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Abstract—The genetic algorithm (GA) is an optimization and 

search technique based on the principles of genetics and 

natural selection. A GA allows a population composed of many 

individuals to evolve under specified selection rules to a state 

that maximizes the “fitness” function. In that process, 

crossover operator plays an important role. To comprehend 

the GAs as a whole, it is necessary to understand the role of a 

crossover operator. Today, there are a number of different 

crossover operators that can be used in GAs. However, how to 

decide what operator to use for solving a problem? A number 

of test functions with various levels of difficulty has been 

selected as a test polygon for determine the performance of 

crossover operators. 

In this paper, a novel crossover operator called ‘ring 

crossover’ is proposed. In order to evaluate the efficiency and 

feasibility of the proposed operator, a comparison between the 

results of this study and results of different crossover operators 

used in GAs is made through a number of test functions with 

various levels of difficulty. Results of this study clearly show 

significant differences between the proposed operator and the 

other crossover operators. 

 

Keywords : Genetic algorithm, crossover operator, ring crossover 

I.  INTRODUCTION  

Genetic algorithms (GAs) represent general-purpose 
search and optimization technique based on evolutionary 
ideas of natural selection and genetics. They simulate 
natural processes based on principles of Lamarck and 
Darwin. In 1975, Holland developed this idea in his book 
“Adaptation in natural and artificial systems”. He described 
how to apply the principles of natural evolution to 
optimization problems and built the first GAs. Holland’s 
theory has been further developed and now GAs stand up as 
a powerful tool for solving search and optimization 
problems. GAs are based on the principle of genetics and 
evolution [1] . Today, there exists many variations on GAs 
and term “genetic algorithm” is used to describe concepts 
sometimes very far from Holland’s original idea [2]. The 
two most commonly employed genetic search operators are 
crossover and mutation. Crossover produces offspring by 
recombining the information from two parents. Mutation 
prevents convergence of the population by flipping a small 

number of randomly selected bits to continuously introduce 
variation. The driving force behind GAs is the unique 
cooperation between selection, crossover and mutation 
operator. A genetic operator is a process used in GAs to 
maintain genetic diversity. The most widely used genetic 
operators are recombination, crossover and mutation. 

 The main goal of this paper is to introduce a new 
crossover operator called ring crossover (RC) and present 
the performance of this crossover operator. The rest of this 
paper is organized as follow. In section 2, definitions and 
concepts of the different crossover operators are introduced. 
In section 3, the proposed method in this study is given. In 
section 4, a number of the functions widely used in 
performance evaluation of GA operators are defined. In 
section 5, the optimization results and performance 
comparison of proposed method are shown. Finally, 
conclusions are discussed in section 6. 
 

II. CROSSOVER OPERATORS  

The crossover operator is a genetic operator that combines 
(mates) two chromosomes (parents) to produce a new 
chromosome (offspring). The idea behind crossover is that 
the new chromosome may be better than both of the parents 
if it takes the best characteristics from each of the parents. 
Crossover occurs during evolution according to a user-
definable crossover probability. For purpose of this work, 
only crossover operators that operate on two parents and 
have no self-adaptation properties will be considered. 

 

A. Single Point Crossover 

When performing crossover, both parental chromosomes 
are split at a randomly determined crossover point. 
Subsequently, a new child genotype is created by appending 
the first part of the first parent with the second part of the 
second parent [3, 4]. A single crossover point on both 
parents' organism strings is selected. All data beyond that 
point in either organism string is swapped between the two 
parent organisms. Figure 1 shows the single point crossover 
(SPC) process.  



 
Figure 1. Single point crossover  

 

B. Two Point Crossover 

Apart from SPC, many different crossover algorithms 
have been devised, often involving more than one cut point. 
It should be noted that adding further crossover points 
reduces the performance of the GA. The problem with 
adding additional crossover points is that building blocks are 
more likely to be disrupted. However, an advantage of 
having more crossover points is that the problem space may 
be searched more thoroughly. In two-point crossover (TPC), 
two crossover points are chosen and the contents between 
these points are exchanged between two mated parents [5, 6]  
 
 

 
Figure 2. Two point crossover  

 
 In figure 2, the arrows indicate the crossover points. 

Thus, the contents between these points are exchanged 
between the parents to produce new children for mating in 
the next generation. 
 

C. Intermediate Crossover 

Intermediate creates offsprings by a weighted average of 
the parents. Intermediate crossover (IC) is controlled by a 
single parameter Ratio:  
 
offspring = parent1+rand*Ratio*(parent2 - parent1) 

 
 If Ratio is in the range [0,1] then the offsprings produced 
are within the hypercube defined by the parents locations at 
opposite vertices. Ratio can be a scalar or a vector of length 
number of variables. If Ratio is a scalar, then all of the 
offsprings will lie on the line between the parents. If Ratio is 
a vector then children can be any point within the hypercube 
[7]. 

