitivity to outliers, the least-squares method usually works surpris-

ingly well for such a simple method. How can it be justified? One way to look at this

is to assume that the true function f is indeed linear, but that the observed y-values

are contaminated with random noise. That is, our examples are (xi , f (xi )+ εi ) rather

than (xi , f (xi )), and we assume that f (x)= ax+b for some a and b. If we knew a and b

we could work out exactly what the residuals are, and if we knew σ2 we could calculate

the probability of observing that set of residuals. Since we don’t know a and b we have

to estimate them, and the estimate we want is the value of a and b that maximises the

probability of the residuals. We will see in Chapter 9 that this so-called �maximum-

likelihood estimate is exactly the least-squares solution.

Variants of the least-squares method exist. Here we discussed ordinary least squares,

which assumes that only the y-values are contaminated with random noise. Total least

squares generalises this to the situation that both x- and y-values are noisy, but this

does not necessarily have a unique solution.
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200 7. Linear models

X usually denotes an n-by-d data matrix containing n instances in rows described by d

features or variables in columns. Xr · denotes the r -th row of X, X·c denotes the c-th col-

umn, and Xr c denotes the entry in the r -th row and c-th column. We also use i and

j to range over rows and columns, respectively. The j -th column mean is defined as

μ j = 1
n
∑n

i=1 Xi j ; μT is a row vector containing all column means. If 1 is an n-vector con-

taining only ones, then 1μT is an n-by-d matrix whose rows are μT; hence X′ = X−1μT

has mean zero in each column and is referred to as the zero-centred data matrix.

The scatter matrix is the d-by-d matrix S = X′TX′ =
(
X−1μT

)T (
X−1μT

)
= XTX− nM,

where M = μμT is a d-by-d matrix whose entries are products of column means M j c =
μ jμc . The covariance matrix of X is Σ = 1

n S whose entries are the pairwise covari-

ances σ j c = 1
n
∑n

i=1

(
Xi j −μ j

)(
Xi c −μc

)= 1
n

(∑n
i=1 Xi j Xi c −μiμc

)
. Two uncorrelated fea-

tures have a covariance close to 0; positively correlated features have a positive covari-

ance, indicating a certain tendency to increase or decrease together; a negative covari-

ance indicates that if one feature increases, the other tends to decrease and vice versa.

σ j j = 1
n
∑n

i=1

(
Xi j −μ j

)2 = 1
n

(∑n
i=1 X2

i j −μ2
j

)
is the variance of column j , also denoted

as σ2
j . The variance is always positive and indicates the spread of the values of a feature

around their mean.

A small example clarifies these definitions:

X=

⎛
⎜⎝

5 0

3 5

1 7

⎞
⎟⎠ 1μT =

⎛
⎜⎝

3 4

3 4

3 4

⎞
⎟⎠ X′ =

⎛
⎜⎝

2 −4

0 1

−2 3

⎞
⎟⎠ G=

⎛
⎜⎝

25 15 5

15 34 38

5 38 50

⎞
⎟⎠

XTX=
(

35 22

22 74

)
M=
(

9 12

12 16

)
S=
(

8 −14

−14 26

)
Σ=
(

8/3 −14/3

−14/3 26/3

)

We see that the two features are negatively correlated and that the second feature has the

larger variance. Another way to calculate the scatter matrix is as a sum of outer products,

one for each data point: S=∑n
i=1

(
Xi · −μT

)T (
Xi · −μT

)
. In our example we have

(
X1· −μT

)T (
X1· −μT

)
=
(

2

−4

)(
2 −4

)
=
(

4 −8

−8 16

)

(
X2· −μT

)T (
X2· −μT

)
=
(

0

1

)(
0 1

)
=
(

0 0

0 1

)

(
X3· −μT

)T (
X3· −μT

)
=
(
−2

3

)(
−2 3

)
=
(

4 −6

−6 9

)

Background 7.2. Some more matrix notation.
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Multivariate linear regression

In order to deal with an arbitrary number of features it will be useful to employ matrix

notation (see Background 7.2). We can write univariate linear regression in matrix form

as ⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠a+

⎛
⎜⎜⎝

x1

...

xn

⎞
⎟⎟⎠b+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = a+Xb+ε

In the second form of this equation, y, a, X and ε are n-vectors, and b is a scalar. In

case of d features, all that changes is that X becomes an n-by-d matrix, and b becomes

a d-vector of regression coefficients.

We can apply the by now familiar trick of using homogeneous coordinates to sim-

plify these equations as follows:⎛
⎜⎜⎝

y1

...

yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 x1

...
...

1 xn

⎞
⎟⎟⎠
(

a

b

)
+

⎛
⎜⎜⎝

ε1

...

εn

⎞
⎟⎟⎠

y = X◦w+ε

with X◦ an n-by-(d +1) matrix whose first column is all 1s and the remaining columns

are the columns of X, and w has the intercept as its first entry and the regression coef-

ficients as the remaining d entries. For convenience we will often blur the distinction

between these two formulations and state the regression equation as y=Xw+ε with X

having d columns and w having d rows – from the context it will be clear whether we

are representing the intercept by means of homogeneous coordinates, or have rather

zero-centred the target and features to achieve a zero intercept.

In the univariate case we were able to obtain a closed-form solution for w: can

we do the same in the multivariate case? First, we are likely to need the covariances

between every feature and the target variable. Consider the expression XTy, which is

an n-vector, the j -th entry of which is the product of the j -th row of XT – i.e., the j -th

column of X, which is (x1 j , . . . , xn j ) – with (y1, . . . , yn):

(XTy) j =
n∑

i=1
xi j yi =

n∑
i=1

(xi j −μ j )(yi − y)+nμ j y = n(σ j y +μ j y)

Assuming for the moment that every feature is zero-centred, we have μ j = 0 and thus

XTy is an n-vector holding all the required covariances (times n).

In the univariate case we needed to normalise the features to have unit variance.

In the multivariate case we can achieve this by means of a d-by-d scaling matrix: a
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202 7. Linear models

diagonal matrix with diagonal entries 1/nσ j j . If S is a diagonal matrix with diagonal

entries nσ j j , we can get the required scaling matrix by simply inverting S. So our first

stab at a solution for the multivariate regression problem is

ŵ= S−1XTy (7.2)

As it turns out, the general case requires a more elaborate matrix instead of S:

ŵ= (XTX)−1XTy (7.3)

Let us try to understand the term (XTX)−1 a bit better. Assume that the features are

uncorrelated (meaning the covariance between every pair of different features is 0)

in addition to being zero-centred. In the notation of Background 7.2, the covariance

matrix Σ is diagonal with entries σ j j . Since XTX = n(Σ+M), and since the entries of

M are 0 because the columns of X are zero-centred, this matrix is also diagonal with

entries nσ j j – in fact, it is the matrix S referred to above. In other words, assuming

zero-centred and uncorrelated features, (XTX)−1 reduces to our scaling matrix S−1. In

the general case we cannot make any assumptions about the features, and (XTX)−1 acts

as a transformation that decorrelates, centres and normalises the features.

To make this a bit more concrete, the next example shows how this works out in the

bivariate case.

Example 7.3 (Bivariate linear regression in matrix notation). First, we derive

the basic expressions.

