
CHAPTER 9

Probabilistic models

T
HE THIRD AND FINAL FAMILY of machine learning models considered in this book are

probabilistic models. We have already seen how probabilities can be useful to express

a model’s expectation about the class of a given instance. For example, a �probability

estimation tree (Section 5.2) attaches a class probability distribution to each leaf of the

tree, and each instance that gets filtered down to a particular leaf in a tree model is la-

belled with that particular class distribution. Similarly, a calibrated linear model trans-

lates the distance from the decision boundary into a class probability (Section 7.4).

These are examples of what are called discriminative probabilistic models. They model

the posterior probability distribution P (Y |X ), where Y is the target variable and X are

the features. That is, given X they return a probability distribution over Y .

The other main class of probabilistic models are called generative models. They

model the joint distribution P (Y , X ) of the target Y and the feature vector X . Once

we have access to this joint distribution we can derive any conditional or marginal

distribution involving the same variables. In particular, since P (X )=∑y P (Y = y, X ) it

follows that the posterior distribution can be obtained as

P (Y |X )= P (Y , X )∑
y P (Y = y, X )

Alternatively, generative models can be described by the likelihood function P (X |Y ),

since P (Y , X ) = P (X |Y )P (Y ) and the target or prior distribution (usually abbreviated
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9. Probabilistic models 263

to ‘prior’) can be easily estimated or postulated. Such models are called ‘generative’

because we can sample from the joint distribution to obtain new data points together

with their labels. Alternatively, we can use P (Y ) to sample a class and P (X |Y ) to sample

an instance for that class – this was illustrated for the spam e-mail example on p.29.

In contrast, a discriminative model such as a probability estimation tree or a linear

classifier models P (Y |X ) but not P (X ), and hence can be used to label data but not

generate it.

Since generative models can do anything that discriminative models do, they may

seem preferable. However, they have a number of drawbacks as well. First of all, note

that storing the joint distribution requires space exponential in the number of fea-

tures. This necessitates simplifying assumptions such as independence between fea-

tures, which may lead to inaccuracies if they are not valid in a particular domain. The

most common criticism levied against generative models is that accuracy in modelling

P (X ) may actually be achieved at the expense of less accurate modelling of P (Y |X ).

However, the issue is not yet fully understood, and there are certainly situations where

knowledge of P (X ) provides welcome additional understanding of the domain. For

example, we may be less concerned about misclassifying certain instances if they are

unlikely according to P (X ).

One of the most attractive features of the probabilistic perspective is that it allows

us to view learning as a process of reducing uncertainty. For instance, a uniform class

prior tells us that, before knowing anything about the instance to be classified, we are

maximally uncertain about which class to assign. If the posterior distribution after ob-

serving the instance is less uniform, we have reduced our uncertainty in favour of one

class or the other. We can repeat this process every time we receive new information,

using the posterior obtained in the previous step as the prior for the next step. This

process can be applied, in principle, to any unknown quantity that we come across.

Example 9.1 (Spam or not?). Suppose we want to estimate the probability θ that

an arbitrary e-mail is spam, so that we can use the appropriate prior distribution.

The natural thing to do is to inspect n e-mails, determine the number of spam e-

mails d , and set θ̂ = d/n; we don’t really need any complicated statistics to tell us

that. However, while this is the most likely estimate of θ – the maximum a pos-

teriori (MAP) estimate, using the terminology introduced on p.28 – this doesn’t

mean that other values of θ are completely ruled out. We model this by a proba-

bility distribution over θ which is updated each time new information comes in.

This is further illustrated in Figure 9.1 for a distribution that is more and more

skewed towards spam.
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Figure 9.1. Each time we inspect an e-mail, we are reducing our uncertainty regarding the prior

spam probability θ. After we inspect two e-mails and observe one spam, the possible θ values

are characterised by a symmetric distribution around 1/2. If we inspect a third, fourth, . . . , tenth

e-mail and each time (except the first one) it is spam, then this distribution narrows and shifts

a little bit to the right each time. As you would expect, the distribution for n e-mails reaches

its maximum at θ̂MAP = n−1
n (e.g., θ̂MAP = 0.8 for n = 5); however, asymmetric distributions like

these contain information that cannot be conveyed by single numbers such as the mean or the

maximum.

