
CHAPTER 8

Distance-based models

M
ANY FORMS OF LEARNING are based on generalising from training data to unseen data

by exploiting the similarities between the two. With grouping models such as decision

trees these similarities take the form of an equivalence relation or partition of the in-

stance space: two instances are similar whenever they end up in the same segment of

this partition. In this chapter we consider learning methods that utilise more graded

forms of similarity. There are many different ways in which similarity can be measured,

and in Section 8.1 we take a look at the most important of them. Section 8.2 is devoted

to a discussion of two key concepts in distance-based machine learning: neighbours

and exemplars. In Section 8.3 we consider what is perhaps the best-known distance-

based learning method: the nearest-neighbour classifier. Section 8.4 investigates K -

means clustering and close relatives, and Section 8.5 looks at hierarchical clustering

by constructing dendrograms. Finally, in Section 8.6 we discuss how several of these

methods can be extended using the kind of kernels that we saw in the previous chapter.

8.1 So many roads. . .

It may seem odd at first that there should be many ways to measure distance. I am

not referring to the fact that distance can be measured on different scales (kilometres,

miles, nautical miles, and so on), as such changes of scale are simple monotonic trans-

231

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

232 8. Distance-based models

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZKZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z
Z

Z

Z

Z
Z Z

Z

Z
ZZZ

Z

Z
Z Z Z

Z

Z

Z
ZZZ

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZRZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z Z Z

Z

Z

Z

Z

Z

Z
Z Z

Z

Z
ZZZ

Z
Z Z

Z

Z
ZZ

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0Z♦Z0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Z Z
Z

Z
Z
Z
Z
Z
Z
Z
Z

Z
Z

Z
Z

Z

Z
Z Z

Z

Z
ZZ

Z

Figure 8.1. (left) Distance as experienced by a King on a chessboard: green squares are one

move away, orange ones two moves and red ones three moves. The shape formed by equidistant

squares from the current position is itself a square. (middle) A Rook can travel any number of

squares in one move, but only horizontally or vertically. No square is further than two moves

away. (right) The (fictional) KRook combines the restrictions of King and Rook: it can move only

one square at a time, and only horizontally or vertically. Equidistant squares now form a lozenge.

formations and do not fundamentally alter the distance measure. A better intuition is

obtained by taking the mode of travel into account. Clearly, when travelling from Bris-

tol to Amsterdam by train you travel a larger distance then when travelling by plane,

because planes are less restricted in their paths than trains. We will explore this a bit

further by considering the game of chess.

In chess, each piece is governed by a set of rules that restrict its possible moves.

These restrictions can be directional: for instance, King and Queen can move horizon-

tally, vertically and diagonally, while a Bishop can only move diagonally, a Rook only

horizontally and vertically, and pawns only upwards. King and pawn are further re-

stricted by the fact that they can move only one square at a time, whereas Queen, Rook

and Bishop can move any number of squares in a single allowed direction. Finally, a

Knight moves according to a very specific pattern (one diagonal step and one horizon-

tal or vertical step in a single move).

Although these pieces move around on the same board, they experience distances

in very different ways. For example, the next square down is one move away for King,

Queen and Rook; three moves away for a Knight; and unreachable for Bishop or pawn.

This is, of course, very similar to our experience in the real world. Trains and cars can

only move along tracks or roads, like a Bishop, which leaves remote places unreach-

able. A mountain range can mean large detours when travelling by car, train or on foot,

but is easy to cross when flying. On an underground, two stations a few streets away

may be only reachable with several changes of line, not unlike the way a Knight can

reach a nearby square only in two or three moves. And on foot we are most flexible but

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.1 So many roads. . . 233

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0ZBZ0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0
Z0Z!Z0Z
0Z0Z0Z0
Z0Z0Z0Z
0Z0Z0Z0

Figure 8.2. (left) The Bishop’s world: squares are either one or two moves away, or else unreach-

able. (right) The fictional Bing combines the restrictions of King and Bishop: it can only move

one square at a time, and only diagonally. Equidistant squares now form a punctuated square.

also slow, like a King.

Figure 8.1 visualises the distances experienced by King and Rook. Both can reach all

parts of the chessboard, but a Rook can travel much faster. In fact, a Rook can reach any

square in either one or two moves (assuming no other pieces are in its way). All squares

one move away form a cross, and the remaining squares are one additional move away.

A King will often have to travel more than two moves to reach a particular square (al-

though there are also squares that the King can reach in one move while a Rook needs

two). The squares one move away form a small square shape around the current posi-

tion; those two moves away form a larger square around the smaller square; and so on.

Figure 8.1 (right) shows a piece that doesn’t exist in chess, but could. It combines the

restrictions of King and Rook, and I therefore call it a KRook. Like a King, it can only

move one square at a time; and like a Rook, it can only move horizontally and vertically.

For the KRook, equidistant squares form a sort of lozenge around the current position.

Figure 8.2 (left) visualises the Bishop’s moves. The Bishop is somewhat similar to

the Rook in that some squares (those of the same colour as its current square) are never

more than two moves away; however, the remaining squares of the other colour are un-

reachable. Combining the restrictions of the Bishop (only diagonal moves) with those

of the King (one square per move) we obtain another fictional piece, the Bing (Figure

8.2 (right)). We could say that the world of Bishops and Bings is rotated 45 degrees,

compared with the world of Rooks and KRooks.

What’s the relevance of all this when trying to understand distance-based machine

learning, you may ask? Well, the rank (row) and file (column) on a chessboard is not

unlike a discrete or categorical feature in machine learning (in fact, since ranks and

files are ordered, they are �ordinal features, as we will further discuss in Chapter 10).

We can switch to real-valued features by imagining a ‘continuous’ chessboard with

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

234 8. Distance-based models

infinitely many, infinitesimally narrow ranks and files. Squares now become points,

and distances are not expressed as the number of squares travelled, but simply as a real

number on some scale. If we now look at the shapes obtained by connecting equidis-

tant points, we see that many of these carry over from the discrete to the continuous

case. For a King, for example, all points a given fixed distance away still form a square

around the current position; and for a KRook they still form a square rotated 45 de-

grees. As it happens, these are special cases of the following generic concept.

Definition 8.1 (Minkowski distance). If X = Rd , the Minkowski distance of order

p > 0 is defined as

Disp (x,y)=
(

d∑
j=1
|x j − y j |p

)1/p

= ||x−y||p

where ||z||p =
(∑d

j=1 |z j |p
)1/p

is the p-norm (sometimes denoted Lp norm) of the

vector z. We will often refer to Disp simply as the p-norm. �

So, the 2-norm refers to the familiar Euclidean distance

Dis2(x,y)=
√√√√ d∑

j=1
(x j − y j)2 =

√
(x−y)T(x−y)

which measures distance ‘as the crow flies’. Two other values of p can be related back

to the chess example. The 1-norm denotes Manhattan distance, also called cityblock

distance:

Dis1(x,y)=
d∑

j=1
|x j − y j |

This is the distance if we can only travel along coordinate axes: similar to a taxi in Man-

hattan or other cities whose streets follow a regular grid pattern, but also the distance

experienced by our fictional KRook piece. If we now let p grow larger, the distance

will be more and more dominated by the largest coordinate-wise distance, from which

we can infer that Dis∞(x,y) = max j |x j − y j |. This is the distance experienced by the

King on a chessboard, who can move diagonally as well as horizontally and vertically

but only one step at a time; it is also called Chebyshev distance. Figure 8.3 (left) visu-

alises equidistant points from the origin using Minkowski distances of various orders.