D. Heuristic Crossover 

     In heuristic crossover (HC), heuristic returns an offspring 
that lies on the line containing the two parents, a small 
distance away from the parent with the better fitness value 
in the direction away from the parent with the worse fitness 
value. The default value of Ratio is 1.2. If parent1 and 
parent2 are the parents, and parent1 has the better fitness 
value, the function returns the child [7], 
 
offspring = parent2 + Ratio * (parent1 - parent2) 

 

E. Arithmetic Crossover 

In arithmetic crossover (AC), arithmetic creates children 
that are the weighted arithmetic mean of two parents. 
Children are feasible with respect to linear constraints and 
bounds. Alpha is random value between [0,1]. If parent1 and 
parent2 are the parents, and parent1 has the better fitness 
value, the function returns the child [7], 
 
offspring =alpha*parent1 + (1-alpha)*parent2 

 

III. PROPOSED CROSSOVER OPERATOR: RING CROSSOVER  

The operator called ring crossover is consisted of four 
steps. The steps of the proposed operator in this paper are 
shown in figure 3. All of the steps in the algorithm are 
discussed one by one. 
Step-1: In this step, two parents such as parent1 and parent2 
are considered for the crossover process, as shown in fig. 
3(a). 
Step-2: The chromosomes of parents are firstly combined 
with a form of ring, as shown in fig. 3(b). Later, a random 
cutting point is decided in any point of ring. 
Step-3: The children are created with a random number 
generated in any point of ring according to the length of the 
combined two parental chromosomes. With reference to the 
cutting point in step 2, while one of the children is created in 
the clockwise direction, the other one is created in direction 
of the anti-clockwise, as shown in fig. 3(c).  
Step-4: In this step, swapping and reversing process is 
performed in the RC operator, as shown in fig. 3(d). In 
swapping process, a number of genes are swapped in 
crossed parents. In reversion process, the remaining genes 
are reversed in crossed parents. As the length of ring is 
equal to the total length of both of parents and the children 
are created according to a random point of ring, more 
variety can be provided in possible number of children by 
RC operator according to SPC and TPC operators. 

 



 
 

Figure 3. Ring crossover

IV. TEST FUNCTIONS 

The proposed method must be tested by a number of the 
functions widely used in performance evaluation of GA 
operators such as crossover. Test functions used in this paper 
have two important features: modality and separability. 
Unimodal function is a function with only one global 
optimum. Function is multimodal if it has two or more local 
optima. Multimodal functions are more difficult to optimize 
compared to unimodal functions [8]. 

 

A. Sphere Function 

Sphere function is a test function proposed by De Jong. It 
has been widely used in evaluation of genetic algorithms and 
development of the theory of evolutionary strategies. Sphere 
function is a simple, continuous and strongly convex function. 
Sphere function is unimodal and additively separable. 
Boundaries are set at [-5.12; 5.12]. Sphere function’s global 
minimum is in point x=0 with value f(x)=0 [8,9]. The simplest 
test function is De Jong’s function 1. It is continues, convex 
and unimodal. This function is defined as shown below. 
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This function is defined as F1 in paper. 
 

B. Axis Parallel Hyper-Ellipsoid Function 

This function is similar to Sphere function. It is also known 
as weighted sphere model. It is also unimodal and additively 
separable. Boundaries are set at [-5.12; 5.12]. Function’s 
global minimum is in point x=0 with value f(x)=0 [8,9].  The 
axis parallel hyper-ellipsoid is similar to De Jong's function 1. 
It is also known as the weighted sphere model. Again, it is 
continues, convex and unimodal. It is defined as shown below. 
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This function is defined as F2 in paper. 
 

C. Rotated Hyper-Ellipsoid Function  

This function represents an extension of the axis parallel 
hyper-ellipsoid function. With respect to the coordinate axes, 
this function produces rotated hyperellipsoids. It is continues, 

convex and unimodal. Boundaries are set at [-65.536; 65.536]. 
Function’s global minimum is in point x=0 with value f(x)=0 
[9]. An extension of the axis parallel hyper-ellipsoid is 
Schwefel's function 1.2. With respect to the coordinate axes, 
this function produces rotated hyper-ellipsoids. It is continues, 
convex and unimodal. This function is defined as shown 
below. 
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This function is defined as F3 in paper. 

D. Normalized Schwefel Function  

The surface of Schwefel function is composed of a great 
number of peaks and valleys. The function has a second best 
minimum far from the global minimum where many search 
algorithms are trapped. Moreover, the global minimum is near 
the bounds of the domain. Schwefel’s function is deceptive in 
that the global minimum is geometrically distant, over the 
parameter space, from the next best local minimum. Schwefel 
function is multimodal and additively separable. Boundaries 
are set at [-500; 500]. Function’s global minimum is in point 
x=420.968 with value f(x)=-418.9829 [8] . Schwefel's function 
[Sch81] is deceptive in that the global minimum is 
geometrically distant, over the parameter space, from the next 
best local minima. Therefore, the search algorithms are 
potentially prone to convergence in the wrong direction. It is 
defined as shown below. 
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This function is defined as F4 in paper. 
 