Explicitly modelling the posterior distribution over the parameter θ has a number

of advantages that are usually associated with the ‘Bayesian’ perspective:

� We can precisely characterise the uncertainty that remains about our estimate

by quantifying the spread of the posterior distribution.

� We can obtain a generative model for the parameter by sampling from the poste-

rior distribution, which contains much more information than a summary statis-

tic such as the MAP estimate can convey – so, rather than using a single e-mail

with θ = θMAP, our generative model can contain a number of e-mails with θ

sampled from the posterior distribution.

� We can quantify the probability of statements such as ‘e-mails are biased towards

ham’ (the tiny shaded area in Figure 9.1 demonstrates that after observing one

ham and nine spam e-mails this probability is very small, about 0.6%).

� We can use one of these distributions to encode our prior beliefs: e.g., if we be-

lieve that the proportions of spam and ham are typically 50–50, we can take the

distribution for n = 2 (the lowest, symmetric one in Figure 9.1) as our prior.1

1Statisticians call a prior that has the same mathematical form as a posterior distribution a conjugate
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9. Probabilistic models 265

The key point is that probabilities do not have to be interpreted as estimates of relative

frequencies, but can carry the more general meaning of (possibly subjective) degrees of

belief . Consequently, we can attach a probability distribution to almost anything: not

just features and targets, but also model parameters and even models. For instance,

in the example just given we were considering the distribution P (θ|D), where D repre-

sents the data (i.e., the classes of the inspected e-mails).

An important concept related to probabilistic models is Bayes-optimality. A clas-

sifier is Bayes-optimal if it always assigns argmaxy P∗(Y = y |X = x) to an instance x,

where P∗ denotes the true posterior distribution. Even if we almost never know the

true distribution in a practical situation, there are several ways in which we can make

this concrete. For example, we can perform experiments with artificially generated

data for which we have chosen the true distribution ourselves: this allows us to exper-

imentally evaluate how close the performance of a model is to being Bayes-optimal.

Alternatively, the derivation of a probabilistic learning method usually makes certain

assumptions about the true distribution, which allows us to prove theoretically that the

model will be Bayes-optimal provided these assumptions are met. For example, later

on in this chapter we will state the conditions under which the basic linear classifier is

Bayes-optimal. The property is therefore best understood as a yardstick by which we

measure the performance of probabilistic models.

Since many models discussed in previous chapters are able to estimate class prob-

abilities and hence are discriminative probabilistic models, it is worth pointing out

that the choice of a single model, often referred to as model selection, does not nec-

essarily lead to Bayes-optimality – even if the model chosen is the one that performs

best under the true distribution. To illustrate this, let m∗ be the best probability es-

timation tree we have learned from a sufficient amount of data. Using m∗ we would

predict argmaxy P (Y = y |M =m∗, X = x) for an instance x, where M is a random vari-

able ranging over the model class m∗ was chosen from. However, these predictions are

not necessarily Bayes-optimal since

P (Y |X = x)= ∑
m∈M

P (Y , M =m|X = x) by marginalising over M

= ∑
m∈M

P (Y |M =m, X = x)P (M =m|X = x) by the chain rule

= ∑
m∈M

P (Y |M =m, X = x)P (M =m) by independence of M and X

Here, P (M) can be interpreted as a posterior distribution over models after seeing

the training data (the MAP model is therefore m∗ = argmaxm P (M = m)). The final

prior – in this case we have used the Beta distribution, which is conjugate to the binomial distribution.