It can be seen that Euclidean distance is the only Minkowski distance that is rotation-

invariant – in other words, special significance is given to the directions of the coordi-

nate axes whenever p
= 2. Minkowski distances do not refer to a particular choice of

origin and are therefore translation-invariant, but none of them are scaling-invariant.

You will sometimes see references to the 0-norm (or L0 norm) which counts the

number of non-zero elements in a vector. The corresponding distance then counts the

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.1 So many roads. . . 235

Figure 8.3. (left) Lines connecting points at order-p Minkowski distance 1 from the origin for

(from inside) p = 0.8; p = 1 (Manhattan distance, the rotated square in red); p = 1.5; p = 2

(Euclidean distance, the violet circle); p = 4; p = 8; and p = ∞ (Chebyshev distance, the blue

rectangle). Notice that for points on the coordinate axes all distances agree. For the other points,

our reach increases with p; however, if we require a rotation-invariant distance metric then Eu-

clidean distance is our only choice. (right) The rotated ellipse xTRTS2Rx= 1/4; the axis-parallel

ellipse xTS2x= 1/4; and the circle xTx= 1/4 (R and S as in Example 8.1).

number of positions in which vectors x and y differ. This is not strictly a Minkowski

distance; however, we can define it as

Dis0(x,y)=
d∑

j=1
(x j − y j)0 =

d∑
j=1

I [x j = y j]

under the understanding that x0 = 0 for x = 0 and 1 otherwise. This is actually the dis-

tance experienced by a Rook on the chessboard: if both rank and file are different the

square is two moves away, if only one of them is different the square is one move away.

If x and y are binary strings, this is also called the Hamming distance. Alternatively, we

can see the Hamming distance as the number of bits that need to be flipped to change

x into y; for non-binary strings of unequal length this can be generalised to the notion

of edit distance or Levenshtein distance.

Do all of these mathematical constructs make sense as a notion of distance? In

order to answer that question we can draw up a list of properties that a proper distance

measure should have, such as non-negativity and symmetry. The generally agreed-

upon list defines what is known as a metric.

Definition 8.2 (Distance metric). Given an instance space X , a distance metric is

a function Dis : X ×X →R such that for any x, y, z ∈X :

1. distances between a point and itself are zero: Dis(x, x)= 0;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

236 8. Distance-based models

A
�

C
�

B
�

A
�

C
�

B
�

A
�

C
�

B
�

Figure 8.4. (left) The green circle connects points the same Euclidean distance (i.e., Minkowski

distance of order p = 2) away from the origin as A. The orange circle shows that B and C are

equidistant from A. The red circle demonstrates that C is closer to the origin than B, which con-

forms to the triangle inequality. (middle) With Manhattan distance (p = 1), B and C are equally

close to the origin and also equidistant from A. (right) With p < 1 (here, p = 0.8) C is further away

from the origin than B; since both are again equidistant from A, it follows that travelling from the

origin to C via A is quicker than going there directly, which violates the triangle inequality.

2. all other distances are larger than zero: if x
= y then Dis(x, y)> 0;

3. distances are symmetric: Dis(y, x)=Dis(x, y);

4. detours can not shorten the distance: Dis(x, z)≤Dis(x, y)+Dis(y, z).

If the second condition is weakened to a non-strict inequality – i.e., Dis(x, y) may be

zero even if x
= y – the function Dis is called a pseudo-metric. �

The last condition is called the triangle inequality (or sub-additivity, as it really con-

cerns the interaction between distance and addition). Figure 8.4 investigates this for

Minkowski distances of various orders. The triangle inequality dictates that the dis-

tance from the origin to C is no more than the sum of the distances from the origin to A

(Dis(O,A)) and from A to C (Dis(A,C)). B is at the same distance from A as C, regardless

of the distance measure used; so Dis(O,A)+Dis(A,C) is equal to the distance from the

origin to B. So, if we draw a circle around the origin through B, the triangle inequality

dictates that C not be outside that circle. As we see in the left figure for Euclidean dis-

tance, B is the only point where the circles around the origin and around A intersect,

so everywhere else the triangle inequality is a strict inequality.

The middle figure shows the same situation for Manhattan distance (p = 1). Now, B

and C are in fact equidistant from the origin, and so travelling via A to C is no longer a

detour, but just one of the many shortest routes. However, if we now decrease p further,

we see that C ends up outside the red shape, and is thus further away than B when seen

from the origin, whereas of course the sum of the distances from the origin to A and

from A to C is still equal to the distance from the origin to B. At this point, our intuition

breaks down: Minkowski distances with p < 1 are simply not very useful as distances

since they all violate the triangle inequality.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.2 Neighbours and exemplars 237

Sometimes it is useful to use different scales for different coordinates if they are tra-

versed with different speeds. For instance, for people horizontal distances can be tra-

versed more easily than vertical differences, and consequently it is more realistic to use

an ellipse rather than a circle to identify points that can be reached in a fixed amount

of time, with the major axis of the ellipse indicating directions that can be traversed

at larger speed. The ellipse can also be rotated, so that the major axis is not aligned

with any of the coordinates: for instance, this could be the direction of a motorway,

or the wind direction. Mathematically, while hyper-spheres (circles in d ≥ 2 dimen-

sions) of radius r can be defined by the equation xTx = r 2, hyper-ellipses are defined

by xTMx= r 2, where M is a matrix describing the appropriate rotation and scaling.

Example 8.1 (Elliptical distance). Consider the following matrices

R=
(

1/
�

2 1/
�

2

−1/
�

2 1/
�

2

)
S=
(

1/2 0

0 1

)
M=
(

5/8 −3/8

−3/8 5/8

)

The matrix R describes a clockwise rotation of 45 degrees, and the diagonal ma-

trix S scales the x-axis by a factor 1/2. The equation

(SRx)T(SRx)= xTRTSTSRx= xTRTS2Rx= xTMx= 1/4

describes a shape which, after clockwise rotation of 45 degrees and scaling of the

x-axis by a factor 1/2, is a circle with radius 1/2 – i.e., the ‘ascending’ ellipse in

Figure 8.3 (right). The ellipse equation is (5/8)x2+ (5/8)y2− (3/4)x y = 1/2.

Often, the shape of the ellipse is estimated from data as the inverse of the covari-

ance matrix: M=Σ−1. This leads to the definition of the Mahalanobis distance

DisM (x,y|Σ)=
√

(x−y)TΣ−1(x−y) (8.1)

Using the covariance matrix in this way has the effect of decorrelating and normalising

the features, as we saw in Section 7.1. Clearly, Euclidean distance is a special case

of Mahalanobis distance with the identity matrix I as covariance matrix: Dis2(x,y) =
DisM (x,y|I).

8.2 Neighbours and exemplars

Now that we understand the basics of measuring distance in instance space, we pro-

ceed to consider the key ideas underlying distance-based models. The two most

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

238 8. Distance-based models

important of these are: formulating the model in terms of a number of prototypical

instances or exemplars, and defining the decision rule in terms of the nearest exem-

plars or neighbours. We can understand these concepts by revisiting our old friend, the

basic linear classifier. This classifier uses the two class means μ⊕ and μ� as exemplars,

as a summary of all we need to know about the training data in order to build the clas-

sifier. A fundamental property of the mean of a set of vectors is that it minimises the

sum of squared Euclidean distances to those vectors.