XTX =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
x11 x12

...
...

xn1 xn2

⎞
⎟⎟⎠= n

(
σ11+x1

2 σ12+x1 x2

σ12+x1 x2 σ22+x2
2

)

(XTX)−1 = 1

nD

(
σ22+x2

2 −σ12−x1 x2

−σ12−x1 x2 σ11+x1
2

)

D = (σ11+x1
2)(σ22+x2

2)− (σ12+x1 x2)2

XTy =
(

x11 · · · xn1

x12 · · · xn2

)⎛⎜⎜⎝
y1

...

yn

⎞
⎟⎟⎠= n

(
σ1y +x1 y

σ2y +x2 y

)

We now consider two special cases. The first is that X is in homogeneous coordi-

nates, i.e., we are really dealing with a univariate problem. In that case we have
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xi 1 = 1 for 1≤ i ≤ n; x1 = 1; and σ11 = σ12 = σ1y = 0. We then obtain (we write x

instead of x2, σxx instead of σ22 and σx y instead of σ2y ):

(XTX)−1 = 1

nσxx

(
σxx +x2 −x

−x 1

)

XTy = n

(
y

σx y +x y

)

ŵ= (XTX)−1XTy = 1

σxx

(
σxx y −σx y x

σx y

)

This is the same result as obtained in Example 7.1.

The second special case we consider is where we assume x1, x2 and y to be

zero-centred, which means that the intercept is zero and w contains the two re-

gression coefficients. In this case we obtain

(XTX)−1 = 1

n(σ11σ22−σ2
12)

(
σ22 −σ12

−σ12 σ11

)

XTy = n

(
σ1y

σ2y

)

ŵ= (XTX)−1XTy = 1

(σ11σ22−σ2
12)

(
σ22σ1y −σ12σ2y

σ11σ2y −σ12σ1y

)

The last expression shows, e.g., that the regression coefficient for x1 may be non-

zero even if x1 doesn’t correlate with the target variable (σ1y = 0), on account of

the correlation between x1 and x2 (σ12 
= 0).

Notice that if we do assume σ12 = 0 then the components of ŵ reduce to σ j y /σ j j ,

which brings us back to Equation 7.2. Assuming uncorrelated features effectively de-

composes a multivariate regression problem into d univariate problems. We shall see

several other examples of decomposing multivariate learning problems into univari-

ate problems in this book – in fact, we have already seen an example in the form of the

�naive Bayes classifier in Chapter 1. So, you may wonder, why take feature correlation

into account at all?

The answer is that ignoring feature correlation can be harmful in certain situa-

tions. Consider Figure 7.3: on the left, there is little correlation among the features,

and as a result the samples provide a lot of information about the true function. On
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Figure 7.3. (left) Regression functions learned by linear regression. The true function is y =
x1+x2 (red plane). The red points are noisy samples of this function; the black points show them

projected onto the (x1, x2)-plane. The green plane indicates the function learned by linear re-

gression; the blue plane is the result of decomposing the problem into two univariate regression

problems (blue points). Both are good approximations of the true function. (right) The same

function, but now x1 and x2 are highly (negatively) correlated. The samples now give much less

information about the true function: indeed, from the univariate decomposition it appears that

the function is constant.

the right, the features are highly negatively correlated in such a way that the sampled

values y = x1+ x2+ ε appear nearly constant, as any increase in one feature is accom-

panied by a nearly equal decrease in the other. As a result, decomposing the problem

into two univariate regression problems leads to learning a nearly constant function.

To be fair, taking the full covariance matrix into account doesn’t do so well either in

this example. However, although we will not explore the details here, one advantage of

the full covariance approach is that it allows us to recognise that we can’t place much

confidence in our estimates of the regression parameters in this situation. The com-

putational cost of computing the closed-form solution in Equation 7.3 lies in inverting

the d-by-d matrix XTX, which can be prohibitive in high-dimensional feature spaces.

Regularised regression

We have just seen a situation in which least-squares regression can become unstable:

i.e., highly dependent on the training data. Instability is a manifestation of a tendency

to overfit. Regularisation is a general method to avoid such overfitting by applying

additional constraints to the weight vector. A common approach is to make sure the

weights are, on average, small in magnitude: this is referred to as shrinkage. To show

how this can be achieved, we first write down the least-squares regression problem as

an optimisation problem:

w∗ = argmin
w

(y−Xw)T(y−Xw)
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The right-hand side is just a way to write the sum of squared residuals as a dot product.

The regularised version of this optimisation is then as follows:

w∗ = argmin
w

(y−Xw)T(y−Xw)+λ||w||2 (7.4)

where ||w||2 =∑i w2
i is the squared norm of the vector w, or, equivalently, the dot prod-

uct wTw; λ is a scalar determining the amount of regularisation. This regularised prob-

lem still has a closed-form solution:

ŵ= (XTX+λI)−1XTy (7.5)

where I denotes the identity matrix with 1s on the diagonal and 0s everywhere else.

Comparing this with Equation 7.3 on p.202 we see that regularisation amounts to adding

λ to the diagonal of XTX, a well-known trick to improve the numerical stability of ma-

trix inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,

which stands for ‘least absolute shrinkage and selection operator’. It replaces the ridge

regularisation term
∑

i w2
i with the sum of absolute weights

∑
i |wi |. (Using terminol-

ogy that will be introduced in Definition 8.2 on p.235: lasso uses L1 regularisation

where ridge regression uses the L2 norm.) The result is that some weights are shrunk,

but others are set to 0, and so the lasso regression favours sparse solutions. It should be

added that lasso regression is quite sensitive to the regularisation parameter λ, which

is usually set on hold-out data or in cross-validation. Also, there is no closed-form so-

lution and so some numerical optimisation technique must be applied.

Using least-squares regression for classification

So far we have used the least-squares method to construct function approximators.

Interestingly, we can also use linear regression to learn a binary classifier by encoding

the two classes as real numbers. For instance, we can label the Pos positive examples

with y⊕ = +1 and the Neg negative examples with y� = −1. It then follows that XTy =
Pos μ⊕−Neg μ�, whereμ⊕ andμ� are d-vectors containing each feature’s mean values

for the positive and negative examples, respectively.

Example 7.4 (Univariate least-squares classifier). In the univariate case we

have
∑

i xi yi = Pos μ⊕ −Neg μ�; we also know (see Example 7.3) that
∑

i xi yi =
n(σx y + x y), and so σx y = pos μ⊕ − neg μ� − x y . Since x = pos μ⊕ + neg μ�

and y = pos− neg, we can rewrite the covariance between x and y as σx y =
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�2 �1.5 �1 �0.5 0 0.5 1 1.50
�1

0

1

Figure 7.4. Using univariate linear regression to obtain a decision boundary. The 10 negative

examples are labelled with y� = −1 and the 20 positive examples are labelled y⊕ = +1. μ� and

μ⊕ are indicated by red circles. The blue line is the linear regression line y = y + b̂(x − x), and

the crosshair indicates the decision boundary x0 = x− y/b̂. This results in three examples being

misclassified – notice that this is the best that can be achieved with the given data.

2pos ·neg (μ⊕−μ�), and so the slope of the regression line is

b̂ = 2pos ·neg
μ⊕−μ�

σxx
(7.6)

This equation shows that the slope of the regression line increases with the sepa-

ration between the classes (measured as the distance between the class means in

proportion to the feature’s variance), but also decreases if the class distribution

becomes skewed.