Conjugate priors not only simplify the mathematics, but also allow more intuitive interpretations: in this

case we pretend we have already inspected two e-mails, one of which was spam – a very useful idea that we

have in fact already used in the form of the �Laplace correction in Section 2.3.
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expression in the preceding derivation tells us to average the predictions of all mod-

els, weighted by their posterior probabilities. Clearly, this distribution is only equal

to P (Y |M = m∗, X = x) if P (M) is zero for all models other than m∗, i.e., if we have

seen sufficient training data to rule out all but one remaining model. This is obviously

unrealistic.2

The outline of the chapter is as follows. In Section 9.1 we will see some useful con-

nections between the geometric perspective and the probabilistic viewpoint, which

come about when features are normally distributed. This allows us, as already men-

tioned, to state the conditions under which the basic linear classifier is Bayes-optimal.

In Section 9.2 we consider the case of categorical features, leading to the well-known

naive Bayes classifier. Section 9.3 revisits the linear classifier from a probabilistic per-

spective, which results in a new training algorithm explicitly aimed at optimising the

posterior probability of the examples. Section 9.4 discusses ways to deal with hid-

den variables. Finally, in Section 9.5 we briefly look at compression-based learning

methods, which can be given a probabilistic interpretation by means of information-

theoretic notions.

9.1 The normal distribution and its geometric interpretations

We can draw a connection between probabilistic and geometric models by considering

probability distributions defined over Euclidean spaces. The most common such dis-

tributions are normal distributions, also called Gaussians; Background 9.1 recalls the

most important facts concerning univariate and multivariate normal distributions. We

start by considering the univariate, two-class case. Suppose the values of x ∈ R follow

a mixture model: i.e., each class has its own probability distribution (a component of

the mixture model). We will assume a Gaussian mixture model, which means that the

components of the mixture are both Gaussians. We thus have

P (x|⊕)= 1�
2πσ⊕

exp

(
−1

2

[
x−μ⊕

σ⊕

]2
)

P (x|�)= 1�
2πσ�

exp

(
−1

2

[
x−μ�

σ�

]2
)

where μ⊕ and σ⊕ are the mean and standard deviation for the positive class, and μ�

and σ� are the mean and standard deviation for the negative class. This gives the fol-

lowing likelihood ratio:

LR(x)= P (x|⊕)

P (x|�)
= σ�

σ⊕
exp

(
−1

2

[(
x−μ⊕

σ⊕

)2
−
(

x−μ�

σ�

)2])
(9.1)

2Note that we do not require the two distributions to be equal, but rather that they reach the same maxi-

mum for Y . It is not hard to demonstrate that this, too, is not generally the case.
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The univariate normal or Gaussian distribution has the following probability density func-

tion:

P (x|μ,σ)= 1�
2πσ

exp

(
− (x−μ)2

2σ2

)
= 1

E
exp

(
−1

2

[x−μ

σ

]2)= 1

E
exp
(
−z2/2

)
, E =�2πσ

The distribution has two parameters: μ, which is the mean or expected value, as well as

the median (i.e., the point where the area under the density function is split in half) and

the mode (i.e., the point where the density function reaches its maximum); and σ, which

is the standard deviation and determines the width of the bell-shaped curve.

z = (x −μ)/σ is the z-score associated with x; it measures the number of standard devia-

tions between x and the mean (it has itself mean 0 and standard deviation 1). It follows

that P (x|μ,σ) = 1
σP (z|0,1), where P (z|0,1) denotes the standard normal distribution. In

other words, any normal distribution can be obtained from the standard normal distribu-

tion by scaling the x-axis with a factor σ, scaling the y-axis with a factor 1/σ (so the area

under the curve remains 1), and translating the origin over μ.

The multivariate normal distribution over d-vectors x= (x1, . . . , xd )T ∈Rd is

P (x|μ,Σ)= 1

Ed
exp

(
−1

2
(x−μ)TΣ−1(x−μ)

)
, Ed = (2π)d/2

√
|Σ| (9.2)

The parameters are the mean vector μ = (μ1, . . . ,μd )T and the d-by-d covariance matrix

Σ (see Background 7.2 on p.200). Σ−1 is the inverse of the covariance matrix, and |Σ| is

its determinant. The components of x may be thought of as d features that are possibly

correlated.