Theorem 8.1 (The arithmetic mean minimises squared Euclidean distance). The

arithmetic mean μ of a set of data points D in a Euclidean space is the unique point

that minimises the sum of squared Euclidean distances to those data points.

Proof. We will show that argminy
∑

x∈D ||x−y||2 =μ, where ||·|| denotes the 2-norm.

We find this minimum by taking the gradient (the vector of partial derivatives with

respect to yi) of the sum and setting it to the zero vector:

∇y
∑

x∈D
||x−y||2 =−2

∑
x∈D

(
x−y
)=−2

∑
x∈D

x+2|D|y= 0

from which we derive y= 1
|D|
∑

x∈D x=μ. �

Notice that minimising the sum of squared Euclidean distances of a given set of

points is the same as minimising the average squared Euclidean distance. You may

wonder what happens if we drop the square here: wouldn’t it be more natural to take

the point that minimises total Euclidean distance as exemplar? This point is known

as the geometric median, as for univariate data it corresponds to the median or ‘mid-

dle value’ of a set of numbers. However, for multivariate data there is no closed-form

expression for the geometric median, which needs to be calculated by successive ap-

proximation. This computational advantage is the main reason why distance-based

methods tend to use squared Euclidean distance.

In certain situations it makes sense to restrict an exemplar to be one of the given

data points. In that case, we speak of a medoid, to distinguish it from a centroid which

is an exemplar that doesn’t have to occur in the data. Finding a medoid requires us

to calculate, for each data point, the total distance to all other data points, in order

to choose the point that minimises it. Regardless of the distance metric used, this is

an O(n2) operation for n points, so for medoids there is no compuational reason to

prefer one distance metric over another. Figure 8.5 shows a set of 10 data points where

the different ways of determining exemplars all give different results. In particular, the

mean and squared 2-norm medoid can be overly sensitive to outliers.

Once we have determined the exemplars, the basic linear classifier constructs the

decision boundary as the perpendicular bisector of the line segment connecting the

two exemplars. An alternative, distance-based way to classify instances without direct

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.2 Neighbours and exemplars 239

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

data points
squared 2−norm centroid (mean)
2−norm centroid (geometric median)
squared 2−norm medoid
2−norm medoid
1−norm medoid

Figure 8.5. A small data set of 10 points, with circles indicating centroids and squares indicating

medoids (the latter must be data points), for different distance metrics. Notice how the outlier on

the bottom-right ‘pulls’ the mean away from the geometric median; as a result the corresponding

medoid changes as well.

reference to a decision boundary is by the following decision rule: if x is nearest to μ⊕

then classify it as positive, otherwise as negative; or equivalently, classify an instance

to the class of the nearest exemplar. If we use Euclidean distance as our closeness mea-

sure, simple geometry tells us we get exactly the same decision boundary (Figure 8.6

(left)).

So the basic linear classifier can be interpreted from a distance-based perspective

as constructing exemplars that minimise squared Euclidean distance within each class,

and then applying a nearest-exemplar decision rule. This change of perspective opens

up many new possibilities. For example, we can investigate what the decision bound-

ary looks like if we use Manhattan distance for the decision rule (Figure 8.6 (right)). It

turns out that the decision boundary can only run along a number of fixed angles: in

two dimensions these are horizontal, vertical and at (plus or minus) 45 degrees. This

can be understood as follows. Suppose the two exemplars have different x- and y-

coordinates, then they span a rectangle (I’ll assume a tall rectangle, as in the figure).

Imagine yourself in the centre of that rectangle, then clearly you are at equal distances

from both exemplars (in fact, that same point is part of the 2-norm decision bound-

ary). Now, imagine that you move one horizontal step, then you will move closer to

one exemplar and away from the other; in order to compensate for that, you will also

need to make a vertical step. So, within the rectangle, you maintain equal distance

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

240 8. Distance-based models

Figure 8.6. (left) For two exemplars the nearest-exemplar decision rule with Euclidean distance

results in a linear decision boundary coinciding with the perpendicular bisector of the line con-

necting the two exemplars. The crosses denote different locations on the decision boundary, and

the circles centred at those locations demonstrate that the exemplars are equidistant from each

of them. When travelling along the decision boundary from bottom-left to top-right, these cir-

cles first shrink then grow again after passing the location halfway between the two exemplars.

(right) Using Manhattan distance the circles are replaced by diamonds. Travelling from left to

right, the diamonds shrink along the left-most horizontal segment of the decision boundary,

then stay the same size along the 45-degree segment, and then grow again along the right-most

horizontal segment.

Figure 8.7. (left) Decision regions defined by the 2-norm nearest-exemplar decision rule for

three exemplars. (right) With Manhattan distance the decision regions become non-convex.

from the exemplars by moving at a 45 degree angle. Once you reach the perimeter of

the rectangle you will walk away from both exemplars by making horizontal steps, so

from there the decision boundary runs horizontally.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.2 Neighbours and exemplars 241

Figure 8.8. (left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest ex-

emplars into account leads to a further subdivision of each Voronoi cell. (right) The shading

indicates which exemplars contribute to which cell.

Another useful consequence of switching to the distance-based perspective is that

the nearest-exemplar decision rule works equally well for more than two exemplars,

which gives us a multi-class version of the basic linear classifier.1 Figure 8.7 (left) illus-

trates this for three exemplars. Each decision region is now bounded by two line seg-

ments. As you would expect, the 2-norm decision boundaries are more regular than

the 1-norm ones: mathematicians say that the 2-norm decision regions are convex,

which means that linear interpolation between any two points in the region can never

go outside it. Clearly, this doesn’t hold for 1-norm decision regions (Figure 8.7 (right)).

Increasing the number of exemplars further means that some of the regions be-

come closed convex ‘cells’ (we are assuming Euclidean distance for the remainder of

this section), giving rise to what is known as a Voronoi tesselation. Since the number of

classes is typically much lower than the number of exemplars, decision rules often take

more than one nearest exemplar into account. This increases the number of decision

regions further.

Example 8.2 (Two neighbours know more than one). Figure 8.8 (left) gives a

Voronoi tesselation for five exemplars. Each line segment is part of the perpen-

dicular bisector of two exemplars. There are
(5

2

)= 10 pairs of exemplars, but two

of these pairs are too far away from each other so we observe only eight line seg-

ments in the Voronoi tesselation.

If we now also take the second-nearest exemplars into account, each Voronoi

cell is further subdivided: for instance, since the central point has four neigh-

bours, the central cell is divided into four subregions (Figure 8.8 (middle)). You

can think of those additional line segments as being part of the Voronoi tessela-

1In information retrieval this is often called the Rocchio classifier.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

242 8. Distance-based models

tion that results when the central point is removed. The other exemplars have

only three immediate neighbours and so their cells are divided into three subre-

gions. We thus obtain 16 ‘2-nearest exemplar’ decision regions, each of which is

defined by a different pair of nearest and second-nearest exemplars.

Figure 8.8 (right) shades each of these regions according to the two near-

est exemplars spanning it. Notice that we gave each of the two exemplars the

same weight, and so there are pairs of adjacent regions (across each of the orig-

inal Voronoi boundaries) receiving the same shading, resulting in eight different

shadings in all. This will be relevant later on, when we discuss the refinement of

nearest-neighbour classifiers.