The regression equation y = y + b̂(x − x) can then be used to obtain a deci-

sion boundary. We need to determine the point (x0, y0) such that y0 is half-way

between y⊕ and y� (i.e., y0 = 0 in our case). We then have

x0 = x+ y0− y

b̂
= x− pos−neg

2pos ·neg

σxx

μ⊕−μ�

That is, if there are equal numbers of positive and negative examples we simply

threshold the feature at the feature mean x; in case of unequal class distribution

we shift this threshold to the left or right as appropriate (Figure 7.4).

In the general case, the least-squares classifier learns the decision boundary w·x= t

with

w= (XTX)−1(Pos μ⊕−Neg μ�) (7.7)
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We would hence assign class ŷ = sign(w ·x− t ) to instance x, where

sign(x)=

⎧⎪⎨
⎪⎩
+1 if x > 0

0 if x = 0

−1 if x < 0

Various simplifying assumptions can be made, including zero-centred features, equal-

variance features, uncorrelated features and equal class prevalences. In the simplest

case, when all these assumptions are made, Equation 7.7 reduces to w = c(μ⊕ −μ�)

where c is some scalar that can be incorporated in the decision threshold t . We recog-

nise this as the �basic linear classifier that was introduced in the Prologue. Equation

7.7 thus tells us how to adapt the basic linear classifier, using the least-squares method,

in order to take feature correlation and unequal class distributions into account.

In summary, a general way of constructing a linear classifier with decision boundary

w ·x = t is by constructing w as M−1(n⊕μ⊕ −n�μ�), with different possible choices of

M, n⊕ and n�. The full covariance approach with M=XTX has time complexity O(n2d)

for construction of M and O(d 3) for inverting it,1 so this approach becomes unfeasible

with large numbers of features.

7.2 The perceptron

Recall from Chapter 1 that labelled data is called �linearly separable if there exists a

linear decision boundary separating the classes. The least-squares classifier may find

a perfectly separating decision boundary if one exists, but this is not guaranteed. To

see this, suppose that the basic linear classifier achieves perfect separation for a given

training set. Now, move all but one of the positive points away from the negative class.

The decision boundary will also move away from the negative class, at some point

crossing the one positive that remains fixed. By construction, the modified data is

still linearly separable, since the original decision boundary separates it; however, the

statistics of the modified data are such that the basic linear classifier will misclassify

the one positive outlier.

A linear classifier that will achieve perfect separation on linearly separable data is

the perceptron, originally proposed as a simple neural network. The perceptron iter-

ates over the training set, updating the weight vector every time it encounters an incor-

rectly classified example. For example, let xi be a misclassified positive example, then

we have yi =+1 and w·xi < t . We therefore want to find w′ such that w′·xi >w·xi , which

moves the decision boundary towards and hopefully past xi . This can be achieved by

calculating the new weight vector as w′ =w+ηxi , where 0 < η≤ 1 is the learning rate.

We then have w′ ·xi =w ·xi +ηxi ·xi >w ·xi as required. Similarly, if x j is a misclassified

1A more sophisticated algorithm can achieve O(d2.8), but this is probably the best we can do.
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negative example, then we have y j =−1 and w·x j > t . In this case we calculate the new

weight vector as w′ =w−ηx j , and thus w′ ·x j =w ·x j −ηx j ·x j <w ·x j . The two cases

can be combined in a single update rule:

w′ =w+ηyi xi (7.8)

The perceptron training algorithm is given in Algorithm 7.1. It iterates through the

training examples until all examples are correctly classified. The algorithm can easily

be turned into an online algorithm that processes a stream of examples, updating the

weight vector only if the last received example is misclassified. The perceptron is guar-

anteed to converge to a solution if the training data is linearly separable, but it won’t

converge otherwise. Figure 7.5 gives a graphical illustration of the perceptron training

algorithm. In this particular example I initialised the weight vector to the basic linear

classifier, which means the learning rate does have an effect on how quickly we move

away from the initial decision boundary. However, if the weight vector is initialised to

the zero vector, it is easy to see that the learning rate is just a constant factor that does

not affect convergence. We will set it to 1 in the remainder of this section.

The key point of the perceptron algorithm is that, every time an example xi is mis-

classified, we add yi xi to the weight vector. After training has completed, each exam-

ple has been misclassified zero or more times – denote this number αi for example xi .

Algorithm 7.1: Perceptron(D,η) – train a perceptron for linear classification.

Input : labelled training data D in homogeneous coordinates;

learning rate η.

Output : weight vector w defining classifier ŷ = sign(w ·x).

1 w←0 ; // Other initialisations of the weight vector are possible

2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi w ·xi ≤ 0 // i.e., ŷi 
= yi

7 then

8 w←w+ηyi xi ;

9 converged←false; // We changed w so haven’t converged yet

10 end

11 end

12 end
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Figure 7.5. (left) A perceptron trained with a small learning rate (η= 0.2). The circled examples

are the ones that trigger the weight update. (middle) Increasing the learning rate to η= 0.5 leads

in this case to a rapid convergence. (right) Increasing the learning rate further to η = 1 may

lead to too aggressive weight updating, which harms convergence. The starting point in all three

cases was the basic linear classifier.

Using this notation the weight vector can be expressed as

w=
n∑

i=1
αi yi xi (7.9)

In other words, the weight vector is a linear combination of the training instances. The

perceptron shares this property with, e.g., the basic linear classifier:

wblc =μ⊕−μ� = 1

Pos

∑
x⊕∈Tr⊕

x⊕− 1

Neg

∑
x�∈Tr�

x� = ∑
x⊕∈Tr⊕

α⊕c(x⊕)x⊕+ ∑
x�∈Tr�

α�c(x�)x�

(7.10)

Algorithm 7.2: DualPerceptron(D) – perceptron training in dual form.

Input : labelled training data D in homogeneous coordinates.

Output : coefficients αi defining weight vector w=∑|D|i=1αi yi xi .

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y j xi ·x j ≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end
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Figure 7.6. Three differently trained linear classifiers on a data set of 100 positives (top-right)

and 50 negatives (bottom-left): the basic linear classifier in red, the least-squares classifier in

orange and the perceptron in green. Notice that the perceptron perfectly separates the training

data, but its heuristic approach may lead to overfitting in certain situations.

where c(x) is the true class of example x (i.e., +1 or −1), α⊕ = 1/Pos and α� = 1/Neg. In

the dual, instance-based view of linear classification we are learning instance weights

αi rather than feature weights w j . In this dual perspective, an instance x is classified

as ŷ = sign
(∑n

i=1αi yi xi ·x
)
. This means that, during training, the only information

needed about the training data is all pairwise dot products: the n-by-n matrix G =
XXT containing these dot products is called the Gram matrix. Algorithm 7.2 gives the

dual form of the perceptron training algorithm. We will encounter this instance-based

perspective again when we discuss support vector machines in the next section.

Figure 7.6 demonstrates the difference between the basic linear classifier, the least-

squares classifier and the perceptron on some random data. For this particular data

set, neither the basic linear classifier nor the least-squares classifier achieves perfect

separation, but the perceptron does. One difference with other linear methods is that

we cannot derive a closed-form solution for the weight vector learned by the percep-

tron, so it is a more heuristic approach.

The perceptron can easily be turned into a linear function approximator (Algorithm

7.3). To this end the update rule is changed to w′ =w+(yi − ŷi )2xi , which uses squared
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7.3 Support vector machines 211

residuals. This is unlikely to converge to the exact function, so the algorithm simply

runs for a fixed number of training epochs (an epoch is one complete run through the

training data). Alternatively, one could run the algorithm until a bound on the sum of

squared residuals is reached.