If d = 1, then Σ = σ2 = |Σ| and Σ−1 = 1/σ2, which gives us the univariate Gaussian as

a special case. For d = 2 we have Σ =
(

σ2
1 σ12

σ12 σ2
2

)
, |Σ| = σ2

1σ
2
2 − (σ12)2 and Σ−1 =

1
|Σ|

(
σ2

2 −σ12

−σ12 σ2
1

)
. Using z-scores we derive the following expression for the bivariate

normal distribution:

P (x1, x2|μ1,μ2,σ1,σ2,ρ)= 1

E2
exp

(
− 1

2(1−ρ2)
(z2

1 + z2
2 −2ρz1z2)

)
, E2 = 2πσ1σ2

√
1−ρ2

(9.3)

where zi = (xi −μi )/σi for i = 1,2, and ρ =σ12/σ1σ2 is the correlation coefficient between

the two features.

The multivariate standard normal distribution has μ= 0 (a d-vector with all 0s) and Σ= I

(the d-by-d identity matrix), and thus P (x|0,I)= 1
(2π)d/2 exp

(
− 1

2 x ·x
)
.

Background 9.1. The normal distribution.
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Figure 9.2. If positive examples are drawn from a Gaussian with mean and standard deviation 1

and negatives from a Gaussian with mean and standard deviation 2, then the two distributions

cross at x = ±1.85. This means that the maximum-likelihood region for positives is the closed

interval [−1.85,1.85], and hence the negative region is non-contiguous.

Let’s first consider the case that both components have the same standard devia-

tion, i.e., σ⊕ =σ� =σ. We can then simplify the exponent in Equation 9.1 as follows:

− 1

2σ2

[
(x−μ⊕)2− (x−μ�)2]=− 1

2σ2

[
x2−2μ⊕x+μ⊕2− (x2−2μ�x+μ�2)

]
=− 1

2σ2

[
−2(μ⊕−μ�)x+ (μ⊕2−μ�2)

]

= μ⊕−μ�

σ2

[
x− μ⊕+μ�

2

]

The likelihood ratio can thus be written as LR(x)= exp
(
γ(x−μ)

)
, with two parameters:

γ = (μ⊕ −μ�)/σ2 is the difference between the means in proportion to the variance,

and μ = (μ⊕ +μ�)/2 is the midpoint between the two class means. It follows that the

maximum-likelihood decision threshold (the value of x such that LR(x)= 1) is xML =μ.

If σ⊕ 
=σ�, the x2 terms in Equation 9.1 do not cancel. This results in two decision

boundaries and a non-contiguous decision region for one of the classes.

Example 9.2 (Univariate mixture model with unequal variances). Suppose

μ⊕ = 1, μ� = 2 and σ� = 2σ⊕ = 2, then LR(x)= 2exp
(−[(x−1)2− (x−2)2/4]/2

)=
2exp

(
3x2/8

)
. It follows that the ML decision boundaries are x = ±(8/3) ln2 =

±1.85. As can be observed in Figure 9.2, these are the points where the two

Gaussians cross. In contrast, if σ� = σ⊕ then we get a single ML decision

boundary at x = 1.5.
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Figure 9.3. (left) If the features are uncorrelated and have the same variance, maximum-

likelihood classification leads to the basic linear classifier, whose decision boundary is orthogo-

nal to the line connecting the means. (middle) As long as the per-class covariance matrices are

identical, the Bayes-optimal decision boundary is linear – if we were to decorrelate the features

by rotation and scaling, we would again obtain the basic linear classifier. (right) Unequal co-

variance matrices lead to hyperbolic decision boundaries, which means that one of the decision

regions is non-contiguous.