To summarise, the main ingredients of distance-based models are

� distance metrics, which can be Euclidean, Manhattan, Minkowski or Mahalanobis,

among many others;

� exemplars: centroids that find a centre of mass according to a chosen distance

metric, or medoids that find the most centrally located data point; and

� distance-based decision rules, which take a vote among the k nearest exemplars.

In the next sections these ingredients are combined in various ways to obtain super-

vised and unsupervised learning algorithms.

8.3 Nearest-neighbour classification

In the previous section we saw how to generalise the basic linear classifier to more than

two classes, by learning an exemplar for each class and using the nearest-exemplar

decision rule to classify new data. In fact, the most commonly used distance-based

classifier is even more straightforward than that: it simply uses each training instance

as an exemplar. Consequently, ‘training’ this classifier requires nothing more than

memorising the training data. This extremely simple classifier is known as the nearest-

neighbour classifier. Its decision regions are made up of the cells of a Voronoi tessela-

tion, with piecewise linear decision boundaries selected from the Voronoi boundaries

(since adjacent cells may be labelled with the same class).

What are the properties of the nearest-neighbour classifier? First, notice that, un-

less the training set contains identical instances from different classes, we will be able

to separate the classes perfectly on the training set – not really a surprise, as we memo-

rised all training examples! Furthermore, by choosing the right exemplars we can more

or less represent any decision boundary, or at least an arbitrarily close piecewise linear

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.3 Nearest-neighbour classification 243

approximation. It follows that the nearest-neighbour classifier has low bias, but also

high variance: move any of the exemplars spanning part of the decision boundary, and

you will also change the boundary. This suggests a risk of overfitting if the training data

is limited, noisy or unrepresentative.

From an algorithmic point of view, training the nearest-neighbour classifier is very

fast, taking only O(n) time for storing n exemplars. The downside is that classifying

a single instance also takes O(n) time, as the instance will need to be compared with

every exemplar to determine which one is the nearest. It is possible to reduce clas-

sification time at the expense of increased training time by storing the exemplars in

a more elaborate data structure, but this tends not to scale well to large numbers of

features.

In fact, high-dimensional instance spaces can be problematic for another reason:

the infamous curse of dimensionality. High-dimensional spaces tend to be extremely

sparse, which means that every point is far away from virtually every other point, and

hence pairwise distances tend to be uninformative. However, whether or not you are

hit by the curse of dimensionality is not simply a matter of counting the number of

features, as there are several reasons why the effective dimensionality of the instance

space may be much smaller than the number of features. For example, some of the

features may be irrelevant and drown out the relevant features’ signal in the distance

calculations. In such a case it would be a good idea, before building a distance-based

model, to reduce dimensionality by performing �feature selection, as will be discussed

in Chapter 10. Alternatively, the data may live on a manifold of lower dimension than

the instance space (e.g., the surface of a sphere is a two-dimensional manifold wrapped

around a three-dimensional object), which allows other dimensionality-reduction tech-

niques such as �principal component analysis, which will be explained in the same

chapter. In any case, before applying nearest-neighbour classification it is a good idea

to plot a histogram of pairwise distances of a sample to see if they are sufficiently var-

ied.

Notice that the nearest-neighbour method can easily be applied to regression prob-

lems with a real-valued target variable. In fact, the method is completely oblivious

to the type of target variable and can be used to output text documents, images and

videos. It is also possible to output the exemplar itself instead of a separate target, in

which case we usually speak of nearest-neighbour retrieval. Of course we can only out-

put targets (or exemplars) stored in the exemplar database, but if we have a way of ag-

gregating these we can go beyond this restriction by applying the k-nearest neighbour

method. In its simplest form, the k-nearest neighbour classifier takes a vote between

the k ≥ 1 nearest exemplars of the instance to be classified, and predicts the majority

class. We can easily turn this into a probability estimator by returning the normalised

class counts as a probability distribution over classes.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

244 8. Distance-based models

Figure 8.9. (left) Decision regions of a 3-nearest neighbour classifier; the shading represents the

predicted probability distribution over the five classes. (middle) 5-nearest neighbour. (right)

7-nearest neighbour.

Figure 8.9 illustrates this on a small data set of 20 exemplars from five different

classes, for k = 3,5,7. The class distribution is visualised by assigning each test point

the class of a uniformly sampled neighbour: so, in a region where two of k = 3 neigh-

bours are red and one is orange, the shading is a mix of two-thirds red and one-third

orange. While for k = 3 the decision regions are still mostly discernible, this is much

less so for k = 5 and k = 7. This may seem at odds with our earlier demonstration of the

increase in the number of decision regions with increasing k in Example 8.2. However,

this increase is countered by the fact that the probability vectors become more similar

to each other. To take an extreme example: if k is equal to the number of exemplars

n, every test instance will have the same number of neighbours and will receive the

same probability vector which is equal to the prior distribution over the exemplars. If

k = n−1 we can reduce one of the class counts by 1, which can be done in c ways: the

same number of possibilities as with k = 1!

We conclude that the refinement of k-nearest neighbour – the number of different

predictions it can make – initially increases with increasing k, then decreases again.

Furthermore, we can say that the bias increases and the variance decreases with in-

creasing k. There is no easy recipe to decide what value of k is appropriate for a given

data set. However, it is possible to sidestep this question to some extent by applying

distance weighting to the votes: that is, the closer an exemplar is to the instance to

be classified, the more its vote counts. Figure 8.10 demonstrates this, using the re-

ciprocal of the distance to an exemplar as the weight of its vote. This blurs the deci-

sion boundaries, as the model now applies a combination of grouping by means of the

Voronoi boundaries, and grading by means of distance weighting. Furthermore, since

the weights decrease quickly for larger distances, the effect of increasing k is much

smaller than with unweighted voting. In fact, with distance weighting we can simply

put k = n and still obtain a model that makes different predictions in different parts of

the instance space. One could say that distance weighting makes k-nearest neighbour

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.4 Distance-based clustering 245

Figure 8.10. (left) 3-nearest neighbour with distance weighting on the data from Figure 8.9.

(middle) 5-nearest neighbour. (right) 7-nearest neighbour.

more of a global model, while without it (and for small k) it is more like an aggregation

of local models.

If k-nearest neighbour is used for regression problems, the obvious way to aggre-

gate the predictions from the k neighbours is by taking the mean value, which can

again be distance-weighted. This would lend the model additional predictive power

by predicting values that aren’t observed among the stored exemplars. More generally,

we can apply k-means to any learning problem where we have an appropriate ‘aggre-

gator’ for multiple target values.

8.4 Distance-based clustering

In a distance-based context, unsupervised learning is usually taken to refer to cluster-

ing, and we will now review a number of distance-based clustering methods. The ones

considered in this section are all exemplar-based and hence predictive: they naturally

generalise to unseen instances (see Section 3.3 for the distinction between predictive

and descriptive clustering). In the next section we consider a clustering method that is

not exemplar-based and hence descriptive.

Predictive distance-based clustering methods use the same ingredients as distance-

based classifiers: a distance metric, a way to construct exemplars and a distance-based

decision rule. In the absence of an explicit target variable, the assumption is that the

distance metric indirectly encodes the learning target, so that we aim to find clusters

that are compact with respect to the distance metric. This requires a notion of cluster

compactness that can serve as our optimisation criterion. To that end, we refer back to

the scatter matrix introduced in Background 7.2 on p.200.