7.3 Support vector machines

Linearly separable data admits infinitely many decision boundaries that separate the

classes, but intuitively some of these are better than others. For example, the left and

middle decision boundaries in Figure 7.5 seem to be unnecessarily close to some of

the positives; while the one on the right leaves a bit more space on either side, it

doesn’t seem particularly good either. To make this a bit more precise, recall that in

Section 2.2 we defined the �margin of an example assigned by a scoring classifier as

c(x)ŝ(x), where c(x) is +1 for positive examples and −1 for negative examples and ŝ(x)

is the score of example x. If we take ŝ(x) =w ·x− t , then a true positive xi has margin

w · xi − t > 0 and a true negative x j has margin −(w · x j − t ) > 0. For a given training

set and decision boundary, let m⊕ be the smallest margin of any positive, and m� the

smallest margin of any negative, then we want the sum of these to be as large as possi-

ble. This sum is independent of the decision threshold t , as long as we keep the nearest

positives and negatives at the right sides of the decision boundary, and so we re-adjust

t such that m⊕ and m� become equal. Figure 7.7 depicts this graphically in a two-

dimensional instance space. The training examples nearest to the decision boundary

are called support vectors: as we shall see, the decision boundary of a support vector

machine (SVM) is defined as a linear combination of the support vectors.

The margin is thus defined as m/||w||, where m is the distance between the deci-

sion boundary and the nearest training instances (at least one of each class) as

Algorithm 7.3: PerceptronRegression(D,T ) – train a perceptron for regression.

Input : labelled training data D in homogeneous coordinates;

maximum number of training epochs T .

Output : weight vector w defining function approximator ŷ =w ·x.

1 w←0; t ←0;

2 while t < T do

3 for i = 1 to |D| do

4 w←w+ (yi − ŷi )2xi ;

5 end

6 t ← t +1;

7 end
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Figure 7.7. The geometry of a support vector classifier. The circled data points are the support

vectors, which are the training examples nearest to the decision boundary. The support vector

machine finds the decision boundary that maximises the margin m/||w||.

measured along w. Since we are free to rescale t , ||w|| and m, it is customary to choose

m = 1. Maximising the margin then corresponds to minimising ||w|| or, more con-

veniently, 1
2 ||w||2, provided of course that none of the training points fall inside the

margin. This leads to a quadratic, constrained optimisation problem:

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w ·xi − t )≥ 1,1≤ i ≤ n

We will approach this using the method of Lagrange multipliers (see Background 7.3).

Adding the constraints with multipliersαi for each training example gives the Lagrange

function

Λ(w, t ,α1, . . . ,αn) = 1

2
||w||2−

n∑
i=1

αi (yi (w ·xi − t )−1)

= 1

2
||w||2−

n∑
i=1

αi yi (w ·xi )+
n∑

i=1
αi yi t +

n∑
i=1

αi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi

While this looks like a formidable formula, some further analysis will allow us to derive

the simpler dual form of the Lagrange function.

By taking the partial derivative of the Lagrange function with respect to t and set-

ting it to 0 we find that for the optimal threshold t we have
∑n

i=1αi yi = 0. Similarly, by
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Optimisation is a broad term denoting the problem of finding the best item or value

among a set of alternatives. We have already seen a very simple, unconstrained form of

optimisation in Example 7.1 on p.197, where we found the values of a and b minimising

the sum of squared residuals f (a,b)=∑n
i=1(wi − (a+bhi ))2; this can be denoted as

a∗,b∗ = argmin
a,b

f (a,b)

f is called the objective function; it can be linear, quadratic (as in this case), or more com-

plex. We found the minimum of f by setting the partial derivatives of f with respect to

a and b to 0, and solving for a and b; the vector of these partial derivatives is called the

gradient and denoted ∇ f , so a succinct way of defining the unconstrained optimisation

problem is: find a and b such that ∇ f (a,b)= 0. In this particular case the objective func-

tion is convex, which essentially means that there is a unique global minimum. This is,

however, not always the case.

A constrained optimisation problem is one where the alternatives are subject to con-

straints, for instance

a∗,b∗ = argmin
a,b

f (a,b) subject to g (a,b)= c

If the relationship expressed by the constraint is linear, say a − b = 0, we can of course

eliminate one of the variables and solve the simpler, unconstrained problem. However,

this may not be possible if the constraints are non-linear. Lagrange multipliers are a pow-

erful way of dealing with the general case. We form the Lagrange function defined by

Λ(a,b,λ)= f (a,b)−λ(g (a,b)−c)

where λ is the Lagrange multiplier, and solve the unconstrained problem ∇Λ(a,b,λ)= 0.

Since ∇a,bΛ(a,b,λ)=∇ f (a,b)−λ∇g (a,b) and ∇λΛ(a,b,λ)= g (a,b)− c, this is a succinct

way of requiring (i) that the gradients of f and g point in the same direction, and (ii) that

the constraint is satisfied. We can include multiple equality constraints and also inequal-

ity constraints, each with their own Lagrange multiplier.

From the Lagrange function it is possible to derive a dual optimisation problem where

we find the optimal values of the Lagrange multipliers. In general, the solution to the

dual problem is only a lower bound on the solution to the primal problem, but under a

set of conditions known as the Karush–Kuhn–Tucker conditions (KKT) the two solutions

become equal. The quadratic optimisation problem posed by support vector machines is

usually solved in its dual form.

Background 7.3. Basic concepts and terminology in mathematical optimisation.
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taking the partial derivative of the Lagrange function with respect to w we see that the

Lagrange multipliers define the weight vector as a linear combination of the training

examples:

∂

∂w
Λ(w, t ,α1, . . . ,αn)= ∂

∂w

1

2
w ·w− ∂

∂w
w ·
(

n∑
i=1

αi yi xi

)
=w−

n∑
i=1

αi yi xi

Since this partial derivative is 0 for an optimal weight vector we conclude w=∑n
i=1αi yi xi

– the same expression as we derived for the perceptron in Equation 7.9 on p.209. For

the perceptron, the instance weights αi are non-negative integers denoting the num-

ber of times an example has been misclassified in training. For a support vector ma-

chine, the αi are non-negative reals. What they have in common is that, if αi = 0 for

a particular example xi , that example could be removed from the training set without

affecting the learned decision boundary. In the case of support vector machines this

means that αi > 0 only for the support vectors: the training examples nearest to the

decision boundary.

Now, by plugging the expressions
∑n

i=1αi yi = 0 and w =∑n
i=1αi yi xi back into the

Lagrangian we are able to eliminate w and t , and hence obtain the dual optimisation

problem, which is entirely formulated in terms of the Lagrange multipliers:

Λ(α1, . . . ,αn) = −1

2

(
n∑

i=1
αi yi xi

)
·
(

n∑
i=1

αi yi xi

)
+

n∑
i=1

αi

= −1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

The dual problem is to maximise this function under positivity constraints and one

equality constraint:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to αi ≥ 0,1≤ i ≤ n and
n∑

i=1
αi yi = 0

The dual form of the optimisation problem for support vector machines illustrates

two important points. First, it shows that searching for the maximum-margin decision

boundary is equivalent to searching for the support vectors: they are the training exam-

ples with non-zero Lagrange multipliers, and through w=∑n
i=1αi yi xi they completely

determine the decision boundary. Secondly, it shows that the optimisation problem

is entirely defined by pairwise dot products between training instances: the entries

of the Gram matrix. As we shall see in Section 7.5, this paves the way for a powerful

adaptation of support vector machines that allows them to learn non-linear decision

boundaries.