E.  Generalized Rastrigin Function  

Rastrigin function was constructed from Sphere adding a 
cosine modular term. Its contour is made up of a large number 
of local minima whose value increases with the distance to the 
global minimum. Thus, the test function is highly multimodal. 
However, the location of the local minima’s are regularly 
distributed. Rastrigin function is additively separable. 
Boundaries are set at [-5.12; 5.12]. Function’s global 
minimum is found in point x=0 with value f(x)=0 [8,10]. 
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This function is defined as F5 in paper. 
 

F. Rosenbrock's Valley Function 

Rosenbrock’s valley function (banana function) is a classic 
optimization problem. The global optimum is inside a long, 
narrow, parabolic shaped flat valley. To find the valley is 
trivial, however convergence to the global optimum is difficult 
and hence this problem has been repeatedly used in assess the 
performance of optimization algorithms. Banana function is 
additively separable. Boundaries are set at [-2.048; 2.048]. 
Function’s global minimum is found in point x=1 with value 
f(x)=0 [10]. This function is defined as shown below. 
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This function is defined as F6 in paper. 

V. EXPERIMENTAL RESULTS  

In all experiments, stochastic uniform selection was used. 
Parameters of GA for experiments were as following: 
Gaussian mutation with pm mutation coefficient of 0.01 and 
crossover rate pc of 0.8 was used, number of independent runs 
for each experiment was 30, initial population N of size 20 
was randomly created and used in experiments. 
Dimensionality of the search space D for all test function was 
set to 30. Number of overall evaluations was set to 10000. For 
all test functions, finding global minimum is the objective. All 
of the experiment is realized for six different types of test 
functions. A comparison between the proposed crossover 
method (RC) and other crossover methods are made and the 
results are comparatively presented in table 1.   
 
Table 1. Performance comparison for the different types of test functions 
  

Function Results SPC TPC IC HC AC  

RC 

 

F1 Best 
Worst 
Average 

5.732  
7.246 
5.737 

3.416 
6.511 
3.417 

6.207 
6.246 
6.208 

0.011   
8.099 

2.81 

5.589   
6.389 
5.589 

0.0027 
6.163 

0.3299 
F2 Best 

Worst 
Average 

70.52  
105.7 
70.52       

68.63 
94.04 
68.64 

64.04 
80.4 

64.04 

0.024 
87.41 
5.706 

73.71 
89.18 
73.72 

0.1023 
106.8 
11.73 

F3 Best 
Worst 
Average 

20.79 
261.7 
37.02 

15.06 
204.8 
16.22 

22.86 
59.24 
22.87 

2.36 
381 

17.58 

24.37 
47.94 
24.37 

4.577 
108.2   
18.97 

F4 Best 
Worst 
Average 

-115.7 
-29.46 
-115.6 

-115.8 
-26.85 
-115.4 

-114.1 
-27.91 

-114 

-117.7 
-26.1   

-117.1 

-113.2 
-27.72   
-113.1 

-117.8 
-27.75 
-117.7 

F5 Best 
Worst 
Average 

94.69 
241.3 
111.3 

50.84 
257.7 
52.15 

122.6 
256.6   
187.3 

12.68 
173.1 
31.98 

154  
251.4 
154.1 

2.669   
232.5 
3.691 

F6 Best 
Worst 
Average 

73.07 
269.3 

 73.08 

70.07 
 390.3 
78.39 

34.71 
349.2 
34.74 

29.35 
369.1  
117.5   

27.08   
260.3 
27.12 

28.59 
316.1 
32.69 

 

VI. CONCLUSION 

 In this paper, a new crossover operator called RC is 
proposed and experiments are conducted. The proposed 
operator is tested by a number of test functions with various 
levels of difficulty. A comparison between the results of this 
method and the results of other crossover operators are made. 
RC operator gives better results according to other crossover 
operators. Although the most of crossover operators showed 
similar results, RC operator had slightly better results than the 
other crossover for F1, F2, F4, F5 functions. For F3 function, 
HC operator has slightly better result than RC operator. 
However, RC operator produces better result than SPC, TPC, 
IC and AC. For F6 function, the results of this study are very 
close to those of AC, but in generally RC operator performed 
the best results than other crossover operators.  

The most important advantage of the proposed method is 
that more variety is presented in possible number of children 
according to SPC and TPC operators. The experiments and the 
results presented in the paper clearly reveal the potential 
capability of the proposed method in optimization processing 
based on GA. Moreover, it has the great potential to improve 
the performance of GA applications in different area of 
engineering.  
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