Definition 8.3 (Scatter). Given a data matrix X, the scatter matrix is the matrix

S= (X−1μ
)T (X−1μ

)= n∑
i=1

(
Xi · −μ

)T (Xi · −μ
)

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

246 8. Distance-based models

whereμ is a row vector containing all column means of X. The scatter of X is defined

as Scat(X)=∑n
i=1 ||Xi · −μ||2, which is equal to the trace of the scatter matrix (i.e., the

sum of its diagonal elements). �

Imagine now that we partition D into K subsets D1�. . .�DK =D , and letμ j denote

the mean of D j . Let S be the scatter matrix of D , and S j be the scatter matrices of D j .

These scatter matrices then have the following relationship:

S=
K∑

j=1
S j +B (8.2)

Here, B is the scatter matrix that results by replacing each point in D with the corre-

sponding μ j . Each S j is called a within-cluster scatter matrix and describes the com-

pactness of the j -th cluster. B is the between-cluster scatter matrix and describes the

spread of the cluster centroids. It follows that the traces of these matrices can be de-

composed similarly, which gives

Scat(D)=
K∑

j=1
Scat(D j)+

K∑
j=1
|D j | ||μ j −μ||2 (8.3)

What this tells us is that minimising the total scatter over all clusters is equivalent to

maximising the (weighted) scatter of the centroids. The K -means problem is to find a

partition that minimises the total within-cluster scatter.

Example 8.3 (Reducing scatter by partitioning data). Consider the following

five points: (0,3), (3,3), (3,0), (−2,−4) and (−4,−2). These points are, conve-

niently, centred around (0,0). The scatter matrix is

S=
(

0 3 3 −2 −4

3 3 0 −4 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 3

3 3

3 0

−2 −4

−4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

38 25

25 38

)

with trace Scat(D) = 76. If we cluster the first two points together in one cluster

and the remaining three in another, then we obtain cluster means μ1 = (1.5,3)

and μ2 = (−1,−2) and within-cluster scatter matrices

S1 =
(

0−1.5 3−1.5

3−3 3−3

)(
0−1.5 3−3

3−1.5 3−3

)
=
(

4.5 0

0 0

)

S2 =
(

3− (−1) −2− (−1) −4− (−1)

0− (−2) −4− (−2) −2− (−2)

)⎛⎜⎝
3− (−1) 0− (−2)

−2− (−1) −4− (−2)

−4− (−1) −2− (−2)

⎞
⎟⎠=
(

26 10

10 8

)

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.4 Distance-based clustering 247

with traces Scat(D1) = 4.5 and Scat(D2) = 34. Two copies of μ1 and three copies

of μ2 have, by definition, the same centre of gravity as the complete data set:

(0,0) in this case. We thus calculate the between-cluster scatter matrix as

B=
(

1.5 1.5 −1 −1 −1

3 3 −2 −2 −2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.5 3

1.5 3

−1 −2

−1 −2

−1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

7.5 15

15 30

)

with trace 37.5.

Alternatively, if we treat the first three points as a cluster and put the other two

in a second cluster, then we obtain cluster means μ′1 = (2,2) and μ′2 = (−3,−3),

and within-cluster scatter matrices

S′1 =
(

0−2 3−2 3−2

3−2 3−2 0−2

)⎛⎜⎝
0−2 3−2

3−2 3−2

3−2 0−2

⎞
⎟⎠=
(

6 −3

−3 6

)

S′2 =
(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)(
−2− (−3) −4− (−3)

−4− (−3) −2− (−3)

)
=
(

2 −2

−2 2

)

with traces Scat(D ′
1)= 12 and Scat(D ′

2)= 4. The between-cluster scatter matrix is

B′ =
(

2 2 2 −3 −3

2 2 2 −3 −3

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 2

2 2

2 2

−3 −3

−3 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=
(

30 30

30 30

)

with trace 60. Clearly, the second clustering produces tighter clusters whose cen-

troids are further apart.

K -means algorithm

The K -means problem is NP-complete, which means that there is no efficient solution

to find the global minimum and we need to resort to a heuristic algorithm. The best-

known algorithm is usually also called K -means, although the name ‘Lloyd’s algorithm’

is also used. The outline of the algorithm is given in Algorithm 8.1. The algorithm

iterates between partitioning the data using the nearest-centroid decision rule, and

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

248 8. Distance-based models

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.11. (left) First iteration of 3-means on Gaussian mixture data. The dotted lines are

the Voronoi boundaries resulting from randomly initialised centroids; the violet solid lines are

the result of the recalculated means. (middle) Second iteration, taking the previous partition as

starting point (dotted line). (right) Third iteration with stable clustering.

recalculating centroids from a partition. Figure 8.11 demonstrates the algorithm on a

small data set with three clusters, and Example 8.4 gives the result on our example data

set describing properties of different machine learning methods.

Example 8.4 (Clustering MLM data). Refer back to the MLM data set in Table

1.4 on p.39 (it is also helpful to look at its two-dimensional approximation in

Figure 1.7 on p.37). When we run K -means on this data with K = 3, we obtain

the clusters {Associations,Trees,Rules}, {GMM,naive Bayes}, and a larger clus-

ter with the remaining data points. When we run it with K = 4, we get that

the large cluster splits into two: {kNN,Linear Classifier,Linear Regression} and

Algorithm 8.1: KMeans(D,K) – K -means clustering using Euclidean distance

Dis2.

Input : data D ⊆Rd ; number of clusters K ∈N.

Output : K cluster means μ1, . . . ,μK ∈Rd .

1 randomly initialise K vectors μ1, . . . ,μK ∈Rd ;

2 repeat

3 assign each x ∈D to argmin j Dis2(x,μ j);

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = 1
|D j |
∑

x∈D j
x;

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.4 Distance-based clustering 249

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.12. (left) First iteration of 3-means on the same data as Figure 8.11 with differently

initialised centroids. (right) 3-means has converged to a sub-optimal clustering.

{Kmeans,Logistic Regression,SVM}; but also that GMM gets reallocated to the

latter cluster, and naive Bayes ends up as a singleton.

It can be shown that one iteration of K -means can never increase the within-cluster

scatter, from which it follows that the algorithm will reach a stationary point: a point

where no further improvement is possible. It is worth noting that even the simplest

data set will have many stationary points.

Example 8.5 (Stationary points in clustering). Consider the task of dividing

the set of numbers {8,44,50,58,84} into two clusters. There are four pos-

sible partitions that 2-means can find: {8}, {44,50,58,84}; {8,44}, {50,58,84};

{8,44,50}, {58,84}; and {8,44,50,58}, {84}. It is easy to verify that each of these

establishes a stationary point for 2-means, and hence will be found with a suit-

able initialisation. Only the first clustering is optimal; i.e., it minimises the total

within-cluster scatter.