The following example makes these issues a bit more concrete by showing detailed

calculations on some toy data.
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Figure 7.8. (left) A maximum-margin classifier built from three examples, with w = (0,−1/2)

and margin 2. The circled examples are the support vectors: they receive non-zero Lagrange

multipliers and define the decision boundary. (right) By adding a second positive the decision

boundary is rotated to w= (3/5,−4/5) and the margin decreases to 1.

Example 7.5 (Two maximum-margin classifiers and their support vectors).

Let the data points and labels be as follows (see Figure 7.8 (left)):

X=

⎛
⎜⎝

1 2

−1 2

−1 −2

⎞
⎟⎠ y=

⎛
⎜⎝
−1

−1

+1

⎞
⎟⎠ X′ =

⎛
⎜⎝
−1 −2

1 −2

−1 −2

⎞
⎟⎠

The matrix X′ on the right incorporates the class labels; i.e., the rows are yi xi . The

Gram matrix is (without and with class labels):

XXT =

⎛
⎜⎝

5 3 −5

3 5 −3

−5 −3 5

⎞
⎟⎠ X′X′T =

⎛
⎜⎝

5 3 5

3 5 3

5 3 5

⎞
⎟⎠

The dual optimisation problem is thus

argmax
α1,α2,α3

−1

2

(
5α2

1+3α1α2+5α1α3+3α2α1+5α2
2+3α2α3+5α3α1

+3α3α2+5α2
3

)+α1+α2+α3

= argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1α3+5α2
2+6α2α3+5α2

3

)+α1+α2+α3

subject to α1 ≥ 0,α2 ≥ 0,α3 ≥ 0 and −α1 −α2 +α3 = 0. While in practice such

problems are solved by dedicated quadratic optimisation solvers, here we will

show how to solve this toy problem by hand.
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Using the equality constraint we can eliminate one of the variables, say α3,

and simplify the objective function to

argmax
α1,α2,α3

−1

2

(
5α2

1+6α1α2+10α1(α1+α2)+5α2
2+6α2(α1+α2)+5(α1+α2)2)

+2α1+2α2

= argmax
α1,α2,α3

−1

2

(
20α2

1+32α1α2+16α2
2

)+2α1+2α2

Setting partial derivatives to 0 we obtain−20α1−16α2+2= 0 and−16α1−16α2+
2 = 0 (notice that, because the objective function is quadratic, these equations

are guaranteed to be linear). We therefore obtain the solution α1 = 0 and α2 =
α3 = 1/8. We then have w = 1/8(x3 − x2) =

(
0

−1/2

)
, resulting in a margin of

1/||w|| = 2. Finally, t can be obtained from any support vector, say x2, since y2(w·
x2−t )= 1; this gives−1·(−1−t )= 1, hence t = 0. The resulting maximum-margin

classifier is depicted in Figure 7.8 (left). Notice that the first example x1 is not a

support vector, even though it is on the margin: this is because removing it will

not affect the decision boundary.

We now add an additional positive at (3,1). This gives the following data ma-

trices:

X′ =

⎛
⎜⎜⎜⎜⎝
−1 −2

1 −2

−1 −2

3 1

⎞
⎟⎟⎟⎟⎠ X′X′T =

⎛
⎜⎜⎜⎜⎝

5 3 5 −5

3 5 3 1

5 3 5 −5

−5 1 −5 10

⎞
⎟⎟⎟⎟⎠

It can be verified by similar calculations to those above that the margin decreases

to 1 and the decision boundary rotates to w=
(

3/5

−4/5

)
(Figure 7.8 (right)). The

Lagrange multipliers now are α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. Thus,

only x3 is a support vector in both the original and the extended data set.

Soft margin SVM

If the data is not linearly separable, then the constraints w · xi − t ≥ 1 posed by the

examples are not jointly satisfiable. However, there is a very elegant way of adapting

the optimisation problem such that it admits a solution even in this case. The idea is

to introduce slack variables ξi , one for each example, which allow some of them to be

inside the margin or even at the wrong side of the decision boundary – we will call these

margin errors. Thus, we change the constraints to w ·xi − t ≥ 1−ξi and add the sum of
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all slack variables to the objective function to be minimised, resulting in the following

soft margin optimisation problem:

w∗, t∗,ξ∗i =argmin
w,t ,ξi

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (w ·xi − t )≥ 1−ξi and ξi ≥ 0,1≤ i ≤ n (7.11)

C is a user-defined parameter trading off margin maximisation against slack variable

minimisation: a high value of C means that margin errors incur a high penalty, while

a low value permits more margin errors (possibly including misclassifications) in or-

der to achieve a large margin. If we allow more margin errors we need fewer support

vectors, hence C controls to some extent the ‘complexity’ of the SVM and hence is of-

ten referred to as the complexity parameter. It can be seen as a form of regularisation

similar to that discussed in the context of least-squares regression.

The Lagrange function is then as follows:

Λ(w, t ,ξi ,αi ,βi ) = 1

2
||w||2+C

n∑
i=1

ξi −
n∑

i=1
αi (yi (w ·xi − t )− (1−ξi ))−

n∑
i=1

βiξi

= 1

2
w ·w−w ·

(
n∑

i=1
αi yi xi

)
+ t

(
n∑

i=1
αi yi

)
+

n∑
i=1

αi+
n∑

i=1
(C −αi −βi )ξi

= Λ(w, t ,αi )+
n∑

i=1
(C −αi −βi )ξi

For an optimal solution every partial derivative with respect to ξi should be 0, from

which it follows that C −αi −βi = 0 for all i , and hence the added term vanishes from

the dual problem. Furthermore, since both αi and βi are positive, this means that αi

cannot be larger than C , which manifests itself as an additional upper bound on αi in

the dual problem:

α∗1 , . . . ,α∗n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0 (7.12)

This is a remarkable and beautiful result. It follows from the particular way that

slack variables were added to the optimisation problem in Equation 7.11. By restrict-

ing the slack variables to be positive and adding them to the objective function to be

minimised, they function as penalty terms, measuring deviations on the wrong side of

the margin only. Furthermore, the fact that the βi multipliers do not appear in the dual

objective follows from the fact that the penalty term in the primal objective is linear in

ξi . In effect, these slack variables implement what was called hinge loss in Figure 2.6

on p.63: a margin z > 1 incurs no penalty, and a margin z = 1−ξ ≤ 1 incurs a penalty

ξ= 1− z.
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Figure 7.9. (left) The soft margin classifier learned with C = 5/16, at which point x2 is about to

become a support vector. (right) The soft margin classifier learned with C = 1/10: all examples

contribute equally to the weight vector. The asterisks denote the class means, and the decision

boundary is parallel to the one learned by the basic linear classifier.

What is the significance of the upper bound C on the αi multipliers? Since C −
αi −βi = 0 for all i , αi = C implies βi = 0. The βi multipliers come from the ξi ≥ 0

constraint, and a multiplier of 0 means that the lower bound is not reached, i.e., ξi > 0

(analogous to the fact that α j = 0 means that x j is not a support vector and hence

w · x j − t > 1). In other words, a solution to the soft margin optimisation problem in

dual form divides the training examples into three cases:

αi = 0 these are outside or on the margin;

0<αi <C these are the support vectors on the margin;

αi =C these are on or inside the margin.

Notice that we still have w=∑n
i=1αi yi xi , and so both second and third case examples

participate in spanning the decision boundary.