Non-contiguous decision regions can also occur in higher-dimensional spaces. The

following example demonstrates this for m = 2.

Example 9.3 (Bivariate Gaussian mixture). We use Equation 9.3 on p.267 to ob-

tain explicit expressions for the ML decision boundary in the bivariate case.

Throughout the example we assume μ1
⊕ =μ2

⊕ = 1 and μ1
� =μ2

� =−1.

(i) If all variances are 1 and both correlations are 0, then the ML decision

boundary is given by (x1−1)2+(x2−1)2−(x1+1)2−(x2+1)2 =−2x1−2x2−2x1−
2x2 = 0, i.e., x1+x2 = 0 (Figure 9.3 (left)).

(ii) If σ1
⊕ = σ1

� = 1, σ2
⊕ = σ2

� =�2 and ρ⊕ = ρ� =�2/2, then the ML deci-

sion boundary is (x1−1)2+ (x2−1)2/2−�2(x1−1)(x2−1)/
�

2− (x1+1)2− (x2+
1)2/2+�2(x1+1)(x2+1)/

�
2=−2x1 = 0 (Figure 9.3 (middle)).

(iii) If all variances are 1 and ρ⊕ = −ρ� = ρ, then the ML decision boundary

is given by (x1−1)2+ (x2−1)2−2ρ(x1−1)(x2−1)− (x1+1)2− (x2+1)2−2ρ(x1+
1)(x2+1) = −4x1−4x2−4ρx1x2−4ρ = 0, i.e., x1+ x2+ρx1x2+ρ = 0, which is a

hyperbole. Figure 9.3 (right) illustrates this for ρ = 0.7. Notice that the bottom

left of the instance space is a positive decision region, even though it contains no

training examples and it is closer to the negative mean than to the positive mean.

Notice the circles and ellipses in Figure 9.3, which provide a visual summary of the

covariance matrix. By projecting the shape for the positive class down to the x-axis we
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270 9. Probabilistic models

obtain the interval [μ1
⊕−σ1

⊕,μ1
⊕+σ1

⊕] – i.e., one standard deviation around the mean

– and similar for the negative class and the y-axis. Three cases can be distinguished:

(i) both x and y standard deviations are equal and the correlation coefficient is zero,

in which case the shape is a circle; (ii) the standard deviations are different and the

correlation coefficient is zero, which means the shape is an ellipse parallel to the axis

with the largest standard deviation; (iii) the correlation coefficient is non-zero: the ori-

entation of the ellipse gives the sign of the correlation coefficient, and its width varies

with the magnitude of the correlation coefficient.3 Mathematically, these shapes are

defined by setting f (x) in 1
Ed

exp
(− 1

2 f (x)
)

to 1 and solving for x, in order to capture the

points that are one standard deviation away from the mean. For the bivariate case this

leads to (z2
1+z2

2−2ρz1z2)= 1−ρ2, which can be translated into an elliptic equation for

x1 and x2 by expanding the z-scores. Notice that for ρ = 0 this is a circle around the

origin, and when ρ→ 1 this approaches the line z2 = z1 (we can’t put ρ = 1 because this

leads to a singular covariance matrix).

In the general multivariate case the condition (x−μ)TΣ−1(x−μ)= 1 defines a hyper-

ellipse, because Σ−1 satisfies certain properties.4 For a standard normal distribution,

one-standard-deviation contours lie on a hyper-sphere (a circle in d dimensions) de-

fined by x · x = 1. A very useful geometric intuition is that, just as hyper-spheres can

be turned into arbitrary hyper-ellipses by scaling and rotation, any multivariate Gaus-

sian can be obtained from the standard Gaussian by scaling and rotation (to obtain the

desired covariance matrix) and translation (to obtain the desired mean). Conversely,

we can turn an arbitrary multivariate Gaussian into a standard normal distribution by

translation, rotation and scaling, as was already suggested in Background 1.2 on p.24.