In general, while K -means converges to a stationary point in finite time, no guaran-

tees can be given about whether the convergence point is in fact the global minimum,

or if not, how far we are from it. Figure 8.12 shows how an unfortunate initialisation of

the centroids can lead to a sub-optimal solution. In practice it is advisable to run the

algorithm a number of times and select the solution with the smallest within-cluster

scatter.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

250 8. Distance-based models

Clustering around medoids

It is straightforward to adapt the K -means algorithm to use a different distance metric;

note that this will also change the objective function being minimised. Algorithm 8.2

gives the K -medoids algorithm, which additionally requires the exemplars to be data

points. Notice that calculating the medoid of a cluster requires examining all pairs of

points – whereas calculating the mean requires just a single pass through the points

– which can be prohibitive for large data sets. Algorithm 8.3 gives an alternative al-

gorithm called partitioning around medoids (PAM) that tries to improve a clustering

locally by swapping medoids with other data points. The quality of a clustering Q is

calculated as the total distance over all points to their nearest medoid. Notice that

there are k(n−k) pairs of one medoid and one non-medoid, and evaluating Q requires

iterating over n−k data points, so the computational cost of one iteration is quadratic

in the number of data points. For large data sets one can run PAM on a small sample

but evaluate Q on the whole data set, and repeat this a number of times for different

samples.

An important limitation of the clustering methods discussed in this section is that

they represent clusters only by means of exemplars. This disregards the shape of the

clusters, and sometimes leads to counter-intuitive results. The two data sets in Fig-

ure 8.13 are identical, except for a rescaling of the y-axis. Nevertheless, K -means finds

entirely different clusterings. This is not actually a shortcoming of the K -means algo-

rithm as such, as in Figure 8.13 (right) the two centroids are further away than in the

intended solution, and hence this represents a better solution in terms of Equation

Algorithm 8.2: KMedoids(D,K ,Dis) – K -medoids clustering using arbitrary dis-

tance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j);

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 μ j = argminx∈D j

∑
x′∈D j

Dis(x,x′);

7 end

8 until no change in μ1, . . . ,μK ;

9 return μ1, . . . ,μK ;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.4 Distance-based clustering 251

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 8.13. (left) On this data 2-means detects the right clusters. (right) After rescaling the

y-axis, this configuration has a higher between-cluster scatter than the intended one.

8.3. The real issue is that in this case we want to estimate the ‘shape’ of the clusters as

well as the cluster centroids, and hence take account of more than just the trace of the

scatter matrices. We will discuss this further in the next chapter.

Algorithm 8.3: PAM(D,K ,Dis) – Partitioning around medoids clustering using ar-

bitrary distance metric Dis.

Input : data D ⊆X ; number of clusters K ∈N;

distance metric Dis : X ×X →R.

Output : K medoids μ1, . . . ,μK ∈D , representing a predictive clustering of X .

1 randomly pick K data points μ1, . . . ,μK ∈D ;

2 repeat

3 assign each x ∈D to argmin j Dis(x,μ j);

4 for j = 1 to k do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 Q ←∑ j
∑

x∈D j
Dis(x,μ j);

8 for each medoid m and each non-medoid o do

9 calculate the improvement in Q resulting from swapping m with o;

10 end

11 select the pair with maximum improvement and swap;

12 until no further improvement possible;

13 return μ1, . . . ,μK ;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

252 8. Distance-based models

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette Value

C
lu

s
te

r

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette Value

C
lu

s
te

r

Figure 8.14. (left) Silhouette for the clustering in Figure 8.13 (left), using squared Euclidean

distance. Almost all points have a high s(x), which means that they are much closer, on average,

to the other members of their cluster than to the members of the neighbouring cluster. (right)

The silhouette for the clustering in Figure 8.13 (right) is much less convincing.

Silhouettes

How could we detect the poor quality of the clustering in Figure 8.13 (right)? An inter-

esting technique is the use of silhouettes. For any data point xi , let d(xi ,D j) denote the

average distance of xi to the data points in cluster D j , and let j (i) denote the index of

the cluster that xi belongs to. Furthermore, let a(xi) = d(xi ,D j (i)) be the average dis-

tance of xi to the points in its own cluster D j (i), and let b(xi) = mink
= j (i) d(xi ,Dk) be

the average distance to the points in its neighbouring cluster. We would expect a(xi) to

be considerably smaller than b(xi), but this cannot be guaranteed. So we can take the

difference b(xi)−a(xi) as an indication of how ‘well-clustered’ xi is, and divide this by

b(xi) to obtain a number less than or equal to 1.

It is, however, conceivable that a(xi) > b(xi), in which case the difference b(xi)−
a(xi) is negative. This describes the situation that, on average, the members of the

neighbouring cluster are closer to xi than the members of its own cluster. In order

to get a normalised value we divide by a(xi) in this case. This leads to the following

definition:

s(xi)= b(xi)−a(xi)

max(a(xi),b(xi))
(8.4)

A silhouette then sorts and plots s(x) for each instance, grouped by cluster. Examples

are shown in Figure 8.14 for the two clusterings in Figure 8.13. In this particular case

we have used squared Euclidean distance in the construction of the silhouette, but

the method can be applied to other distance metrics. We can clearly see that the first

clustering is much better than the second. In addition to the graphical representation,

we can compute average silhouette values per cluster and over the whole data set.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.5 Hierarchical clustering 253

510152025

Logistic Regression

SVM

kNN

Kmeans

Linear Classifier

Linear Regression

naive Bayes

GMM

Trees

Rules

Associations

Figure 8.15. A dendrogram (printed left to right to improve readability) constructed by hier-

archical clustering from the data in Table 1.4 on p.39.

8.5 Hierarchical clustering

The clustering methods discussed in the previous section use exemplars to represent

a predictive clustering: a partition of the entire instance space. In this section we

take a look at methods that represent clusters using trees. We previously encountered

�clustering trees in Section 5.3: those trees use features to navigate the instance space,

similar to decision trees, and aren’t distance-based as such. Here we consider trees

called dendrograms, which are purely defined in terms of a distance measure. Because

dendrograms use features only indirectly, as the basis on which the distance measure

is calculated, they partition the given data rather than the entire instance space, and

hence represent a descriptive clustering rather than a predictive one.

Example 8.6 (Hierarchical clustering of MLM data). We continue Example 8.4

on p.248. A hierarchical clustering of the MLM data is given in Figure 8.15.

The tree shows that the three logical methods at the top form a strong clus-

ter. If we wanted three clusters, we get the logical cluster, a second small

cluster {GMM,naive Bayes}, and the remainder. If we wanted four clusters,

we would separate GMM and naive Bayes, as the tree indicates this cluster is

the least tight of the three (notice that this is slightly different from the so-

lution found by 4-means). If we wanted five clusters, we would construct

{Linear Regression,LinearClassifier} as a separate cluster. This illustrates the key

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

254 8. Distance-based models

advantage of hierarchical clustering: it doesn’t require fixing the number of clus-

ters in advance.

A precise definition of a dendrogram is as follows.

Definition 8.4 (Dendrogram). Given a data set D, a dendrogram is a binary tree

with the elements of D at its leaves. An internal node of the tree represents the subset

of elements in the leaves of the subtree rooted at that node. The level of a node is

the distance between the two clusters represented by the children of the node. Leaves

have level 0. �

For this definition to work, we need a way to measure how close two clusters are. You

might think that this is straightforward: just calculate the distance between the two

cluster means. However, this occasionally leads to problems, as discussed later in this

section. Furthermore, taking cluster means as exemplars assumes Euclidean distance,

and we may want to use one of the other distance metrics discussed earlier. This has

led to the introduction of the so-called linkage function, which is a general way to turn

pairwise point distances into pairwise cluster distances.

Definition 8.5 (Linkage function). A linkage function L : 2X × 2X → R calculates

the distance between arbitrary subsets of the instance space, given a distance metric

Dis : X ×X →R. �

The most common linkage functions are as follows:

Single linkage defines the distance between two clusters as the smallest pairwise

distance between elements from each cluster.

