
CHAPTER 9

Counting, Coding, and
Sampling with Words

9.0. Introduction

This chapter illustrates the use of words to derive enumeration results and
algorithms for sampling and coding.

Given a family C of combinatorial structures, endowed with a size such
that the subset Cn of objects of size n is finite, we consider three problems:
(i) Counting: determine for all n ≥ 0, the cardinal Card(Cn) of the set Cn

of objects with size n.
(ii) Sampling: design an algorithm RandC that, for any n, produces a

random object uniformly chosen in Cn: in other terms, the algorithm
must satisfy P(RandC(n) = O) = 1/Card(Cn) for any object O ∈
Cn.

(iii) Optimal coding: construct a function ϕ that maps injectively objects
of C on words of {0, 1}∗ in such a way that an object O of size n

is coded by a word ϕ(O) of length roughly bounded above by log2
Card(Cn).

These three problems have in common an enumerative flavour, in the sense
that they are immediately solved if a list of all objects of size n is available.
However, since in general there is an exponential number of objects of
size n in the families in which we are interested, this solution is in no
way satisfying. For a wide class of so-called decomposable combinatorial
structures, including nonambiguous algebraic languages, algorithms with
polynomial complexity can be derived from the rather systematic recursive
method. Our aim is to explore classes of structures for which an even tighter
link exists between counting, sampling, and coding.
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9.0. Introduction 479

For a number of natural families of combinatorial structures, the count-
ing problem has indeed a “nice” solution: nice could mean that there is a
simple formula for Card(Cn), that the generating series

∑
n≥0 Card(Cn)xn

is an algebraic function, etc. The rationale of this chapter is that these nice
enumerative properties are the visible “traces” of deeper structural proper-
ties, and that making the latter explicit is a way to solve simultaneously and
simply the three problems above.

The enumeration ofwalks on lattices (Section 9.1) is an inextinguishable
source of nice counting formulae. These formulae can often be given simple
interpretations by viewingwalks as words on an alphabet of steps, and using
ingredients of the combinatorics of words. In particular we shall consider
some rational and algebraic languages, shuffles, and the cycle lemma.

Convex or directed polyominoes (Section 9.2) illustrate the idea that nice
combinatorial properties help sampling. Since enumeration and random
generation of general polyominoes appear intractable, it was proposed in
statistical physics to study subclasses like convex or directed polyominoes,
that display better enumerative properties. These objects can be described
in terms of simple languages, often algebraic, and this leads to efficient
random generators.

The family of planar maps (Section 9.3) is a further example of a
class with unexpectedly nice enumerative properties. Maps are the natu-
ral combinatorial abstraction for embeddings of graphs in the plane and
for polygonal meshes in computational geometry, and maps were also
largely studied in theoretical physics. Toy models of statistical physics,
like percolation or the Ising model, are often studied on regular lattices,
but also on random maps. The uniform distribution indeed appears to
give, at the discrete level, the right notion of distribution of probability
on possible universes as prescribed by quantum gravity. In these vari-
ous contexts, results have been obtained independently on counting, sam-
pling, and coding problems. Again we rely on a combinatorial explana-
tion of the enumerative properties of planar maps to approach these three
problems.

Most of the time, we state and prove results for some particularly simple
structures, while they are valid for more generic families (e.g. walks with
more general steps, polyominoes on other lattices, maps with constraints).
We made this choice to keep the chapter relatively short, but also because
on these simple structures the “traces” are more visible, and the underlying
combinatorics appears more explicitly.

All the objects that are considered in this chapter have nice geomet-
ric interpretations in the plane. We have chosen to rely on the geometric
intuition of the reader to support these interpretations, and concentrate the
proofs on the combinatorial aspects.
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480 9. Counting, Coding, and Sampling with Words

9.1. Counting: walks in sectors of the plane

A (nearest neighbour) walk on the square lattice Z2 is a finite sequence of
verticesw = (w0, w1, . . . , wn) inZ2 such that each stepwi − wi−1, for 1 ≤
i ≤ n, belongs to the set S = {(0, 1), (0,−1), (−1, 0), (1, 0)}. The number
n of steps is the length of w; w0 and wn are respectively its startpoint and
endpoint. The reverse walk of w is the walk w̄ = (wn,wn−1, . . . , w1, w0).
A loop is a walk with identical startpoint and endpoint.

Elements of S are also denoted u, d, l, r – standing for up, down, left,
and right. Unless explicitly specified, we consider walks up to translation,
or equivalently, we assume that they start from the origin (0, 0). A walk can
thus be seen as a word on the alphabet S = {u, d, l, r} and we identify the
set of walks with the language {u, d, l, r}∗, making no distinction between
both of them.

In the rest of this section, we study families of walks with various
boundary constraints: on a line, a half line, a half plane, a quarter plane,
and finally, on the slitplane. This is the occasion to introduce enumerative
tools that will be of use in later sections.

9.1.1. Unconstrained walks and rational series

Let us first consider walks that use only vertical steps (i.e. u or d), and hence
stay on the axis (x = 0). Thesewalks are sometimes called one-dimensional
simple symmetric walks, and are often considered in their “time stretched”
version: each step u or d is replaced by a (1, 1) or (1,−1) step, in order to
give an unambiguous representation in the plane, as illustrated byFigure 9.1.
Up to a π/4-rotation, these walks are in one-to-one correspondence with
walks with steps in {u, r} and as such, are sometimes called staircase walks,
or directed two-dimensional walks.

(a) On an axis, (b) stretched, (c) and rotated.

Figure 9.1. Three representations of the one-dimensional walk duuudu.

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


9.1. Counting: walks in sectors of the plane 481

Counting these walks with respect to their length � amounts to counting
words on {u, d} of length �, and there are 2� of those. Restricting them
to end at ordinate j , with � = 2n + |j | for some nonnegative n, is hardly
more difficult: for j ≥ 0, the corresponding words are arbitrary shuffles of
n + j letters u and n letters d, and similarly for j ≤ 0, they are shuffles of n
letters u and n − j letters d. Hence the number of walks of length 2n + |j |
ending at ordinate j is (

2n + |j |
n

)
.

It will be convenient to express enumerative results in terms of languages
and generating functions. In this case, the language V of walks on the
vertical axis is just {u, d}∗. Equivalently, in the algebraQ〈〈u, d 〉〉 of formal
power series in noncommuting variables, the language V (viewed as the
formal sum of its words) is uniquely defined by the linear equation:

V = ε + (u + d)V, (9.1.1)

which corresponds to the nonambiguous decomposition: “a walk is either
the empty walk or made of a step u or d followed by a walk”.

Define now δ(w) = |w|u − |w|d for any word w on S, so that δ(w) is
the final ordinate of the walk w. The generating function of the language V
with respect to the length (variable t) and the final ordinate (variable y) is

V (t ; y) =
∑
w∈V

t |w|yδ(w),

which is an element of the algebra Q(y)[[t]] of formal power series in the
variable t with coefficients that are rational functions in y.

Observe that |.| and δ are morphisms of monoids (S∗, ·) → (Z,+), so
that V (t ; y) can be viewed as the commutative image of V by the morphism
of algebra w �→ t |w|yδ(w) from Q〈〈u, d 〉〉 to Q(y)[[t]]. Taking the commu-
tative image of Equation 9.1.1, the generating function V (t ; y) satisfies:

V (t ; y) = 1 + (ty + ty−1)V (t ; y).

An explicit expression ofV (t ; y) follows, and its expansion of course agrees
with the previous direct enumeration:

V (t ; y) = 1

1 − (y + y−1)t
=

+∞∑
m=0

m∑
k=0

(
m

k

)
tmym−2k.

The commutative image mechanism produces a priori a formal power
series of Q(y)[[t]], but, as in the present example, it retains properties of
the initial language: the series V (t ; y) of the rational language {u, d}∗ is a
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482 9. Counting, Coding, and Sampling with Words

rational function of t and y, that is belongs to Q(t, y). Walks with more
general steps are dealt with in a similar way: for instance the language W
associated to walks in Z2 is S∗ and the generating function of these walks
with respect to the length and the coordinates of the endpoint is:

W (t ; x, y) = 1

1 − (x + x−1 + y + y−1)t
.

Another illustration is given by the family of walks that never immediately
undo a step they have just done. Their language is the set of words avoiding
the factors {ud, du, lr, rl} which is well known to be rational. Accordingly
their generating function with respect to the lengths and the coordinates
of the endpoints belongs to Q(t, x, y). Conversely, when the generating
function of a set of objects is rational, it is natural to try to encode them by
words of a rational language.

9.1.2. Walks on a half line and Catalan’s factorization

Weshall now considerwalks that stay on the upper half axis (x = 0, y ≥ 0).
More precisely let the depth of w be the absolute value of the minimal
ordinate δ(v) for all prefixes v of w. Walks that stay on the upper half
axis are exactly the walks with depth zero, and this condition is called
the nonnegative prefix condition. Loops satisfying the nonnegative prefix
condition are often calledDyck words on the alphabet {u, d}. In turn, walks
satisfying the nonnegative prefix condition are sometimes referred to as
Dyck prefixes, since any of them can be completed into a Dyck word. See
Figure 9.2 for examples. LetD denote the language of Dyck words andDn

the set of Dyck words of length 2n. The following lemma gives a central
role to Dyck words.

Lemma 9.1.1 (Catalan’s factorization). The language {u, d}∗ of one-
dimensional walks admits the following nonambiguous decomposition:

{u, d}∗ = (Dd)∗D(uD)∗.

(a) a Dyck word, (b) a Dyck prefix.

Figure 9.2. The family of Dyck words (stretched representations).
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w1 w2 w4 w5 w7 w8 w9

Figure 9.3. Catalan’s factorization of a walk in (Dd)3D(uD)5.

More precisely, the language of walks with depth � and final ordinate
j is

(Dd)�D(uD)j+�

Proof. For anywordw on the alphabet {u, d}with depth � and final ordinate
j , such a factorization is obtained at first passages from ordinate i + 1
to i for i = −1, . . . ,−� and last passages from ordinate i to i + 1 for
i = −�, . . . , j − 1 (see Figure 9.3). The uniqueness of the decomposition
follows from the fact that any strict prefix v of a word in Dd satisfies
δ(v) ≥ 0 by definition of D, and hence does not belong to Dd.