Example 7.6 (Soft margins). We continue Example 7.5, where we saw that

adding the positive example x4 = (3,1) to the first three examples significantly

reduced the margin from 2 to 1. We will now show that soft margin classifiers

with larger margins are learned with sufficiently large complexity parameter C .

Recall that the Lagrange multipliers for the classifier in Figure 7.8 (right) are

α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. So α1 is the largest multiplier, and as

long as C >α1 = 1/2 no margin errors are tolerated. For C = 1/2 we have α1 =C ,
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and hence for C < 1/2 we have that x1 becomes a margin error and the optimal

classifier is a soft margin classifier. Effectively, with decreasing C the decision

boundary and the upper margin move upward, while the lower margin stays the

same.

The upper margin reaches x2 for C = 5/16 (Figure 7.9 (left)), at which point we

have w=
(

3/8

−1/2

)
, t = 3/8 and the margin has increased to 1.6. Furthermore, we

have ξ1 = 6/8,α1 =C = 5/16,α2 = 0,α3 = 1/16 and α4 = 1/4.

If we now decrease C further, the decision boundary starts to rotate clock-

wise, so that x4 becomes a margin error as well, and only x2 and x3 are sup-

port vectors. The boundary rotates until C = 1/10, at which point we have

w =
(

1/5

−1/2

)
, t = 1/5 and the margin has increased to 1.86. Furthermore, we

have ξ1 = 4/10 and ξ4 = 7/10, and all multipliers have become equal to C (Figure

7.9 (right)).

Finally, when C decreases further the decision boundary stays where it is, but

the norm of the weight vector gradually decreases and all points become margin

errors.

Example 7.6 illustrates an important point: for low enough C , all examples receive

the same multiplier C , and hence we have w = C
∑n

i=1 yi xi = C (Pos ·μ⊕ −Neg ·μ�),

where μ⊕ and μ� are the means of the positive and negative examples, respectively.

In other words, a minimal-complexity soft margin classifier summarises the classes by

their class means in a way very similar to the basic linear classifier. For intermediate

values of C the decision boundary is spanned by the support vectors and the per-class

means of the margin errors.

In summary, support vector machines are linear classifiers that construct the unique

decision boundary that maximises the distance to the nearest training examples (the

support vectors). The complexity parameter C can be used to adjust the number and

severity of allowed margin violations. Training an SVM involves solving a large quadratic

optimisation problem and is usually best left to a dedicated numerical solver.

7.4 Obtaining probabilities from linear classifiers

As we have seen, a linear classifier produces scores ŝ(xi )=w·xi−t that are thresholded

at 0 in order to classify examples. Owing to the geometric nature of linear classifiers,

such scores can be used to obtain the (signed) distance of xi from the decision bound-

ary. To see this, notice that the length of the projection of xi onto w is ||xi ||cosθ, where
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Figure 7.10. We can think of a linear classifier as a projection onto the direction given by w, here

assumed to be a unit vector. w · x− t gives the signed distance from the decision boundary on

the projection line. Also indicated are the class means μ⊕ and μ�, and the corresponding mean

distances d⊕ and d�.

θ is the angle between xi and w. Since w ·xi = ||w|| ||xi ||cosθ, we can write this length

as (w ·xi )/||w||. This gives the following signed distance:

d(xi )= ŝ(xi )

||w|| =
w ·xi − t

||w|| =w′ ·xi − t ′

with w′ = w/||w|| rescaled to unit length and t ′ = t/||w|| the corresponding rescaled

intercept. The sign of this quantity tells us which side of the decision boundary we are

on: positive distances for points on the ‘positive’ side of the decision boundary (the

direction in which w points) and negative distances on the other side (Figure 7.10).

This geometric interpretation of the scores produced by linear classifiers offers an

interesting possibility for turning them into probabilities, a process that was called

�calibration in Section 2.3. Let d
⊕

denote the mean distance of the positive exam-

ples to the decision boundary: i.e., d
⊕ =w·μ⊕−t , where μ⊕ is the mean of the positive

examples and w is unit length (although the latter assumption is not strictly necessary,

as it will turn out that the weight vector will be rescaled). It would not be unreasonable

to expect that the distance of positive examples to the decision boundary is normally

distributed around this mean:2 that is, when plotting a histogram of these distances,

2For instance, with sufficiently many examples this could be justified by the central limit theorem: the

sum of a large number of identically distributed independent random variables is approximately normally

distributed.
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we would expect the familiar bell curve to appear. Under this assumption, the prob-

ability density function of d is P (d |⊕) = 1�
2πσ

exp
(
− (d−d

⊕
)2

2σ2

)
(see Background 9.1 on

p.267 if you need to remind yourself about the normal distribution). Similarly, the dis-

tances of negative examples to the decision boundary can be expected to be normally

distributed around d
� =w ·μ�− t , with d

� < 0< d
⊕

. We will assume that both normal

distributions have the same variance σ2.

Suppose we now observe a point x with distance d(x). We classify this point as

positive if d(x)> 0 and as negative if d(x)< 0, but we want to attach a probability p̂(x)=
P (⊕|d(x)) to these predictions. Using Bayes’ rule we obtain

P (⊕|d(x))= P (d(x)|⊕)P (⊕)

P (d(x)|⊕)P (⊕)+P (d(x)|�)P (�)
= LR

LR+1/clr

where LR is the likelihood ratio obtained from the normal score distributions, and clr

is the class ratio. We will assume for simplicity that clr = 1 in the derivation below.

Furthermore, assume for now that σ2 = 1 and d
⊕ = −d

� = 1/2 (we will relax this in a

moment). We then have

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(−(d(x)−1/2)2/2
)

exp
(−(d(x)+1/2)2/2

)
= exp

(−(d(x)−1/2)2/2+ (d(x)+1/2)2/2
)= exp(d(x))

and so

P (⊕|d(x))= exp(d(x))

exp(d(x))+1
= exp(w ·x− t )

exp(w ·x− t )+1

So, in order to obtain probability estimates from a linear classifier outputting distance

scores d , we convert d into a probability by means of the mapping d �→ exp(d)
exp(d)+1 (or,

equivalently, d �→ 1
1+exp(−d) ). This S-shaped or sigmoid function is called the logistic

function; it finds applications in a wide range of areas (Figure 7.11).

Suppose now that d
⊕ = −d

�
as before, but we do not assume anything about the

magnitude of these mean distances or of σ2. In this case we have

LR = exp

(
−(d(x)−d

⊕
)2+ (d(x)−d

�
)2

2σ2

)

= exp

⎛
⎜⎝2d

⊕
d(x)−

(
d
⊕)2−2d

�
d(x)+

(
d
�)2

2σ2

⎞
⎟⎠= exp

(
γd(x)

)

with a = (d
⊕ −d

�
)/σ2 a scaling factor that rescales the weight vector so that the mean

distances per class are one unit of variance apart. In other words, by taking the scaling

factor γ into account, we can drop our assumption that w is a unit vector.