Complete linkage defines the distance between two clusters as the largest pointwise

distance.

Average linkage defines the cluster distance as the average pointwise distance.

Centroid linkage defines the cluster distance as the point distance between the clus-

ter means.

These linkage functions can be defined mathematically as follows:

Lsingle(A,B)= min
x∈A,y∈B

Dis(x, y)

Lcomplete(A,B)= max
x∈A,y∈B

Dis(x, y)

Laverage(A,B)=
∑

x∈A,y∈B Dis(x, y)

|A| · |B |
Lcentroid(A,B)=Dis

(∑
x∈A x

|A| ,

∑
y∈B y

|B |
)

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.5 Hierarchical clustering 255

Clearly, all these linkage functions coincide for singleton clusters: L({x}, {y})=Dis(x, y).

However, for larger clusters they start to diverge. For example, suppose Dis(x, y) <
Dis(x, z), then the linkage between {x} and {y, z} is different in all four cases:

Lsingle({x}, {y, z})=Dis(x, y)

Lcomplete({x}, {y, z})=Dis(x, z)

Laverage({x}, {y, z})= (Dis(x, y)+Dis(x, z)
)

/2

Lcentroid({x}, {y, z})=Dis(x, (y + z)/2)

The general algorithm to build a dendrogram is given in Algorithm 8.4. The tree is

built from the data points upwards and is hence a bottom–up or agglomerative algo-

rithm. At each iteration the algorithm constructs a new partition of the data by merg-

ing the two nearest clusters together. In general, the HAC algorithm gives different

results when different linkage functions are used. Single linkage is the easiest case to

understand, as it effectively builds a graph by adding increasingly longer links between

points, one at a time, such that ultimately there is a path between any pair of points

(hence the term ‘linkage’). At any point during this process, the connected compo-

nents are the clusters found at that iteration, and the linkage of the most recently found

cluster is the length of the most recently added link. Hierarchical clustering using sin-

gle linkage can essentially be done by calculating and sorting all pairwise distances

between data points, which requires O(n2) time for n points. The other linkage func-

tions require at least O(n2 logn). Notice that the unoptimised algorithm in Algorithm

8.4 has time complexity O(n3).

Algorithm 8.4: HAC(D,L) – Hierarchical agglomerative clustering.

Input : data D ⊆X ; linkage function L : 2X ×2X →R defined in terms of

distance metric.

Output : a dendrogram representing a descriptive clustering of D .

1 initialise clusters to singleton data points;

2 create a leaf at level 0 for every singleton cluster;

3 repeat

4 find the pair of clusters X ,Y with lowest linkage l , and merge;

5 create a parent of X ,Y at level l ;

6 until all data points are in one cluster;

7 return the constructed binary tree with linkage levels;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

256 8. Distance-based models

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B D

E

F

G

G

F

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B DE

1 2 3 4

5 6 7 8

A

B

D

E FG

4 8 2 3 6 7 1 5

C

AC B DEF

G

Figure 8.16. (left) Complete linkage defines cluster distance as the largest pairwise distance

between elements from each cluster, indicated by the coloured lines between data points. The

clustering found can be represented as nested partitions (bottom) or a dendrogram (top); the

level of a horizontal connection between clusters in the dendrogram corresponds to the length

of a linkage line. The example assumes that ties are broken by small irregularities in the grid.

(middle) Centroid linkage defines the distance between clusters as the distance between their

means. Notice that E obtains the same linkage as A and B, and so the latter clusters effectively

disappear. (right) Single linkage defines the distance between clusters as the smallest pairwise

distance. The dendrogram all but collapses, which means that no meaningful clusters are found

in the given grid configuration.

Example 8.7 (Linkage matters). We consider a regular grid of 8 points in two

rows of four (Figure 8.16). We assume that ties are broken by small irregulari-

ties. Each linkage function merges the same clusters in the same order, but the

linkages are quite different in each case. Complete linkage gives the impression

that D is far removed from the rest, whereas by moving D very slightly to the

right it would have been added to E before C. With centroid linkage we see that E

has in fact the same linkage as A and B, which means that A and B are not really

discernible as separate clusters, even though they are found first. Single link-

age seems preferable in this case, as it most clearly demonstrates that there is no

meaningful cluster structure in this set of points.

Single and complete linkage both define the distance between clusters in terms of

a particular pair of points. Consequently, they cannot take the shape of the cluster

into account, which is why average and centroid linkage can offer an advantage. How-

ever, centroid linkage can lead to non-intuitive dendrograms, as illustrated in Figure

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.5 Hierarchical clustering 257

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

1 2

3

1 2 3
0

0.5

1

1.5

2

Figure 8.17. (left) Points 1 and 2 are closer to each other than to point 3. However, the distance

between point 3 to the centroid of the other two points is less than any of the pairwise distances.

(right) This results in a decrease in linkage when adding point 3 to cluster {1,2}, and hence a

non-monotonic dendrogram.

8.17. The issue here is that we have L({1}, {2})< L({1}, {3}) and L({1}, {2})< L({2}, {3}) but

L({1}, {2}) > L({1,2}, {3}). The first two inequalities mean that 1 and 2 are the first to be

merged into a cluster; but the second inequality means that the level of cluster {1,2,3}

in the dendrogram drops below the level of {1,2}. Centroid linkage violates the require-

ment of monotonicity, which stipulates that L(A,B)< L(A,C) and L(A,B)< L(B ,C) im-

plies L(A,B)< L(A∪B ,C) for any clusters A, B and C . The other three linkage functions

are monotonic (the example also serves as an illustration why average linkage and cen-

troid linkage are not the same).

Another thing to keep in mind when constructing dendrograms is that the hier-

archical clustering method is deterministic and will always construct a clustering. Con-

sider Figure 8.18, which shows a data set of 20 uniformly randomly sampled points.

One would be hard-pressed to find any cluster structure in this data; yet a dendro-

gram constructed with complete linkage and Euclidean distance appears to indicate

that there are three or four clearly discernible clusters. But if we look closer, we see

that the linkage levels are very close together in the bottom of the tree, and the fact

that linkages are higher towards the top comes primarily from the use of complete link-

age, which concentrates on maximal pairwise distances. The silhouette in Figure 8.18

(right) confirms that the cluster structure is not very strong. Effectively, we are witness-

ing here a particular, clustering-related kind of overfitting, already familiar from other

tree-based models discussed in Chapter 5. Furthermore, dendrograms – like other tree

models – have high variance in that small changes in the data points can lead to large

changes in the dendrogram.

In conclusion, hierarchical clustering methods have the distinct advantage that the

number of clusters does not need to be fixed in advance. However, this advantage

comes at considerable computational cost. Furthermore, we now need to choose not

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

258 8. Distance-based models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

1920

 8 15 7 2 4 16 5 12 10 17 1 3 13 14 18 6 9 19 11 20
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

s
te

r

Figure 8.18. (left) 20 data points, generated by uniform random sampling. (middle) The den-

drogram generated from complete linkage. The three clusters suggested by the dendrogram are

spurious as they cannot be observed in the data. (right) The rapidly decreasing silhouette val-

ues in each cluster confirm the absence of a strong cluster structure. Point 18 has a negative

silhouette value as it is on average closer to the green points than to the other red points.

just the distance measure used, but also the linkage function.