Catalan’s factorization immediately allows us to derive the total number
of walks on the half line.

Proposition 9.1.2. The number of Dyck prefixes of length m is(
m⌊
m
2

⌋)
.

Proof. A Dyck prefix of even length is a walk with depth zero and even
final ordinate 2j for some integer j ≥ 0. According to Lemma 9.1.1, the
language of these words isD(uD)2j . Upon changing the j first factors u in
factors d, words of length 2n in this language are in bijection with words of
length 2n in the language (Dd)jD(uD)j , that is with words of the language
of loops with depth j . Hence Dyck prefixes of length 2n are in bijection
with loops of the same length, and their number is

(2n
n

)
.

Similarly, a Dyck prefix of odd length ends at ordinate 2j + 1, for
some j ≥ 0. But words of equal length in the languages D(uD)2j+1 and
(Dd)jD(uD)j+1 are in bijection. The union of the last languages for all
j ≥ 0 is the set of words w with δ(w) = 1,

(2n+1
n

)
of which have length

2n + 1.

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


484 9. Counting, Coding, and Sampling with Words

The previous proof can be summarized as follows: find a factorization
into Dyck factors separated by some specific steps (typically first or last
passages), and then reorganize the factorizationwithoutmodifying theDyck
factors. We shall apply this principle again to give a bijective enumeration
of Dyck words.

Proposition 9.1.3. The number of loops of length 2n that stay on the half
axis (x = 0, y ≥ 0) is the nth Catalan number:

Cn = 1

n + 1

(
2n

n

)
.

Proof (as a corollary of Proposition 9.1.2). Removing the last step of a Dyck
prefix of length 2n + 1 yields a prefix of length 2n. In this way every Dyck
prefix of length 2n is obtained twice, except for Dyck paths that are obtained
only once. Hence

(2n+1
n

) = 2
(2n
n

) − CardDn, and the formula follows.

Proof (direct bijection). We prove the relation (n + 1) CardDn = (2n
n

)
by

giving a bijection between the set of pairs (v, v′) with vv′ ∈ Dn and v empty
or ending with a letter u, and the set of loops of length 2n. To do that we
first state two factorizations that follow from Lemma 9.1.1:
(i) the set of pairs (v, v′) as above with δ(v) = � is (Du)� × D(dD)�;
(ii) the set of loops with depth � is (Dd)�D(uD)�.

Exchanging u and d factors in these decompositions leads to the announced
bijection.

The same idea allows us to refine the enumeration of Dyck prefixes.

Proposition 9.1.4. The number of Dyck prefixes of length 2n + j and final
ordinate j ≥ 0 is

j + 1

n + j + 1

(
2n + j

n

)
.

Proof. We prove the formula by giving a bijection between pairs (w, i)
where w is a walk with δ(w) = j and i ∈ {0, . . . , j}, and pairs (w′, k)
where w′ is a Dyck prefix with δ(w′) = j and k ∈ {0, . . . , n + j}:
(i) to any pair (w, i) as above, associate (wi, . . . , wj , w0, . . . , wi−1)

where w0 is the loop and the other w� are the Dyck paths such that
w = w0uw1 · · · uwj (this is the decomposition at the last passages at
levels 0, . . . , j ),

(ii) to any pair (w′, k) as above, associate (w′
0, . . . , ŵ

′
i , . . . , w

′
j ), where

the w′
� are the Dyck words such that w′ = w′

0uw
′
1 · · · uw′

j , i is the
index of the w′

i containing or following the kth letter u in the word
uw′, and ŵ′

i = (v, v′) is the factorization of w′
i after this letter.

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


9.1. Counting: walks in sectors of the plane 485

The bijection in the second proof of Proposition 9.1.3 allows us to transform
the pair ŵ′

i = (v, v′) in a loop, so that both sets are associated to the same
set of sequences of j + 1 walks.

9.1.3. Walks on a half plane and algebraic series

Walks in the half plane (y ≥ 0) are hardly more complicated to enumer-
ate than walks on the half line. Indeed, as words on the alphabet S, these
walks are completely characterized by the fact that all their prefixes v con-
tain at least as many letters u as letters d. Hence the associated language
is the set of shuffles of vertical Dyck prefixes with sequences of hori-
zontal steps. Various formulae can be derived from this characterization:
for instance, the number of loops of length 2n that stay in the half plane
(y ≥ 0) is

n∑
k=0

(
2n

2k

)(
2k

k

)
Cn−k.

Rather than going further in this direction, we shall observe that the set
of these walks is an algebraic language and return to generating functions.
Consider the alphabet Ak = {u, d, x1, . . . , xk}, and the monoid morphism
δ defined as previously by δ(w) = |w|u − |w|d . The language M(k) of
k-colouredMotzkinwords is the set ofwordsw on the alphabetAk satisfying
δ(w) = 0 and the nonnegative prefix property. For k = 0 this is the Dyck
language. For k = 2, upon setting x1 = l, x2 = r , bicolouredMotzkinwords
are excursions in the half plane, that is walks in the half plane (y ≥ 0) that
finish on the axis (y = 0) (see Figure 9.4).

The language of k-coloured Motzkin words admits an algebraic des-
cription:

M(k) = ε + (x1 + · · · + xk)M(k) + uM(k)dM(k), (9.1.2)

which derives immediately from the nonambiguous decomposition of any
nonempty Motzkin word at its smallest nonempty prefix v such that
δ(v) = 0. Taking the commutative image of Equation (9.1.2), the generat-
ing function M (k)(t) = ∑

w∈M(k) t |w| of the Motzkin language with respect
to the length satisfies the equation:

M (k)(t) = 1 + ktM (k)(t) + t2M (k)(t)2. (9.1.3)

Observe that this equation completely determines M (k)(t), since it has
a unique solution in the space of formal power series in the variable t

(as can be checked by induction, extracting the coefficient of tn on both
sides).

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


486 9. Counting, Coding, and Sampling with Words

Figure 9.4. An excursion in the half plane.

Any additive parameter can be taken into consideration in the commu-
tative image. For instance the previous algebraic decomposition yields the
following proposition in the case of bicoloured Motzkin words.

Proposition 9.1.5. The generating function for walks in the half plane
returning to the axis (y = 0), with respect to their length, abscissa of the
endpoint, and number of vertical steps, is:

M (2)(t ; x, z) =
1 − t

(
x + 1

x

)
−

√[
1 − t

(
x + 1

x
+ 2z

)][
1 − t

(
x + 1

x
− 2z

)]
2t2z2

.

Proof. Taking the commutative image with the map w → t |w|x |w|r−|w|l
z|w|u+|w|d yields the equation

M (2)(t ; x, z) = 1 + t(x + 1

x
)M (2)(t ; x, z) + t2z2M (2)(t ; x, z)2.

The discriminant of this equation is

�(t ; x, z) = [t(x + 1

x
) − 1]2 − 4t2z2,

and among the two roots of the quadratic equation, only the one of the
proposition is a formal power series in t .

Equation (9.1.3) shows that the series M (k)(t) satisfies a relation of the
formP (M (k)(t), t) = 0 withP a polynomial, whichmeans that it is an alge-
braic formal power series. This illustrates the fact that algebraic languages
that admit a nonambiguous algebraic description naturally have algebraic
generating functions with respect to additive parameters. Conversely, when
the generating function of a set of objects is algebraic, one would like to
obtain it from an algebraic description of the objects (or more formally
from an encoding of the objects by the words of an algebraic language
with a nonambiguous description). In this sense, Equation (9.1.2) is more
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(a) Awalk in the diagonal up quadrant. (b) A loop in the first quadrant.

Figure 9.5. Walks in quadrants.

satisfying than Catalan’s factorization, even though the commutative image
of the latter also induces an algebraic equation.

Expanding the generating function M (2)(t, 1, 1)= (1−2t −√
1−4t)/

2t2 in powers of t , one observes the following amusing result (cf.
Problem 9.1.5).

Corollary 9.1.6. The number of bicoloured Motzkin words of length n is
given by the Catalan number Cn+1.

9.1.4. Walks on a quarter plane and some nonalgebraic series

We shall now consider walks that are confined in a quarter plane, and more
precisely in the first quadrant (x ≥ 0, y ≥ 0) and in the up diagonal quadrant
(x + y ≥ 0, y ≥ x). Examples of such walks are given in Figure 9.5.

Loops in the up diagonal quadrant (x+y≥0, y≥x) (see Figure 9.5(a))
are simple to describe: let w be such a loop of length 2n, and consider the
projections of the walk on the two diagonals (x = y) and (x = −y). Let
{a, b} be the elementary steps on these two axes, with a corresponding to
up steps and b to down steps. Steps in Z2 have the following projections:

u −→ (a, a) d −→ (b, b) l −→ (b, a) r −→ (a, b)

and the projections of w on the diagonals are Dyck words of length 2n on
{a, b}; reciprocally any pair of Dyck words of the same length over this
alphabet corresponds to a loop in the up diagonal quadrant. Hence:

Proposition 9.1.7. The number of loops of length 2n that stay in the
diagonal quadrant (x + y ≥ 0, y ≥ x) is equal to C2

n .

More generally, any walk of length 2n + |i| + j and endpoint (i, j ) in
the up diagonal quadrant is described by its projections on the two diagonal
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axes; these projections are decoupled Dyck prefixes of length 2n + |i| + j

with respective ordinate of the endpoint i + j and j − i. Hence:

Proposition 9.1.8. The number of walks of length 2n + |i| + j and end-
point (i, j ) that stay in the diagonal quadrant (x + y ≥ 0, y ≥ x) is given
by:

(j + i + 1)(j − i + 1)

(n + j + |i| + 1)(n + j + 1)

(
2n + |i| + j

n + |i|
)(

2n + |i| + j

n

)
,

and the total number of walks of length n that stay in the diagonal quadrant
(x + y ≥ 0, y ≥ x) is given by (

n⌊
n
2

⌋)2

.