If we also drop the assumption that d
⊕

and d
�

are symmetric around the decision
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Figure 7.11. The logistic function, a useful function for mapping distances from a linear deci-

sion boundary into an estimate of the positive posterior probability. The fat red line indicates

the standard logistic function p̂(d) = 1
1+exp(−d) ; this function can be used to obtain probability

estimates if the two classes are equally prevalent and the class means are equidistant from the

decision boundary and one unit of variance apart. The steeper and flatter red lines show how

the function changes if the class means are 2 and 1/2 units of variance apart, respectively. The

three blue lines show how these curves change if d0 = 1, which means that the positives are on

average further away from the decision boundary.

boundary, then we obtain the most general form

LR = P (d(x)|⊕)

P (d(x)|�)
= exp

(
γ(d(x)−d0)

)
(7.13)

γ= d
⊕−d

�

σ2 = w · (μ⊕−μ�)

σ2 , d0 = d
⊕+d

�

2
= w · (μ⊕+μ�)

2
− t

d0 has the effect of moving the decision boundary from w · x = t to x = (μ⊕ +μ�)/2,

that is, halfway between the two class means. The logistic mapping thus becomes d �→
1

1+exp(−γ(d−d0)) , and the effect of the two parameters is visualised in Figure 7.11.

Example 7.7 (Logistic calibration of a linear classifier). Logistic calibration has

a particularly simple form for the basic linear classifier, which has w=μ⊕ −μ�.

It follows that

d
⊕−d

� = w · (μ⊕−μ�)

||w|| = ||μ
⊕−μ�||2

||μ⊕−μ�|| = ||μ
⊕−μ�||

and hence γ = ||μ⊕ −μ�||/σ2. Furthermore, d0 = 0 as (μ⊕ +μ�)/2 is already

on the decision boundary. So in this case logistic calibration does not move the

https://doi.org/10.1017/CBO9780511973000.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.009


7.4 Obtaining probabilities from linear classifiers 223

Figure 7.12. The surface shows the sigmoidal probability estimates resulting from logistic cali-

bration of the basic linear classifier on random data satisfying the assumptions of logistic cali-

bration.

decision boundary, and only adjusts the steepness of the sigmoid according to

the separation of the classes. Figure 7.12 illustrates this for some data sampled

from two normal distributions with the same diagonal covariance matrix.

To summarise: in order to get calibrated probability estimates out of a linear clas-

sifier, we first calculate the mean distances d
⊕

and d
�

and the variance σ2, and from

those the location parameter d0 and the scaling parameter γ. The likelihood ratio is

then LR = exp
(
γ(d(x)−d0)

) = exp
(
γ(w ·x− t −d0)

)
. Since the logarithm of the likeli-

hood ratio is linear in x, such models are called log-linear models. Notice that γ(w ·x−
t −d0)=w′ ·x− t ′ with w′ = γw and t ′ = γ(t +d0). This means that the logistic calibra-

tion procedure can change the location of the decision boundary but not its direction.

However, there may be an alternative weight vector with a different direction that as-

signs a higher likelihood to the data. Finding the maximum-likelihood linear classifier

using the logistic model is called �logistic regression, and will be discussed in Section

9.3.

As an alternative to logistic calibration, we can also use the isotonic calibration
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Figure 7.13. (left) ROC curve and convex hull of the same model and data as in Figure 7.12.

(right) The convex hull can be used as a non-parametric calibration method. Each segment of

the convex hull corresponds to a plateau of the probability surface.

method discussed in Section 2.3. Figure 7.13 (left) shows the ROC curve of the basic lin-

ear classifier on the data in Figure 7.12 as well as its convex hull. We can then construct

a piecewise linear calibration function with plateaus corresponding to the convex hull

segments, as shown in Figure 7.13 (right). In contrast with the logistic method this cal-

ibration method is non-parametric and hence does not make any assumptions about

the data. In order to avoid overfitting, non-parametric methods typically need more

data than parametric methods. It is interesting to note that no grading takes place on

the plateaus, which are rather similar to the segments of a grouping model. In other

words, convex hull calibration can potentially produce a hybrid between grouping and

grading models.

7.5 Going beyond linearity with kernel methods

In this chapter we have looked at linear methods for classification and regression.

Starting with the least-squares method for regression, we have seen how to adapt it

to binary classification, resulting in a version of the basic linear classifier that takes

feature correlation into account by constructing the matrix (XTX)−1 and is sensitive to

unequal class distributions. We then looked at the heuristic perceptron algorithm for

linearly separable data, and the support vector machine which finds the unique de-

cision boundary with maximum margin and which can be adapted to non-separable

data. In this section we show that these techniques can be adapted to learn non-linear

decision boundaries. The main idea is simple (and was already explored in Example

1.9 on p.43): to transform the data non-linearly to a feature space in which linear clas-

sification can be applied.
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Figure 7.14. (left) Decision boundaries learned by the basic linear classifier and the perceptron

using the square of the features. (right) Data and decision boundaries in the transformed fea-

ture space.

Example 7.8 (Learning a quadratic decision boundary). The data in Figure

7.14 (left) is not linearly separable, but both classes have a clear circular shape.

Figure 7.14 (right) shows the same data with the feature values squared. In

this transformed feature space the data has become linearly separable, and the

perceptron is able to separate the classes. The resulting decision boundary in

the original space is a near-circle. Also shown is the decision boundary learned

by the basic linear classifier in the quadratic feature space, corresponding to an

ellipse in the original space.

In general, mapping points back from the feature space to the instance space

is non-trivial. E.g., in this example each class mean in feature space maps back

to four points in the original space, owing to the quadratic mapping.

It is customary to call the transformed space the feature space and the original

space the input space. The approach thus appears to be to transform the training data

to feature space and learn a model there. In order to classify new data we transform

that to feature space as well and apply the model. However, the remarkable thing is

that in many cases the feature space does not have to be explicitly constructed, as we

can perform all necessary operations in input space.

Take the perceptron algorithm in dual form, for example (Algorithm 7.2 on p.209).

The algorithm is a simple counting algorithm – the only operation that is somewhat in-

volved is testing whether example xi is correctly classified by evaluating yi
∑|D|

j=1α j y j xi ·
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x j . The key component of this calculation is the dot product xi ·x j . Assuming bivariate

examples xi =
(
xi , yi

)
and x j =

(
x j , y j

)
for notational simplicity, the dot product can be

written as xi · x j = xi x j + yi y j . The corresponding instances in the quadratic feature

space are
(
x2

i , y2
i

)
and
(
x2

j , y2
j

)
, and their dot product is

(
x2

i , y2
i

) · (x2
j , y2

j

)
= x2

i x2
j + y2

i y2
j

This is almost equal to

(xi ·x j )2 = (xi x j + yi y j )2 = (xi x j )2+ (yi y j )2+2xi x j yi y j

but not quite because of the third term of cross-products. We can capture this term by

extending the feature vector with a third feature
�

2x y . This gives the following feature

space:

φ(xi )=
(
x2

i , y2
i ,
�

2xi yi

)
φ(x j )=

(
x2

j , y2
j ,
�

2x j y j

)
φ(xi ) ·φ(x j )= x2

i x2
j + y2

i y2
j +2xi x j yi y j = (xi ·x j )2

We now define κ(xi ,x j )= (xi ·x j )2, and replace xi ·x j with κ(xi ,x j ) in the dual percep-

tron algorithm to obtain the kernel perceptron (Algorithm 7.4), which is able to learn

the kind of non-linear decision boundaries illustrated in Example 7.8.

The introduction of kernels opens up a whole range of possibilities. Clearly we can

define a polynomial kernel of any degree p as κ(xi ,x j ) = (xi · x j )p . This transforms

Algorithm 7.4: KernelPerceptron(D,κ) – perceptron training algorithm using a

kernel.

Input : labelled training data D in homogeneous coordinates;

kernel function κ.

Output : coefficients αi defining non-linear decision boundary.