8.6 From kernels to distances

In Section 7.5 we discussed how kernels can be used to extend the power of linear mod-

els considerably. Recall that a kernel is a function κ(xi ,x j)=φ(xi)·φ(x j) that calculates

a dot product in some feature space, but without constructing the feature vectors φ(x)

explicitly. Any learning method that can be defined purely in terms of dot products

of data points is amenable to such ‘kernelisation’. Because of the close connection

between Euclidean distance and dot products we can apply the same ‘kernel trick’ to

many distance-based learning methods.

The key insight is that Euclidean distance can be rewritten in terms of dot products:

Dis2(x,y)= ||x−y||2 =
√

(x−y) · (x−y)=√x ·x−2x ·y+y ·y

This formula clearly shows that the distance between x and y decreases whenever the

dot product x ·y increases, which suggests that the dot product itself is a kind of sim-

ilarity measure. However, it is not translation-invariant, because it depends on the

location of the origin. The two terms x ·x and y ·y have the effect of making the overall

expression translation-invariant. Replacing the dot product with a kernel function κ,

we can construct the following kernelised distance:

Disκ(x,y)=√κ(x,x)−2κ(x,y)+κ(y,y) (8.5)

It turns out that Disκ defines a pseudo-metric (see Definition 8.2 on p.235) whenever

κ is a positive semi-definite kernel.2

2It is only a metric if the feature mapping φ is injective: suppose not, then some distinct x and y are

mapped to the same feature vector φ(x)=φ(y), from which we derive κ(x,x)−2κ(x,y)+κ(y,y)=φ(x) ·φ(x)−
2φ(x) ·φ(y)+φ(y) ·φ(y)= 0.

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.6 From kernels to distances 259

As an illustration, Algorithm 8.5 adapts the �K -means algorithm (Algorithm 8.1

on p.248) to use a kernelised distance. So, the algorithm clusters according to a non-

linear distance in instance space, corresponding to Euclidean distance in an implicit

feature space. However, one complication arises, which is that Theorem 8.1 doesn’t

apply to non-linear distances, and so we cannot construct cluster means in instance

space. For this reason Algorithm 8.5 treats the clustering as a partition rather than a set

of exemplars. Consequently, assigning each data point x to its nearest cluster (step 3)

is now of quadratic complexity, since for each cluster we need to sum up the distances

of all its members to x. In contrast, this step is linear in |D| for the K -means algorithm.

There is an alternative way to turn dot products into distances. Since the dot prod-

uct can be written as ||x|| · ||y||cosθ, where θ is the angle between the vectors x and y,

we define the cosine similarity as

cosθ = x ·y
||x|| · ||y|| =

x ·y√
(x ·x)(y ·y)

(8.6)

Cosine similarity differs from Euclidean distance in that it doesn’t depend on the length

of the vectors x and y. On the other hand, it is not translation-independent, but assigns

special status to the origin: one way to think of it is as a projection onto a unit sphere

around the origin, and measuring distance on that sphere. Cosine similarity is usually

turned into a distance metric by taking 1−cosθ. Being defined entirely in terms of dot

products, it is as easily kernelised as Euclidean distance.

Algorithm 8.5: Kernel-KMeans(D,K) – K -means clustering using kernelised dis-

tance Disκ.

Input : data D ⊆X ; number of clusters K ∈N.

Output : K -fold partition D1� . . .�DK =D .

1 randomly initialise K clusters D1, . . . ,DK ;

2 repeat

3 assign each x ∈D to argmin j
1
|D j |
∑

y∈D j
Disκ(x,y);

4 for j = 1 to K do

5 D j ← {x ∈D|x assigned to cluster j };

6 end

7 until no change in D1, . . . ,DK ;

8 return D1, . . . ,DK ;

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

260 8. Distance-based models

8.7 Distance-based models: Summary and further reading

Along with linear models, distance-based models are the second group of models with

strong geometric intuitions. The literature on distance-based models is rich and di-

verse; in this chapter I’ve concentrated on getting the main intuitions across.

� In Section 8.1 we reviewed the most commonly used distance metrics: the Minkowski

distance or p-norm with special cases Euclidean distance (p = 2) and Manhat-

tan distance (p = 1); the Hamming distance, which counts the number of bits or

literals that are different; and the Mahalanobis distance, which decorrelates and

normalises the features (Mahalanobis, 1936). Other distances can be taken into

account, as long as they satisfy the requirements of a distance metric listed in

Definition 8.2.

� Section 8.2 investigated the key concepts of neighbours and exemplars. Exem-

plars are either centroids that find a centre of mass according to a chosen dis-

tance metric, or medoids that find the most centrally located data point. The

most commonly used centroid is the arithmetic mean, which minimises squared

Euclidean distance to all other points. Other definitions of centroids are possi-

ble but harder to compute: e.g., the geometric median is the point minimising

Euclidean distance, but does not admit a closed-form solution. The complex-

ity of finding a medoid is always quadratic regardless of the distance metric. We

then considered nearest-neighbour decision rules, and looked in particular at

the difference between 2-norm and 1-norm nearest-exemplar decision bound-

aries, and how these get refined by switching to a 2-nearest-exemplars decision

rule.

� In Section 8.3 we discussed nearest-neighbour models which simply use the train-

ing data as exemplars. This is a very widely used model for classification, the ori-

gins of which can be traced back to Fix and Hodges (1951). Despite its simplicity,

it can be shown that with sufficient training data the error rate is at most twice

the optimal error rate (Cover and Hart, 1967). The 1-nearest neighbour classi-

fier has low bias but high variance; by increasing the number of neighbours over

which we aggregate we can reduce the variance but at the same time increase

the bias. The nearest-neighbour decision rule can also be applied to real-valued

target variables, and more generally to any task where we have an appropriate

aggregator for multiple target values.

� Section 8.4 considered a number of algorithms for distance-based clustering us-

ing either arithmetic means or medoids. The K -means algorithm is a simple

heuristic approach to solve the K -means problem that was originally proposed

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

8.7 Distance-based models: Summary and further reading 261

in 1957 and is sometimes referred to as Lloyd’s algorithm (Lloyd, 1982). It is de-

pendent on the initial configuration and can easily converge to the wrong sta-

tionary point. We also looked at the K -medoids and partitioning around medoids

algorithms, the latter due to Kaufman and Rousseeuw (1990). These are compu-

tationally more expensive due to the use of medoids. Silhouettes (Rousseeuw,

1987) are a useful technique to check whether points are on average closer to the

other members of their cluster than they are to the members of the neighbouring

cluster. Much more detail about these and other clustering methods is provided

by Jain, Murty and Flynn (1999).

� Whereas the previous clustering methods all result in a partition of the instance

space and are therefore predictive, hierarchical clustering discussed in Section

8.5 applies only to the given data and is hence descriptive. A distinct advantage

is that the clustering is constructed in the form of a dendrogram, which means

that the number of clusters does not need to be specified in advance and can be

chosen by inspecting the dendrogram. However, the method is computationally

expensive and infeasible for large data sets. Furthermore, it is not always obvious

which of the possible linkage functions to choose.

� Finally, in Section 8.6 we briefly considered how distances can be ‘kernelised’,

and we gave one example in the form of kernel K -means. The use of a non-

Euclidean distance metric leads to quadratic complexity of recalculating the clus-

ters in each iteration.

�

https://doi.org/10.1017/CBO9780511973000.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.010