The case of loops in the first quadrant (x ≥ 0, y ≥ 0) (see Figure 9.5(b))
is quite similar. These loops are words w on S such that both restrictions
of w to {u, d} and to {l, r} are Dyck words; hence the language of loops in
the first quadrant is the shuffle of the Dyck languages on {u, d} and {l, r}.
Proposition 9.1.9. The number of loops of length 2n that stay in the
quadrant (x ≥ 0, y ≥ 0) is given by:

n∑
k=0

(
2n

2k

)
CkCn−k = 1

(2n + 1)(2n + 2)

(
2n + 2

n + 1

)2

.

The general case of walks with given length and endpoint or with
given length is similar to the case of the diagonal quadrant and left to the
reader.

A remarkable consequence of these formulae is that the languages of
walks in the diagonal (or in the standard quadrant) cannot be unambiguous
algebraic languages: on the one hand the asymptotic number of walks of
length n in the diagonal quadrant,

(
n

�n/2

)2
, grows like 4n/n when n goes

to infinity; on the other hand, the possible asymptotic behaviours of the
Taylor coefficients of an algebraic series are classified, and do not include
the form ρnn−i for i a positive integer; therefore the generating function
of walks in the diagonal quadrant is not algebraic, and neither can be the
associated language.

9.1.5. Walks on the slitplane and the cycle lemma

We call slitplane the complement of the half axis (x = 0, y ≤ 0) in the
square lattice Z2. Walks on the slitplane are defined as walks that do not
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(a) A walk on the slitplane. (b) The factorization of a walk.

Figure 9.6. On the slitplane.

touch this half axis except maybe at their startpoint or endpoint, as shown
in Figure 9.6(a).

The tool we shall use to enumerate walks on the slitplane is the so-called
cycle lemma. For any alphabetA endowed with a morphism δ : A∗ → Z, a
word w in A∗ is said to have the Łukasiewicz property if every strict prefix
v of w satisfies δ(v) > δ(w).

Lemma 9.1.10 (Cycle lemma). Let A be an alphabet endowed with a
morphism δ : A∗ → Z. Then a word w in A∗ such that δ(w) = −1 admits
a unique factorization w1w2 with w1 nonempty such that w2w1 has the
Łukasiewicz property.

Proof. Letw1 be the shortest prefix ofw with δ(w1) equal to the depth ofw.
Thenw2w1 has the Łukasiewicz property. Moreover, let us verify that there
is no other such factorization. First assume that w′

1 is a prefix of w shorter
thanw1. Then the prefixw′′ ofw′

2 of length |w1| − |w′
1| satisfies δ(w′′) < 0

and is also a strict prefix of w′
2w

′
1. Hence w′

2w
′
1 has not the Łukasiewicz

property. It remains to consider the case of a prefix w′
1 of w longer than

w1. The suffix w′′ of w′
1 of length |w′

1| − |w1| satisfies δ(w) ≥ 0 and is
also a suffix of w′

2w
′
1. Since moreover δ(w′

2w
′
1) = −1, w′

2w
′
1 has not the

Łukasiewicz property.

Corollary 9.1.11. Consider the alphabet A = {a1, a2, . . . , ak}, endowed
with a morphism δ, and let n1, n2, . . . , nk be nonnegative integers such
that,

k∑
i=1

niδ(ai) = −1.

Then the number of words with ni letters ai for any 1 ≤ i ≤ k that have the
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490 9. Counting, Coding, and Sampling with Words

Łukasiewicz property is equal to:

1

n1 + · · · + nk

(
n1 + · · · + nk

n1, . . . , nk

)
.

Proof. For any wordw as above, δ(w) = −1, so that the conjugacy class of
w contains |w| different words. According to the cycle lemma exactly one
of these n1 + · · · + nk words has the Łukasiewicz property. The formula
follows.

ForA = {u, d} with δ(u) = 1, δ(d) = −1, the set of words enumerated
by the previous corollary is the Dyck-Łukasiewicz language Dd, and we
recover Proposition 9.1.3. A set of words C is called a code if the regular
expression C∗ is unambiguous (see Section 1.9).

Corollary 9.1.12. Let C be a code for a set of words on the alphabet A.
Then the generating function (with respect to the length) for Łukasiewicz
words w in C∗ such that δ(w) = −1 is equal to

[y−1] log
1

1 − C(t ; y)
,

where C(t ; y) is the generating function of the code C with respect to the
length (variable t) and to δ (variable y).

Proof. The generating function of words on the alphabet A with k factors
in C is C(t ; y)k . Restricting the generating function to words w such that
δ(w) = −1 is done by taking the coefficients of y−1 in the series. The
fractions of these words that have the Łukasiewicz property is then 1/k, so
that their generating function is

∑
k≥1

1

k
[y−1]C(t ; y)k = [y−1] log

1

1 − C(t ; y)
.

To study walks on the slitplane, it is natural to decompose them at points
where they touch the vertical axis (x = 0), as shown in Figure 9.6(b): any
walk w on the plane that starts and finishes on the vertical axis can be
uniquely factored into vertical steps on this axis and primitive excursions
in the left or right half plane; in other terms, the language of these walks is

(u + d + lM(l)r + rM(r)l)∗

whereM(l) andM(r) respectively denote the set of excursions in the left half
plane (x < 0) and in the right one (x > 0). Hence the set {u, d} ∪ lM(l)r ∪
rM(r)l forms a code C for walks on the plane starting and ending on the
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vertical axis: these walks can thus be viewed as walks on the axis (x = 0)
with the infinite set of steps C.

To apply the cycle lemma to walks on the slitplane, we consider again
the morphism δ(w) = |w|u − |w|d . Let us single out the class of walks on
the slitplane that start at position (0, 1) and end on the half axis at position
(0, 0): these walks are exactly the Łukasiewicz words w in C∗ such that
δ(w) = −1.

Proposition 9.1.13. The number of walks on the slitplane with startpoint
(0, 1), endpoint (0, 0), and length 2n + 1 is:

C2n+1 = 1

2n + 2

(
4n + 2

2n + 1

)
.

Proof. Let C(t ; y) be the commutative image of C, so that 1/(1 − C(t ; y))
is the generating function of words on the code C. Observe that a π/2-
(respectively −π/2-) rotation maps bijectively words of length n in M(l)

(resp.M(r)) on words of length n in the bicolouredMotzkin languageM(2),
hence Proposition 9.1.5 yields:

log
1

1 − C(t ; y)
= 1

2

⎛
⎜⎜⎝log

1

1 − t

(
y + 1

y
+ 2

)+log
1

1 − t

(
y + 1

y
− 2

)
⎞
⎟⎟⎠

= 1

2

∑
n≥1

tn

n

((
y + 1

y
+ 2

)n

+
(
y + 1

y
− 2

)n)
.

The formula follows by extracting the coefficient of y−1 and resumming.

The above proof does not yield an interpretation of the occurrence of
Catalan numbers in Proposition 9.1.13. We conclude this section with a
more direct derivation.

Proof of Proposition 9.1.13 (bis). We are interested in walks w such that

(i) |w|l = |w|r , and |w|d = |w|u + 1,
(ii) and for any strict prefix v of w, either |v|l �= |v|r , or |v|u ≥ |v|d .

The first condition accounts for the displacement between the startpoint and
endpoint, while the second one ensures that the walks stay in the slitplane.
Let us describe a one-to-one correspondence ϕ between these walks and
excursions of even length in the half plane (bicoloured Motzkin words).
The result then follows from Corollary 9.1.6.
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(a) A walk w on the slitplane. (b) The half plane excursion ϕ(w).

Figure 9.7. On the slitplane.

Let w be a walk as in the proposition. Since |w|d = |w|u + 1,
Lemma 9.1.10 yields a unique factorization of w in w1dw2 such that each
proper prefix v ofw2w1d satisfies |v|u ≥ |v|d : this is the factorization at the
first arrival to the lowest level. Let w̄2 be the walk that is symmetric to w2

with respect to the vertical axis (x = 0), and ϕ(w) be equal to w̄2w1. Then
ϕ(w) is a bicoloured Motzkin word, corresponding to an excursion in the
half plane (y ≥ 0) of length 2n (see Figure 9.7). Moreover the factorization
w̄2w1 of ϕ(w) is the factorization at the first passage on the lowest point
on the vertical line of equidistance between the startpoint and endpoint of
ϕ(w).

Conversely, given a bicoloured Motzkin word w′, let w′
1w

′
2 be its fac-

torization at the first passage on the lowest point on the vertical line of
equidistance between its startpoint and endpoint. Letψ(w′) = w′

2dw̄
′
1. The

walk ψ(w′) is clearly a walk in the slitplane from (0, 1) to (0, 0), and
ϕ(ψ(w′)) = w′. Moreover, ψ(ϕ(w)) = w for any walk w as in the propo-
sition, and this concludes the proof.

As discussed in Section 9.1.3, the language of bicolouredMotzkinwords
has a very natural algebraic decomposition. However, this decomposition
does not carry very well through the bijection.

9.2. Sampling: polygons, animals, and polyominoes

A walk on the square lattice Z2 is called a self-avoiding walk, or a path, if
it visits at most once each vertex of the lattice. A self-avoiding polygon, or
simply in this text, a polygon, is a self-avoiding loop.

An animal is a set A of vertices of the lattice such that any two vertices
of A are connected by a path visiting only vertices of A. Animals are

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


9.2. Sampling: polygons, animals, and polyominoes 493

(a) A polygon, (b) an animal, (c) and a polyomino.

Figure 9.8. Three related classes of objects.

considered up to translations of the lattice. Placing a unit square centred on
each vertex of A, we obtain a polyomino. Polyominoes are however more
naturally defined as edge-connected sets of squares of the lattice. These
definitions are illustrated by Figure 9.8. Each polygon is the contour (or
the boundary) of a simply-connected polyomino, and in the plane this is a
one-to-one correspondence (see Figures 9.10, 9.11 and 9.12). In particular
the length of a polygon corresponds to the perimeter of the polyomino. A
polygon has moreover dimension (p, q) if the smallest rectangle in which
it can be inscribed has horizontal width p and vertical width q. Finally the
area of a polyomino is its number of cells, corresponding for animals to the
number of vertices.