1 αi ← 0 for 1≤ i ≤ |D|;
2 converged←false;

3 while converged= false do

4 converged←true;

5 for i = 1 to |D| do

6 if yi
∑|D|

j=1α j y jκ(xi ,x j )≤ 0 then

7 αi ←αi +1;

8 converged←false;

9 end

10 end

11 end
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a d-dimensional input space into a high-dimensional feature space, such that each

new feature is a product of p terms (possibly repeated). If we include a constant, say

κ(xi ,x j )= (xi ·x j +1)p , we would get all lower-order terms as well. So, for example, in

a bivariate input space and setting p = 2 the resulting feature space is

φ(x)=
(
x2, y2,

�
2x y,

�
2x,

�
2y,1
)

with linear as well as quadratic features.

But we are not restricted to polynomial kernels. An often-used kernel is the Gaus-

sian kernel, defined as

κ(xi ,x j )= exp

(
−||xi −x j ||2

2σ2

)
(7.14)

where σ is a parameter known as the bandwidth. To understand the Gaussian kernel

a bit better, notice that κ(x,x)= φ(x) ·φ(x)= ||φ(x)||2 for any kernel obeying a number

of standard properties referred to as ‘positive semi-definiteness’. In this case we have

κ(x,x) = 1, which means that all points φ(x) lie on a hypersphere around the feature

space origin – which is however of infinite dimension, so geometric considerations

don’t help us much here. It is more helpful to think of a Gaussian kernel as imposing

a Gaussian (i.e., multivariate normal, see Background 9.1 on p.267) surface on each

support vector in instance space, so that the decision boundary is defined in terms of

those Gaussian surfaces.

Kernel methods are best known in combination with support vector machines. No-

tice that the soft margin optimisation problem (Equation 7.12 on p.217) is defined in

terms of dot products between training instances and hence the ‘kernel trick’ can be

applied:

α∗1 , . . . ,α∗n = argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y jκ(xi ,x j )+
n∑

i=1
αi

subject to 0≤αi≤C and
n∑

i=1
αi yi = 0

One thing to keep in mind is that the decision boundary learned with a non-linear

kernel cannot be represented by a simple weight vector in input space. Thus, in or-

der to classify a new example x we need to evaluate yi
∑n

j=1α j y jκ(x,x j ) which is an

O(n) computation involving all training examples, or at least the ones with non-zero

multipliers α j . This is why support vector machines are a popular choice as a kernel

method, since they naturally promote sparsity in the support vectors. Although we

have restricted attention to numerical features here, it is worth stressing that kernels

can be defined over discrete structures, including trees, graphs, and logical formulae,

and thus open the way to extending geometric models to non-numerical data.
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7.6 Linear models: Summary and further reading

After considering logical models in the previous three chapters we had a good look at

linear models in this chapter. Logical models are inherently non-numerical, and so

deal with numerical features by using thresholds to convert them into two or more

intervals. Linear models are almost diametrically opposite in that they can deal with

numerical features directly but need to pre-process non-numerical features.3 Geomet-

rically, linear models use lines and planes to build the model, which essentially means

that a certain increase or decrease in one of the features has the same effect, regardless

of that feature’s value or any of the other features. They are simple and robust to varia-

tions in the training data, but sometimes suffer from underfitting as a consequence.

� In Section 7.1 we considered the least-squares method that was originally con-

ceived to solve a regression problem. This classical method, which derives its

name from minimising the sum of squared residuals between predicted and ac-

tual function values, is described in innumerable introductory mathematics and

engineering texts (and was one of the example programs I remember running

on my father’s Texas Instruments TI-58 programmable calculator). We first had a

look at the problem in univariate form, and then derived the general solution

as ŵ = (XTX)−1XTy, where (XTX)−1 is a transformation that decorrelates, cen-

tres and normalises the features. We then discussed regularised versions of lin-

ear regression: ridge regression was introduced by Hoerl and Kennard (1970),

and the lasso which naturally leads to sparse solutions was introduced by Tib-

shirani (1996). We saw how the least-squares method could be applied to bi-

nary classification by encoding the classes by +1 and −1, leading to the solution

ŵ= (XTX)−1(Pos μ⊕ −Neg μ�). This generalises the basic linear classifier by tak-

ing feature correlation and unequal class prevalence into account, but at a con-

siderably increased computational cost (quadratic in the number of instances

and cubic in the number of features).

� Section 7.2 presented another classical linear model, the perceptron. Unlike the

least-squares method, which always finds the optimal solution in terms of sum

of squared residuals, the perceptron is a heuristic algorithm that depends, for

one thing, on the order in which the examples are presented. Invented by Rosen-

blatt (1958), its convergence for linearly separable data was proved by Novikoff

(1962), who gave an upper bound on the number of mistakes made before the

perceptron converged. Minsky and Papert (1969) proved further formal proper-

ties of the perceptron, but also demonstrated the limitations of a linear classifier.

These were overcome with the development, over an extended period of time

and with contributions from many people, of the multilayer perceptron and its

3Ways to pre-process non-numerical features for use in linear models are discussed in Chapter 10.
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back-propagation training algorithm (Rumelhart, Hinton and Williams, 1986). In

this section we also learned about the dual, instance-based view of linear clas-

sification in which we are learning instance weights rather than feature weights.

For the perceptron these weights are the number of times the example has been

misclassified during training.

� Maximum-margin classification with support vector machines was the topic of

Section 7.3. The approach was proposed by Boser, Guyon and Vapnik (1992).

Using the dual formulation, the instance weights are non-zero only for the sup-

port vectors, which are the training instances on the margin. The soft-margin

generalisation is due to Cortes and Vapnik (1995). Margin errors are allowed, but

the total margin error is added as a regularisation term to the objective function

to be minimised, weighted by the complexity parameter C ; all instances inside

the margin receive instance weight C . As we have seen, by making C sufficiently

small the support vector machine summarises the classes by their unweighted

class means and hence is very similar to the basic linear classifier. A general

introduction to SVMs is provided by Cristianini and Shawe-Taylor (2000). The

sequential minimal optimisation algorithm is an often-used solver which iter-

atively selects pairs of multipliers to optimise analytically and is due to Platt

(1998).

� In Section 7.4 we considered two methods to turn linear classifiers into proba-

bility estimators by converting the signed distance from the decision boundary

into class probabilities. One well-known method is to use the logistic function,

either straight out of the box or by fitting location and spread parameters to the

data. Although this is often presented as a simple trick, we saw how it can be

justified by assuming that the distances per class are normally distributed with

the same variance; this latter assumption is needed to make the transforma-

tion monotonic. A non-parametric alternative is to use the ROC convex hull to

obtain calibrated probability estimates. As was already mentioned in the sum-

mary of Chapter 2, the approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show its equivalence to calibration by means of the ROC con-

vex hull.

� Finally, Section 7.5 discussed briefly how to go beyond linearity with kernel meth-

ods. The ‘kernel trick’ can be applied to any learning algorithm that can be en-

tirely described in terms of dot products, which includes most approaches dis-

cussed in this chapter. The beauty is that we are implicitly classifying in a high-

dimensional feature space, without having to construct the space explicitly. I
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gave the kernel perceptron as a simple example of a kernelised algorithm; in the

next chapter we will see another example. Shawe-Taylor and Cristianini (2004)

provide an excellent reference bringing together a wealth of material on the use

of kernels in machine learning, and Gärtner (2009) discusses how kernel meth-

ods can be applied to structured, non-numerical data.

�
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