Little can be said from the enumerative point of view on animals, poly-
gons, or polyominoes in general. Two ideas have however been particularly
successful for defining subclasses amenable to mathematical study and still
of interest: restriction to convex or to directed objects. A polygon of dimen-
sion (p, q) is convex if its length is 2p+ 2q. This definition stresses the fact
that convex polygons are in some sense the most extended polygons, and
do not make meanders. An equivalent, but maybe more appealing, interpre-
tation is in terms of polyominoes: a polyomino is convex if its intersection
with any horizontal or vertical line is connected. A polyomino (respectively
an animal) is directed if there is a cell (resp. a vertex) from which every
cell (resp. a vertex) can be reached by a path going up or right inside the
object. These definitions are illustrated by Figure 9.9.

9.2.1. Generalities on sampling

Together with the enumerative questions, much interest has been given to
the properties of random animals, polyominoes, and polygons. By random
is meant here the uniform distribution: objects of equal size are given equal
probability of appearing. We illustrate this trend by concentrating on the
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(a) A convex polyomino. (b) A directed polyomino.

Figure 9.9. Subclasses of polyominoes.

derivation of random generators. In order to describe these algorithms, we
assume that we have at our disposal a perfect random number generator
Rand(m, n) that outputs an integer of the interval [m, n] chosen with
uniform probability: for all m ≤ i ≤ n,

P(Rand(m, n) = i)= 1/(n − m + 1).

We assume unit cost for arithmetic operations and for calls to the generator
Rand(). These randomness and complexity models are justified by the
fact that our algorithms only sample and compute on integers that are
polynomially bounded in the size of the objects generated.

We shall need a random sampler for elements of S(w), the set of
permutations of the letters of a fixed wordw. The following algorithm does
this by applying a random permutation to the letters of w.

RandPerm(w)
1 for i ← 2 to |w| do
2 Swap(w[i], w[Rand(1, i)])
3 return w

Lemma 9.2.1. RandPerm(w) returns in linear time a random element
of S(w) under the uniform distribution: for all w′ ∈ S(w),

P(RandPerm(w) = w′)= 1

Card(S(w))
.

Proof. A permutation σ on the set {1, . . . , n} has a unique decomposition
as a product σ = τn . . . τ2 of transpositions of the form τi = (ji, i) with
1 ≤ ji ≤ i, and conversely any such decomposition provides a permuta-
tion. Therefore, the call RandPerm(w) on a word w with distinct letters
generates a uniform random permutation of the letters. Upon labelling
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3

Figure 9.10. A parallelogram polyomino and its contour.

identical letters by their initial place, we conclude that uniformity is also
preserved in the general case.

In the rest of this part, we describe random sampling algorithms for
convex polygons and directed animals.

9.2.2. Parallelogram polyominoes and the cycle lemma

A convex polyominoP is a parallelogram polyomino if its contour contains
the bottom left and top right corners of its bounding box. Equivalently, its
contour must be a staircase polygon, that is a polygon made of two up-right
directed paths, meeting only at their extremities. These upper and lower
paths, being directed, can be coded with two letters. For a later purpose,
it will be convenient to code them on the alphabet {h, v}, with h standing
for a horizontal step and v standing for a vertical step. Starting from the
bottom left corner, let vw1h be the word coding the upper path, and hw2v

be the word coding the lower path (there is no choice for the first and last
letters). If P has dimension (p + 1, q + 1) then |w1|h = |w2|h = p and
|w1|v = |w2|v = q. The reduced code of a staircase polygon w is the word
on the alphabetA = {(

v

h

)
,
(
v

v

)
,
(
h

h

)
,
(
h

v

)}
obtained by stacking the two words

w1 and w2. In the example of Figure 9.10, the two paths are respectively
vw1h = v · vhvhvvhhhvhh · h and hw2v = h · hhvhvhvvhhvh · v.

Words on A that code for staircase polygons are characterized by the
facts that they have an equal number of letters h in both rows, and that their
prefixes contain at least as many letters

(
v

h

)
as letters

(
h

v

)
: indeed, the mor-

phism δ induced by {δ(v
h

) = 1, δ
(
h

v

) = −1, δ
(
h

h

) = δ
(
v

v

) = 0}measures the
distance between the upper and lower paths along diagonals, and the non-
negative prefix property expresses the condition that the upper and lower
paths do not meet before their endpoint. Codes of staircase polygons are
thus essentially bicoloured Motzkin words.

This characterization suggests that staircase polygons be constructed by
applying the cycle lemma to the set S(p, q) of words of length p + q + 1
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onA with p + 1 letters h and q letters v in the first row, and p letters h and
q + 1 letters v in the second row:

Staircase(p, q)

1 w′
1 ← RandPerm(hp+1vq) � generate w′ = (

w′
1

w′
2

) ∈ S(p, q)

2 w′
2 ← RandPerm(hpvq+1)

3 (m, δm) ← (0, 0) � seek the position m of the
4 δ ← 0 � leftmost minimum w.r.t δ
5 for i ← 1 to p + q + 1 do
6 if (w′

1[i], w
′
2[i]) = (v, h) then

7 δ ← δ + 1
8 elseif (w′

1[i], w
′
2[i]) = (h, v) then

9 δ ← δ − 1
10 if δ < δm then
11 (m, δm) ← (i, δ)
12 (w1h,w2v) ← Shift((w′

1, w
′
2), m) � get the conjugate at position m

13 return (vw1h, hw2v)

Proposition 9.2.2. Staircase(p, q) produces the code of a random uni-
form staircase polygon with dimension (p + 1, q + 1) in linear time.

Proof. Let us first use the cycle lemma to derive the number of staircase
polygons. The number of words in S(p, q) is

(
p+q+1

q

)(
p+q+1

p

)
. Then

among the p + q + 1 cyclic shifts of any word w′ ∈ S(p, q), exactly
one is of the form w

(
h

v

)
with w having the nonnegative prefix property.

Hence the number of staircase polygons with dimension (p + 1, q + 1) is
1

p+q+1

(
p+q+1

q

)(
p+q+1

p

)
.

The algorithm Staircase() generates a word uniformly at random in
the set S(p, q), and computes its unique cyclic shift coding for a staircase
polygon. The probability of getting the code of a given polygon P is thus
the sum of the probability of getting each of its cyclic shifts. But the code
of P admits p + q + 1 distinct cyclic shifts, and each of these words has
a probability 1/Card(S(p, q)) of being obtained. Thus the probability of
getting P is (p + q + 1)/Card(S(p, q)), that is it depends only on the
dimension of P : uniformity is preserved through the cycle lemma.

9.2.3. Directed convex polyominoes and Catalan’s factorization

Directed convex polyominoes are characterized among convex polyomi-
noes by the property that their contour contains the bottom left corner of
their bounding box. In other terms contours of directed convex polyomi-
noes are unimodal polygons, that is shuffles of a word of the language u∗d∗
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Figure 9.11. A directed convex polyomino and its contour.

and a word of the language r∗l∗. Let us consider a unimodal polygon with
dimension (p + 1, q + 1), and decompose it into an upper path and a lower
path both starting from the bottom left corner and of length p + q + 2, and
respectively obtained in clockwise and counterclockwise directions. Letw′

1
andw′

2 be the codes of these two paths on the alphabet {h, v}. In the example
of Figure 9.11, the two paths are respectivelyw′

1 = vhvhvvhvhvhhvv and
w′

2 = hhhhvhvhhhvhvh. The following properties of w′
1 are immediate

consequences of the definition of unimodal polygons:
1. the word w′

1 starts with a letter v;
2. it contains at least q + 1 letters v;
3. the first q + 1 letters v code up steps, the other ones down steps;
4. the (q + 1)th letter v is followed by a letter h.

The last property accounts for the right turn that the path has to make
when reaching the upper boundary. Define the reduced codew1 as obtained
from w′

1 by deleting the two redundant letters given by Properties 1 and 4.
Similarly the reduced code w2 is obtained by deleting from w′

2 the first
letter (that is a letter h) and the letter following the (p + 1)th letter h (that
is a letter v). Letw be the word onA obtained by stackingw1 andw2. Then
again all prefixes of w contain at least as many letters

(
v

h

)
as letters

(
h

v

)
. It

turns out that this condition is sufficient for w to code a unimodal polygon:
this is expressed by the following lemma, the proof of which is left to the
reader.

Lemma 9.2.3. A word w on A is the stacked reduced code of a unimodal
polygon with dimension (p + 1, q + 1) if and only if all its prefixes contain
at least as many letters

(
v

h

)
as letters

(
h

v

)
, and, viewed as a pair of words on

{h, v}, it contains 2p letters h and 2q letters v.

In terms of themorphism δ of the previous section, Lemma 9.2.3 implies
that a word of A∗ is the code of a unimodal polygon if and only if it is a
prefix of a Motzkin word on (A, δ). These prefixes are similar to prefixes
of Dyck words with δ even, and the proof of Proposition 9.1.2 suggests the
following algorithm.
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Unimodal(p, q)
1 w1 ← RandPerm(hpvq) � generate w = (

w1

w2

)
with δ(w) = 0

2 w2 ← RandPerm(hpvq)
3 δ ← 0
4 δm ← 0
5 for i ← 1 to p + q do
6 if (w1[i], w2[i]) = (v, h) then
7 δ ← δ + 1
8 elseif (w1[i], w2[i]) = (h, v) then
9 δ ← δ − 1
10 if δ < δm then � leftmost minimum found
11 (δm,w1[i], w2[i]) ← (δ, v, h) � down step to up step
12 return (w1, w2)

Proposition 9.2.4. Unimodal(p, q) produces the reduced code of a ran-
dom uniform unimodal polygon with dimension (p + 1, q + 1) in linear
time.

Proof. Lines 1, 2 of the algorithm construct aword
(
w1

w2

)
satisfying δ

(
w1

w2

) = 0.
A straightforward adaptation of the bijection used for Proposition 9.1.2
shows that these words are in one-to-one correspondence with prefixes of
Motzkin words: for the current δ, steps

(
v

h

)
play the role of up steps, steps(

h

v

)
play that of down steps, and Motzkin factors replace Dyck factors. The

algorithm implements the inverse bijection, replacing leftmost down steps
at negative levels by up steps.

Since the word
(
w1

w2

)
is taken uniformly in the set of words with p letters

h and q letters v in both lines, its image is uniform in the set of bicoloured
Motzkin prefixes with 2p letters h and 2q letters v.

As a corollary of the previous proof, we also see that the number of
unimodal polygons of dimension (p + 1, q + 1) is

(
p+q

p

)2
.

9.2.4. Convex polyominoes and rejection sampling

The contour of a convex polyomino with dimension (p + 1, q + 1) can be
coded as follows by a pair (w′, k): start from the upper point of the contour
on the left boundary, and code the path in clockwise direction by a word
w′ with letters h and v as previously; let moreover k be the distance of the
startpoint to the top border of the bounding box (see Figure 9.12). From the
geometry, the following properties of the word w′ are immediate:

1. there are 2p + 2 letters h and 2q + 2 letters v; moreover 0 ≤ k ≤ q;
2. the first p + 1 letters h code right steps, the other p + 1 left steps;
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k

Figure 9.12. A convex polyomino and its contour.

3. the first k letters v code up steps, the next q + 1 down steps, and the
final q + 1 − k up steps again;

4. the first letter is a letter h;
5. if k > 0 then the kth letter v is followed by a letter h;
6. the (p + 1)th letter h is followed by a letter v;
7. the (k + q + 1)th letter v is followed by a letter h;
8. the (2p + 2)th letter h is followed by a letter v;
9. the letters singled out in 4, 5, 6, 7, and 8 appear in this order.

These properties do not completely characterize the codes of convex poly-
gons, but this is almost the case, as the reader will verify:

Lemma 9.2.5. A pair (w′, k) satisfying these nine properties is the code
of a convex polygon if and only if the corresponding walk is a polygon, that
is, if it does not visit the same point twice. This property can be checked in
linear time by the following algorithm.

CheckSimple(w′, k)
1 (i1, δ1, ε1) ← (1, q + 1 − k,+1) � traversal of w′ from the

left
2 (i2, δ2, ε2) ← (2p + 2q + 3, q − k,−1) � traversal of w′ from the

right
3 for � ← 1 to p + 1 do � � counts horizontal steps
4 while w′[i1] = v do � vertical move on top
5 (i1, δ1) ← (i1 + 1, δ1 + ε1)
6 while w′[i2] = v do � vertical move on bottom
7 (i2, δ2) ← (i2 − 1, δ2 + ε2)
8 if δ1 ≤ δ2 then � self-intersection detected
9 return false
10 if δ1 = q + 1 then � top reached
11 ε1 ← −1
12 if δ2 = 0 then � bottom reached
13 ε2 ← +1
14 (i1, i2) ← (i1 + 1, i2 − 1) � next column
15 return true
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The reduced code (w, k) of a convex polygon is obtained by deleting the
redundant letters given by Properties 4, 6, 7, 8, and if k > 0 by Property 5.
The reduced word w has thus, if k = 0, 2p letters h and 2q letters v, or, if
k > 0, 2p − 1 letter h and 2q letters v. Given the reduced word w and the
index k, an immediate algorithm InsertRedundantLetters(w, k) re-
constructs w′ by inserting the missing letters from left to right.

The following generator is based on the rejection principle: words of
a superset of the set of codes are generated uniformly at random until a
proper code is obtained.

Convex(p, q)
1 do k ← Rand(0, q)
2 w ← RandPerm(h2pv2q)
3 if k = 0 or w[2p + 2q] = h then
4 w′ ← InsertRedundantLetters(w, k)
5 if CheckSimple(w′, k) = true then
6 return (w′, k)
7 while true

Proposition 9.2.6. Convex(p, q) produces the code of a randomuniform
convex polygon with dimension (p + 1, q + 1).

Proof. The fact that the output is uniform follows from the following stan-
dard rejection argument: when the algorithm stops, the probability of out-
putting a given code is proportional to the probability of getting this code
as an element of the superset; but elements of the superset are sampled
uniformly, that is have the same probability of being generated.

The expected complexity of the algorithm Convex() depends on the
comparison between the size (q + 1)

(2p+2q
2p

)
of the superset Sp,q in which

k and w are sampled, and the size of the set Pp,q of convex polygons with
dimension (p + 1, q + 1). More precisely, each loop takes linear time, the
probability of success of a loop is sp,q = Card(Pp,q)/Card(Sp,q), and the
number of loops is a geometric random variable with expectation 1/sp,q .
The explicit computation of Card(Pp,q) shows that this last value is bounded
by a constant for p ≥ q (see Problem 9.2.2).

Proposition 9.2.7. For p ≥ q, Convex(p, q) has expected linear
complexity.

9.2.5. Directed animals

Upon rotating the lattice counterclockwise by π/4, directed animals can be
given an elegant interpretation in terms of heaps of bricks: cells are viewed
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Figure 9.13. A directed animal and the equivalent strict pyramid.

as bricks exposed to the gravity law with the bottom brick lying on the
floor; the condition that animals are directed, that is that there always exists
a path downward to the bottom cell, is equivalent to the fact that every brick
leans on one brick below and cannot fall (see Figure 9.13).

To be more precise, let us give a definition of heaps of bricks. The
alphabet of bricks is B = {(i, i + 1), i ∈ Z}. Two bricks b, b′ of B com-
mute if and only if, as subsets of Z, b ∩ b′ = ∅. Two words are equivalent,
w ≡ w′, if one can be obtained from the other by a sequence of com-
mutations of adjacent commuting bricks. A heap of bricks is an element
of the associated partially commutative monoid, that is an equivalence
class for the relation ≡. The set of minimal bricks of a heap w is the set
min(w) = {b | ∃w′, w ≡ bw′}. A pyramid at abscissa i is a heap such that
min(w) = {(i, i + 1)}.

The canonical geometric representation of a heap induced by the gravity
law corresponds to the standard Cartier–Foata normal form of the heap:
reading a heap from left to right in lines from bottom to top yields a word
w of the formw1 · · ·wk with each blockwi made of commuting letters and
such that for each letter b of wi+1 there is a letter b′ of wi with b ∩ b′ �= ∅.
A heap is strict if moreover no two consecutive blocks of the normal form
have a brick in common: in other terms in a strict heap a brick (i, i + 1)
always leans on a brick (i − 1, i) or (i + 1, i + 2), not on another brick
(i, i + 1).

From the geometric interpretation of pyramids of bricks and the initial
discussion of this paragraph, the following lemma is immediate.

Lemma 9.2.8. Directed animals “are” strict pyramids of bricks.

This interpretation of directed animals in terms of pyramids of bricks
allows us to perform decompositions that would otherwise be very difficult
to explain. First define a semi-pyramid to be a pyramidwithout bricks on the
left-hand side of the bottom brick. Then the following two decompositions

https://doi.org/10.1017/CBO9781107341005.010 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.010


502 9. Counting, Coding, and Sampling with Words

(a) Factorization of a pyramid into a pyramid
and a semi-pyramid.

(b) Factorization of a semi-pyramid
into a brick and two semi-pyramids.

Figure 9.14. Decomposition of pyramids.

are obtained by pushing upward a brick and all the bricks that lay above it,
or indirectly lean on it:
(i) a strict pyramid of bricks is either a strict semi-pyramid, or can be

factored, by pushing upward the lowest brick with abscissa−1, into a
strict pyramid at abscissa −1 stacked over a strict semi-pyramid (see
Figure 9.14(a));

(ii) a strict semi-pyramid is reduced to a brick, or to a strict semi-pyramid
at abscissa 1 over a brick, or can be factored, by pushing upward
the second lowest brick with abscissa 0, into a strict semi-pyramid
at abscissa 0 stacked over a strict semi-pyramid at abscissa 1 over a
brick (see Figure 9.14(b)).

This joint decomposition is isomorphic to the joint decomposition of
Motzkin prefixes and of Motzkin words on the alphabet {a, b, x1}:
(i) a Motzkin prefix is either a Motzkin word or can be decomposed as

uav with u a Motzkin word and v a Motzkin prefix.
(ii) a Motzkin word is reduced to the empty word ε, or is of the form x1u

with u a Motzkin word, or can be decomposed as aubv with u and v

two Motzkin words.
These isomorphic decompositions induce a bijection between strict pyra-
mids of n bricks and Motzkin prefixes of length n − 1.

Corollary 9.2.9. Motzkin prefixes can be bijectively transformed into
strict pyramids of bricks in linear time.

The Motzkin language being algebraic, uniform random generation
could be done using a recursive approach. We describe instead another
application of the rejection principle which is both more elegant and
more efficient for this specific problem. Let us consider again the alphabet
Ak = {u, d, x1, . . . , xk} and the associated k-coloured Motzkin words of
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Section 9.1.3. A naive algorithm to generate uniform random prefixes of k-
coloured Motzkin words of length n consists in generating uniform random
words of (Ak)n and rejecting. However, a simple calculation shows that the
probability of success is of the orderO(n−1/2) thus giving an algorithmwith
expected complexityO(n3/2). A slight refinement on this idea is to observe
that rejection can be decided on the fly. This turns out to be surprisingly
efficient.

FlorentineRejection(n, k)
1 do w ← ε

2 for i ← 1 to n do � generate from left to right
3 w[i] ← Rand(1, k + 2)
4 if w[i] = k + 1 then
5 δ ← δ + 1
6 w[i] ← u

7 elseif w[i] = k + 2 then
8 δ ← δ − 1
9 w[i] ← d

10 if δ < 0 then � if a negative prefix is detected
11 break � restart from scratch
12 while i �= n + 1 � until w is a valid n letters word
13 return w

This algorithm obviously produces a k-coloured Motzkin prefix.

Lemma 9.2.10. The function FlorentineRejection(n, k) generates a
random uniform k-Motzkin prefix of length n in expected linear time.

Proof. For simplicity the analysis is presented in the case k = 0 but the
same strategy of analysis applies to the general case (using generating
functions instead of elementary counting). It will be convenient to consider
that when the construction fails at the ith step of the inner loop, we finish
the loop and generate n − i more letters at no cost. This modification of the
algorithm does not affect the final result or the cost, but allows us to think
of each iteration as producing a uniform random word of (Ak)n. From this
point of view, the Florentine rejection behaves like standard rejection and
therefore it is uniform on prefixes.

The probability of success of the inner loop is pn = (2n
n

)
2−2n = pn, and

the number of aborted loops is a geometric random variable with expected
value 1/pn = O(n1/2). Let us now compute the expected cost of a fail-
ure: a failure with cost 2i + 1 is obtained for a word w of the form ubv
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with u a Dyck word of length 2i and v in {a, b}2n−2i−1. Hence the cumu-
lated cost for all of these 22n − (2n

n

)
words is

∑n−1
i=0 (2i + 1)Ci22n−2i−1 =

22n−1 ∑n−1
i=0

(2i+1
i

)
2−2i = O(22nn1/2).WithO(n1/2) aborted loops with cost

O(n1/2) each, and one successful loop with cost n, the total expected cost
is linear as announced.

Florentine rejection thus uses on average a linear number of randombits.
As opposed to this a call to RandPerm(w) for a word w of length n uses
about n log n bits, and this is in general suboptimal from a theoretical point
of view. For instance for w = anbn, log

(2n
n

) ∼ 2n bits should suffice. In
this case an optimal solution (on average) is obtained using Florentine-
Rejection(n, 0) to get a prefix of Dyck words and Catalan’s factorization
(Proposition 9.1.2) to transform it into a word of S(anbn). As opposed to
this, it is an open problem in general to sample in linear time from S(w)
using O(logCard(S(w))) random bits.

9.3. Coding: trees and maps

A planar map1 is a proper embedding of a connected graph in the plane.
Multiple edges and loops are allowed, and “proper” means that edges are
smooth simple arcs whichmeet only at their endpoints. The faces of a planar
map are the connected components of the complement of the graph in the
plane: apart from one infinite face, all faces are bounded and homeomorphic
to disks. All the planar maps we consider are rooted: they have an oriented
edge, called the root, which is incident to the infinite face on its right-hand
side. Examples of rooted maps are presented in Figure 9.15.

From now on we shall consider that two planar maps are the same if
one can be mapped onto the other (including roots) by a homeomorphism
of the plane. However, there are still many more planar maps than planar
graphs, as illustrated by Figure 9.15. Indeed homeomorphisms of the plane
respect the neighbourhood of each vertex, so that the circular order of edges
around vertices is fixed.

From a combinatorial point of view, a planar map can in fact entirely
be specified as follows: label half-edges (or darts) and for each half-edge
give the names of the opposite half-edge, and of the next half-edge around
its origin in a counterclockwise direction. As a consequence the number of
planar maps with n edges is finite. Moreover these labelled maps capture
exactly the level at which algorithms on maps are implemented in compu-
tational geometry, using darts as elementary data structures. Carrying on

1 The word map is intended here in its geographic sense, like in road-map.
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Figure 9.15. Two rooted planar maps with the same underlying graph.

with labelled maps, one could also reach a purely combinatorial setting and
eliminate the geometry (at least at the formal level of proofs). However,
for the sake of conciseness it appears more efficient to keep higher level
geometric arguments.

Examples of specific families of planar maps are numerous. A trian-
gulation of a k-gon is a planar map without multiple edges such that all
bounded faces have degree 3 and the infinite face has degree k (the degree
of a face is the number of sides of edges to which it is incident). A k-valent
map is a planar map such that all vertices have degree k (the degree of a
vertex is the number of half-edges to which it is incident).

9.3.1. Plane trees and generalities on coding

A rooted plane tree, or hereafter simply a plane tree is a planar map with
one face. A planted plane tree is a plane tree such that the root vertex has
degree 1. A binary tree is a planted plane tree with vertices of degree 3 and
1 only, respectively called nodes and leaves. These definitions agree with
classical recursive definitions of plane trees: for instance a plane tree can
be decomposed as an ordered sequence of subtrees attached to the root.

The contour traversal of a planar map is the walk on the vertices and
edges of the map that starts from (the right-hand side of) the root edge,
and turns around the map in a counterclockwise direction so as to visit the
boundary of the infinite face. (The reader is encouraged to imagine an ant
walking around the map.) The contour traversal of a plane tree visits in
particular every edge twice: the first time away from the root vertex, and
the second time towards the root vertex. The preorder on the vertices of
a planted plane tree is defined by ordering vertices according to the first
passage of the contour traversal.

The Dyck code of a planted plane tree with n + 1 edges is the word
of length 2n on the alphabet {u, d} obtained during a contour traversal of
the tree by writing a letter u each time a nonroot edge is visited for the
first time (away from the root vertex), and a letter d each time a nonroot
edge is visited for the second time (toward the root vertex). Readers should
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Figure 9.16. A planted plane tree and its Dyck code.

Figure 9.17. A planted binary tree and its prefix code.

convince themselves that the Dyck code of a tree characterizes it (see
Figure 9.16).

Lemma 9.3.1. Dyck encoding is a bijection between planted plane trees
with n + 1 edges and Dyck words of length 2n. In particular the number of
planted plane trees with n + 1 edges is the nth Catalan number.

The prefix or Łukasiewicz code of a planted plane tree with n edges is
the word of length n on the alphabet {xi, i ≥ 0} obtained during a contour
traversal of the tree by writing a letter xi each time a nonroot vertex with
degree i + 1 is visited for the first time. Let us define the morphism δ

by δ(xi) = i − 1. Then the prefix code w of a planted plane tree has the
Łukasiewicz property (that is for each strict prefix v of w, δ(v) > δ(w)). In
particular, upon setting x2 = u and x0 = d, we obtain the following lemma
for the case of binary trees (see Figure 9.17).

Lemma 9.3.2. Prefix encoding is a bijection between binary trees with
n nodes, (and thus n + 2 leaves and 2n + 1 edges) and words of length
2n + 1 of the Dyck–Łukasiewicz languageDd. In particular the number of
binary trees with n nodes is the nth Catalan number.
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Recall that the optimal coding problem for a family C of combinatorial
structures consists in finding a function ϕ that maps injectively objects of
C on words of {0, 1}∗ in such a way that an objectO of size n is coded by a
word ϕ(O) of length roughly bounded by log2 Card(Cn), with Cn the set of
objects of size n. Since the nth Catalan number satisfies logCn ∼ 2n as n
goes to infinity, Dyck codes and prefix codes respectively solve the optimal
coding problem for plane trees and for binary trees. On the other hand, the
Dyck code of a binary tree with n nodes has length 4n + 2, so that Dyck
codes are far from optimality with respect to the family of binary trees: the
optimality of a code is relative to the entropy log Cn of the set Cn under
consideration.

More generally, consider the set of planted plane trees with di nodes
of degree i (and thus � = 1 + ∑

(i − 2)di nonroot leaves). Prefix encoding
defines a bijection between this set of trees and the subset of words of
S(x�0x

d1
1 . . . x

dk
k ) that have the Łukasiewicz property. But according to the

cycle lemma, the fraction of such words of length n among words of the
same length in S(x�0x

d1
1 . . . x

dk
k ) is 1/n. Now words on a finite alphabet

with a fixed proportion of letters can be encoded optimally by the so-called
entropy coder. Hence prefix encoding combined with entropy encoding
yields optimal coding for plane trees with a fixed proportion of nodes of
each degree.

9.3.2. Conjugacy classes of trees

From now on, we consider planted plane trees with two types of vertices
of degree 1, respectively called buds and leaves. Vertices of higher degree
are called nodes. In particular, a blossoming tree is a planted plane tree
such that each node has degree 4 and is adjacent to exactly one bud; a
blossoming tree with n nodes has thus n + 2 leaves and n buds. Examples
of blossoming trees are given in Figure 9.18.

Lemma 9.3.3. The number of blossoming trees that are planted on a leaf
and have n nodes is 3n

n+1

(2n
n

)
. The number of blossoming trees that are

planted on a bud and have n nodes is 3n

n+2

( 2n
n−1

)
.

Proof. Let B′
n and B′′

n denote these two sets of blossoming trees. A blos-
soming tree of the first type can be uniquely obtained from a binary tree
with n nodes by attaching a bud to each node in one of the three possible
ways. Together with Lemma 9.3.2, this proves the first formula.

Now let us consider the set of doubly planted blossoming trees, one
root being a leaf and the second one a bud. Such a tree with n nodes can
be considered either as a blossoming tree in B′

n with a marked bud, or as a
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(a) A blossoming tree, (b) and a balanced one.

Figure 9.18. Two conjugate blossoming trees.

blossoming tree inB′′
n with amarked leaf. Hence doubly planted blossoming

trees with n nodes are either counted by nCard(B′
n) or by (n + 2) Card(B′′

n).
As a consequence, Card(B′′

n) = n
n+ 2 · 31

n+ 1

(2n
n

)
, which proves the second

formula.

Let T be a planted plane tree with n nodes. During a contour traversal
of T , its buds and leaves are visited in a sequence (by convention the root
vertex is visited at the end of the traversal). Accordingly the border word is
the word with letters {b, �} obtained along the contour traversal by writing
a letter b each time a bud is visited and a letter � each time a leaf is visited.
For example, the border words of the blossoming trees of Figure 9.18 are
respectively ��b�b��bb�b��b�bb� and b�b��bb�b��b�bb���.

Two planted plane trees T and T ′ are conjugate if one is obtained from
the other by rerooting. In other terms, two planted plane trees are in the
same conjugacy class of trees if they share the same underlying unrooted
plane tree. This terminology is motivated by the remark that conjugate
planted plane trees have conjugate border words. Taking δ(b) = +1 and
δ(�) = −1, the cycle lemma suggests the following definition: a planted
plane tree is balanced if its border word has the Łukasiewicz property.
With this definition, and remembering that blossoming trees have two more
leaves than buds, the cycle lemma for those trees reads: a blossoming tree
has exactly two canonical leaves such that the conjugate trees rooted at
these leaves are balanced.

Lemma 9.3.4. There are 2
n+ 2 · 3n

n+ 1

(2n
n

)
balanced blossoming trees with

n nodes.

Proof. The first proof is again based on a double counting argument. Let
B∗
n be the set of balanced blossoming trees with n nodes. The number of

balanced blossoming trees with a secondary root leaf is (n + 2) Card(B∗
n).
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(a) A fusion, (b) the partial closure, (c) and the complete
closure.

Figure 9.19. The closure of the tree of Figure 9.18(b).

Upon exchanging the role of the two roots, these trees are also blossoming
trees with a secondary root leaf taken among the two canonical leaves: their
number is thus 3n

n+ 1

(2n
n

)
. The result follows.

Proof (bis).An alternative proof is based on the following remark: the num-
ber of balanced rerootings of any blossoming tree is equal to the difference
between its numbers of leaves and buds, so that, in each conjugacy class
of trees, the number of balanced trees is exactly the difference between
the number of trees rooted on a leaf and the number of trees rooted on a
bud. Hence the number of balanced blossoming trees with n nodes is the
difference 3n

n+ 1

(2n
n

) − 3n

n+ 2

( 2n
n−1

)
.

9.3.3. The closure of a plane tree

The closure of a planted plane tree with two more leaves than buds is
obtained by repeating the following construction until only two leaves
remain: perform a contour traversal, and each time a leaf follows a bud in
the sequence of vertices of degree 1 met by the walk, match them, that is
fuse the two corresponding dangling edges in the unique way that creates a
bounded face with no vertex of degree 1 inside (see Figure 9.19(a)).

Lemma 9.3.5. The closure of a plane tree with n nodes and two more
leaves than buds terminates and produces a planar map with the same
n nodes and two leaves, which are both incident to the infinite face. In
particular the closure of a blossoming tree has n vertices of degree four,
plus two of degree one in the infinite face.

If moreover the tree is balanced, then its root vertex is one of the two
remaining leaves.

Proof. At each iteration all factors b� of the border word are detected,
and deleted since the corresponding pairs of bud and leaf are matched.
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In particular at least one pair is matched at each iteration, so that the
construction terminates. Vertices of degree at least two remain unchanged
while all buds and leaves are eliminated, with the exception of the two
canonical roots.

As described above the closure could require a quadratic number of
operations. The following algorithm takes a planted plane tree with two
more leaves than buds and computes its closure in linear time. It uses the
following items:
(i) a local stack with functions PutInStack(), PopFromStack(), and

IsStackEmpty(),
(ii) a function NextFreeVertex(vertex) that starts a contour traversal

after the vertex of degree 1 vertex and returns the first vertex of
degree 1 found,

(iii) a function Type(vertex) that tells whether vertex is a bud or a leaf,
(iv) a function FuseIntoEdge(bud, leaf) that realizes the fusion of a

bud bud and a leaf leaf into an edge.

Closure(T )
1 n ← NumberOfBuds(T )
2 vertex ← RootOf(T )
3 (�1, �2) ← (vertex, vertex)
4 while n > 0 do
5 vertex ← NextFreeVertex(vertex)
6 if Type(vertex) = bud then
7 PutInStack(vertex)
8 elseif IsStackEmpty() then
9 (�1, �2) ← (�2, vertex)

10 else bud ← PopFromStack()
11 FuseIntoEdge(bud, vertex)
12 n ← n − 1
13 if �1 = �2 then
14 �2 ← NextFreeVertex(vertex)
15 return (T , �1, �2)

Remark 9.3.6. Lines 13 and 14 only account for the special case of a
balanced blossoming tree in which the second free leaf is the last one of the
border word.

The complete closure of a balanced blossoming tree is obtained from its
closure by fusing the two remaining vertices of degree 1 and the incident
dangling edges into a root edge. Lemma 9.3.5 implies that the complete
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closure of a blossoming tree with n nodes is a 4-valent map with n ver-
tices. The following more precise theorem will be proved in the next
section.

Theorem 9.3.7. The complete closure is one-to-one between balanced
blossoming trees with n nodes and 4-valent maps with n vertices. In par-
ticular the number of these maps is 2

n+ 2
3n

n+ 1

(2n
n

)
.

As a corollary we already have the complete description of a random
sampling algorithm for 4-valent maps with n vertices. Apart from the func-
tion Closure(), it uses the following items:
(i) a random generator RandDyck(n) for Dyck words of length 2n,
(ii) a functionPrefixDecode(w) that constructs the binary tree encoded

by a Dyck–Łukasiewicz word w,
(iii) a function AddBud(n, i) that adds a bud to a node n in one of the

three possible manners,
(iv) a function AddRoot(M, �1, �2) that roots the map M by fusing its

two leaves �1 and �2 into an oriented edge.

RandMap(n)
1 w ← FlorentineRejection(n, 0)
2 T ← PrefixDecode(wd)
3 for node ∈ T do
4 AddBud(node,Rand(1, 3))
5 (M, �1, �2) ← Closure(T )
6 if Rand(1, 2) = 1 then
7 AddRoot(M, �1, �2)
8 else AddRoot(M, �2, �1)
9 return M

Corollary 9.3.8. RandMap(n) outputs a uniform random 4-valent map
with n vertices in linear time.

9.3.4. The opening of a 4-valent map

The dual of a planar map M is the planar map M∗ defined as follows: in
each face of M put a vertex, and join these new vertices by edges dual to
the edges of M . By construction the vertices, edges, and faces of M∗ are
respectively in bijection with faces, edges, and vertices ofM . The proof of
the following property of duality in planar maps is left to the reader (see
Figure 9.20(a)).
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(a) A spanning tree decompo-
sition of a map and its dual

(b) and the corre-
sponding opening.

Figure 9.20. An opening of the map of Figure 9.19(c).

Lemma 9.3.9. Let (E1, E2) be a partition of the set of edges of a planar
mapM . ThenE1 is a spanning tree ofM if and only ifE∗

2 is a spanning tree
ofM∗. When this is the case we call (E1, E2) a spanning tree decomposition
of M .

From now on, let M be a planar map, and (E1, E2) be a spanning
tree decomposition of M . For e an edge of E2, opening e with respect to
(E1, E2) will mean: orienting e so that the cycle it induces with the tree E1

is counterclockwise, and then replacing e by two dangling edges, the one
attached to the origin of e holding a bud b(e), the other one holding a leaf
�(e). We shall always assume moreover that the root r ofM belongs to E2.
Then, the opening of M with respect to (E1, E2) is the tree T defined as
follows: (see Figure 9.20(b))

(i) open each edge e ∈ E2 with respect to (E1, E2),
(ii) replace the bud b(r) by a leaf and plant the tree on it.

The tree T thus consists of the edges of the spanning tree E1 together with
pairs of dangling edges associated to edges of E2. More precisely, these
edges contribute to one bud and one leaf except for the root which con-
tributes to two leaves. By construction, the opening T of a 4-valent planar
map M with n vertices has n nodes of degree 4, n buds, and n + 2 leaves.

Lemma 9.3.10. The complete closure of the opening of a planar map M

with respect to any spanning tree decomposition is the planar mapM itself.

Proof. The opening of an edge merges the two faces incident to it. SinceE∗
2

forms a spanning tree of M∗, the openings can be performed sequentially
so that one of the two merged faces is always the infinite face. It is then
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immediate at each step that the pair of bud and leaf created by the opening
of an edge corresponds to a matched pair in the closure.

There are in general many spanning tree decompositions ofM , and the
right one must be chosen to invert the closure. To explain how this is done
we need to introduce the distance in the dual map M∗: two faces of M are
adjacent if they share a common edge, and the distance between two faces
f and f ′ is the length k of the shortest path (f0, . . . , fk) where f0 = f ,
fk = f ′, and for all i, the two faces fi and fi−1 are adjacent. Observe
that the dual M∗ of a 4-valent map has only faces with even degrees (in
fact degree 4), so that it does not contain any cycle of odd length, and
the distances of a face f to two adjacent faces f ′ and f ′′ always differ
by 1.

To each face f ofM , associate the face r(f ) incident to the root edge r
and closest to f for the distance in M∗. The set P(f ) of paths of minimal
length from r(f ) to f forms a bundle of paths bounded by two paths P0(f )
and P1(f ), with P0(f ) having the bundle on its right-hand side. We shall
call P0(f ) the leftmost minimal path from the root to f . The union of r∗ and
of the edges of the paths P0(f ) for all faces f of M forms a spanning tree
of M∗: the existence of a cycle would prevent one of the paths from being
leftmost. This tree is called the leftmost breadth first search tree of M∗
starting from r∗, because it is also given by a breadth first search traversal
with the left-hand rule. As stated in the following proposition, it is the
spanning tree we are looking for.

Proposition 9.3.11. Let M be a 4-valent map with root edge r and
(E1, E2) be a spanning tree decomposition such that r ∈ E2. Then the
opening of M with respect to (E1, E2) is a blossoming tree if and only if
E∗

2 is the leftmost breadth first search tree of M∗ starting from r∗.

The proof of this proposition is based on two lemmas. The first one is a
characterization of blossoming trees.

Lemma 9.3.12. A tree T with n buds, n + 2 leaves, and n nodes of degree
4 is a blossoming tree if and only if, for every inner edge e, the two
components of T \ e both contain one more leaf than there are buds.

Proof. The characterization is trivial for n = 1, and remains true when a
further node with two leaves and a bud is attached in place of a leaf. The
lemma thus follows by induction since every tree can be obtained by adding
new nodes incrementally.
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For the second lemma it is useful to view the spanning treeE∗
2 as rooted

on r∗, with the convention that the infinite face of M is the origin of the
root.

Lemma 9.3.13. Let e be an edge ofE1 separating two faces f , f ′, with f
before f ′ in the leftmost depth first order on the treeE∗

2 . Consider the paths
P and P ′ from f and f ′ to their common ancestor inE∗

2 , which define with
e∗ a cycle separating a bounded region B of the plane from an unbounded
one U . Then,
(i) the opening of an edge of P with respect to (E1, E2) creates a leaf in

B and a bud in U ,
(ii) and the opening of an edge of P ′ with respect to (E1, E2) creates a

bud in B and a leaf in U .

Proof. The result is immediate upon comparing the orientation used in the
definition of the opening of an edge and the orientation of the cycle going
from e∗ up the path P and down the path P ′.

Proof of Proposition 9.3.11. First assume that E∗
2 is the leftmost breadth

first search tree of M∗ starting from r∗, and let T be the opening of M
with respect to E∗

2 . According to Lemma 9.3.12, it suffices to check that
for any edge e of E1, both components of T \ e contain one more leaf than
there are buds. Let us consider the paths P and P ′ of Lemma 9.3.13. The
breadth first search condition on E∗

2 implies that the lengths of these two
paths differ at most by 1, hence exactly by 1, in view of the discussion of
distances in M∗. The leftmost condition on E∗

2 moreover implies that the
shortest path of the two must be P ′. Finally observe that two components of
T \ e are separated by the dual cycle of Lemma 9.3.13, so that this lemma
can be used to count buds and leaves in the two regions. This can be done
easily upon distinguishing whether r∗ is on P or not.

Let nowE∗
2 be a spanning tree ofM

∗ different from the leftmost breadth
first search tree E′∗

2 . Then there are leftmost minimal paths that do not
appear in E∗

2 . Among the shortest of them let P0(f ) be the leftmost one,
connecting the root to a face f . Since P0(f ) is minimal, all its edges but
the last one e belong to E∗

2 . Moreover, by definition of P0(f ), this path
is to the left and no longer than the path P (f ) connecting the root to
f in E∗

2 . Applying Lemma 9.3.13 to e, P ⊂ P0(f ), and P ′ ⊂ P (f ) and
comparing the length of these two paths shows that P ′ is longer than P , so
that the two components of T \ e have not the expected number of buds and
leaves.

The opening ofM with respect to (E1, E2) withE∗
2 the leftmost breadth

first search tree ofM∗ at r∗ will be called simply the opening ofM . In view
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(a) Bicoloration of faces. (b) Corresponding map.

Figure 9.21. Inverse of the edge-map construction.

of Lemma 9.3.10, Proposition 9.3.11 completes the proof of Theorem 9.3.7:
the opening is the inverse of the closure. Moreover it induces a linear time
algorithm Opening(M) that recovers the unique balanced blossoming tree
T such that Closure(T ) = M:

Opening (M)
1 Perform a leftmost breadth first search traversal of the dual map M∗
starting from r∗.

2 Open the edges of the resulting tree to create buds and leaves.
3 Return the resulting balanced blossom tree.

9.3.5. A code for planar maps

Theorem 9.3.7 deals with a specific family of planar maps, namely 4-valent
ones. It turns out however that 4-valent maps play for planar maps the role
that edge-graphs play for graphs. More precisely, define the edge-map of a
planar mapM as the 4-valent mapMϕ having as vertex set the set of edges
of M and having an edge cϕ for each corner c of the mapM .

Proposition 9.3.14. The edge-map construction is a bijection between
planar maps with n edges and 4-valent maps with n vertices. In particular
the number of planar maps with n edges is (2/(n + 2))(3n/(n + 1))

(2n
n

)
.

Proof. The inverse construction follows from the remark that the faces of
a 4-valent map F can be coloured in two colours, black and white, so that
adjacent faces have different colours. The planar map M is obtained by
putting a vertex into each black face of F and joining these vertices by an
edge across each vertex of F (see Figure 9.21).
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The edge-map construction thus allows us to deduce fromTheorem9.3.7
a code for the family of planar maps.

EncodeMap(M)
1 F ← EdgeMap(M)
2 T ← Opening(F )
3 for node ∈ T do
4 w′[node] ← PositionOfBud(node)
5 T ← RemoveBud(T )
6 w ← BinaryCode(T )
7 return (w,w′)

Theorem 9.3.15. The algorithm EncodeMap() encodes a planar map
with n edges by a pair of words respectively in {a, b}2n and {0, 1, 2}n. In
view of the number of planar maps, this code is optimal.

Problems

Section 9.1

9.1.1 Show that the generating function of a rational language with
respect to the length is rational.

9.1.2 Compute the generating function with respect to the length of
walks that never immediately undo a step they have just done.

9.1.3 Define the area under a Dyck word as the number of integer points
between the horizontal axis and the associated walk. Use Catalan’s
factorization to show that the sum of the area under all Dyck words
of length 2n is 4n.

(Chottin and Cori 1982)
9.1.4 Show that an algebraic language that can be generated by a nonam-

biguous context free grammar has an algebraic generating function
with respect to the length.

9.1.5 Give a bijective proof of the fact that the number of bicoloured
Motzkin words of length n is equal to the number of Dyck words
of length 2n + 2.

9.1.6 Give a bijective proof of the right-hand side formula in Proposi-
tion 9.1.9 for the number of loops of length 2n that stay in the
quadrant (x ≥ 0, y ≥ 0).

(Guy et al. 1992)
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Section 9.2

9.2.1 What is the number of staircase and unimodal polygons with semi-
perimeter n?

9.2.2 Show bijectively that the number of convex polyominoes with
bounding box (p, q) is

(
2p+2q

2p

)
+q

(
2p+2q−1

2p−1

)
−2(p+q)

(
p+q−1

q

)(
p+q−1

p

)
.

What is the number of convex polyominoes with semi-perimeter
n?

(Bousquet-Mélou and Guttmann 1997; Gessel 2000)
9.2.3 An animal on the square lattice has compact source if there exists

k such that every vertex of the animal can be reached from one
of the vertices (i, k − i) with 0 ≤ i ≤ k by a path going north or
east inside the animal. In particular directed animals are exactly
the animals with compact source for k = 0.

Prove that there are 3n−1 animals of size nwith compact source.
(Gouyou-Beauchamps and Viennot 1988)

9.2.4 Give a bijection between bilateral Dyck paths of length n and
(nonnecessarily strict) pyramids of n bricks such that the number
of pairs of steps connecting levels i and i + 1 is mapped onto the
number of bricks in position (i, i + 1).

(Viennot 1986)
9.2.5 Give a uniform random sampling algorithm of expected linear

complexity for the set of words of length n on an arbitrary fixed
finite alphabet that have the Łukasiewicz property.

Section 9.3

9.3.1 Give a direct bijection between plane trees with n edges and binary
trees with n nodes.

9.3.2 What is the number of rooted planarmapswith di vertices of degree
2i for all i ≥ 0 and no odd degree vertex?

(Tutte 1962; Schaeffer 1997)
9.3.3 Compute the generating function of rooted planar maps according

to the distribution of degrees.
(Bouttier et al. 2002)
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9.3.4 Show that planted plane trees with two leaves per inner vertices
are in one-to-one correspondence with rooted triangulations with
a marked face.

(Poulalhon and Schaeffer 2003)

Notes

Although this chapter can be read independently, it is intended as a com-
panion to Chapter 11, Words and trees, in Lothaire (1997). Systematic
approaches to enumeration, in particular using generating functions, are
described in the books Goulden and Jackson (1983); Bergeron et al. (1998),
and in the more recent Stanley (1999); Flajolet and Sedgewick (2004). In
particular the relevance of rational, algebraic, and D-finite series to enu-
meration is emphasized in the last two.

The enumeration of walks in the plane, in the half plane, and in the
quarter plane has become part of the combinatorial folklore, as well as
Dyck walks and Catalan’s factorization. The cycle lemma is attributed in
the combinatorial literature to Dvoretzky and Motzkin (1947), where it is
used to derive Proposition 9.1.4. As first shown by Raney (1960) (see also
Chapter 11 of Lothaire 1997), the cycle lemma is a combinatorial version
of the Lagrange inversion formula, which has numerous applications in
enumerative combinatorics. More detailed historical accounts can be found
in Pitman (1998) and Stanley (1999).

The classification of the possible asymptotic behaviours of the Taylor
coefficients of an algebraic series can be found in Flajolet (1987). The
generating function of walks on the slitplane according to the length and
the coordinates of the extremities was first shown to be algebraic and
computed in Bousquet-Mélou and Schaeffer (2002). This is one in a series
of results obtained recently by writing and solving linear equations with
catalytic variables, see Banderier and Flajolet (2002); Bousquet-Mélou
(2002) (these references are also good entry points to the literature on
counting walks on lattices). The first proof we present illustrates a very
general approach developed in Bousquet-Mélou (2001). The second proof
is taken from Barcucci et al. (2001).

The foundation of combinatorial random generation was laid in
Nijenhuis and Wilf (1978) with the recursive method. As shown in
Flajolet et al. (1994), this approach leads systematically to polynomial algo-
rithms for decomposable combinatorial structures. The (muchmore special-
ized) application of the cycle lemma to random generation is discussed in
Dershowitz and Zaks (1990) and Alonso et al. (1997). The Florentine rejec-
tion algorithm is taken from Barcucci et al. (1995). A systematic utilization
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of mixed probabilistic/combinatorial arguments for sampling was recently
proposed in Duchon et al. (2002).

General references on polyominoes are Klarner (1997); van Rensburg
(2000). Exact enumerative results are surveyed in Bousquet-Mélou (1996).
The algorithms to sample convex and directed convex polyominoes are
adapted from Hochstättler et al. (1996) and Del Lungo et al. (2001). From
the enumeration point of view, these results are encompassed by Bousquet-
Mélou and Guttmann (1997), who dealt with convex polygons in any di-
mension. Our treatment of directed animals and heaps of bricks is adapted
from Bétréma and Penaud (1993). These results built on the combinatorial
intepretation of the commutation monoid of Cartier and Foata (1969) in
terms of heaps of pieces due to Viennot (1986).

Starting from the seminal work of Tutte (1962), the literature on com-
binatorial maps has grown almost independently in combinatorics and in
physics. Some surveys are Cori and Machi (1992) (combinatorial point of
view), Ambjørn et al. (1997) (physical point of view) and Di Francesco
(2001) (mixed points of view).

A more detailed description of codes for plane trees appears in
Chapter 11 of Lothaire (1997). The idea to use algebraic languages to en-
code maps already appeared in Cori (1975), and plane trees are explicitly
used in Cori and Vauquelin (1981). Conjugacy classes of trees were intro-
duced in Schaeffer (1997), as well as the bijection between balanced trees
and planar maps. Applications to coding and sampling are discussed in
Poulalhon and Schaeffer (2003).
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