This results in decorrelated and normalised features.

The general form of the likelihood ratio can be derived from Equation 9.2 on p.267

as

LR(x)=
√
|Σ�|
|Σ⊕| exp

(
−1

2

[
(x−μ⊕)T(Σ⊕)−1(x−μ⊕)− (x−μ�)T(Σ�)−1(x−μ�)

])

where μ⊕ and μ� are the class means, and Σ⊕ and Σ� are the covariance matrices for

each class. To understand this a bit better, assume that Σ⊕ =Σ� = I (i.e., in each class

the features are uncorrelated and have unit variance), then we have

LR(x)= exp

(
−1

2

[
(x−μ⊕)T(x−μ⊕)− (x−μ�)T(x−μ�)

])

= exp

(
−1

2

[||x−μ⊕||2−||x−μ�||2])

3A common mistake is to think that the angle of rotation of the ellipse depends on the correlation coeffi-

cient; in fact, it is solely determined by the relative magnitudes of the marginal standard deviations.
4Specifically, xTAx defines a hyper-ellipse if A is symmetric and positive definite. Both properties are

satisfied if A is the inverse of a non-singular covariance matrix.
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It follows that LR(x)= 1 for any x equidistant from μ⊕ and μ�. But this means that the

ML decision boundary is a straight line at equal distances from the class means – in

which we recognise our old friend, the basic linear classifier! In other words, for un-

correlated, unit-variance Gaussian features, the basic linear classifier is Bayes-optimal.

This is a good example of how a probabilistic viewpoint can justify particular models.

More generally, as long as the per-class covariance matrices are equal, the ML deci-

sion boundary will be linear, intersecting μ⊕−μ� in the middle, but not at right angles

if the features are correlated. This means that the basic linear classifier is only Bayes-

optimal in this case if we first decorrelate and normalise the features. With non-equal

class covariances the decision boundary will be hyperbolic. So, the three cases in Fig-

ure 9.3 generalise to the multivariate case.

We have now seen several examples of how the normal distribution links the prob-

abilistic and geometric viewpoints. The multivariate normal distribution essentially

translates distances into probabilities. This becomes obvious when we plug the defini-

tion of �Mahalanobis distance (Equation 8.1 on p.237) into Equation 9.2:

P (x|μ,Σ)= 1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) (9.4)

Similarly, the standard normal distribution translates Euclidean distances into proba-

bilities:

P (x|0,I)= 1

(2π)d/2
exp

(
−1

2
(Dis2(x,0))2

)

Conversely, we see that the negative logarithm of the Gaussian likelihood can be inter-

preted as a squared distance:

− lnP (x|μ,Σ)= lnEd +
1

2

(
DisM (x,μ|Σ)

)2
The intuition is that the logarithm transforms the multiplicative probability scale into

an additive scale (which, in the case of Gaussian distributions, corresponds to a squared

distance). Since additive scales are often easier to handle, log-likelihoods are a com-

mon concept in statistics.

Another example of the link between the geometric and the probabilistic perspec-

tive occurs when we consider the question of estimating the parameters of a normal

distribution. For example, suppose we want to estimate the mean μ of a multivariate

Gaussian distribution with given covariance matrix Σ from a set of data points X . The

principle of maximum-likelihood estimation states that we should find the value of μ

that maximises the joint likelihood of X . Assuming that the elements of X were inde-

pendently sampled, the joint likelihood decomposes into a product over the individual

https://doi.org/10.1017/CBO9780511973000.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.011
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data points in X , and the maximum-likelihood estimate can be found as follows:

μ̂= argmax
μ

∏
x∈X

P (x|μ,Σ)

= argmax
μ

∏
x∈X

1

Ed
exp

(
−1

2

(
DisM (x,μ|Σ)

)2) using Equation 9.4

= argmin
μ

∑
x∈X

[
lnEd +

1

2

(
DisM (x,μ|Σ)

)2] taking negative logarithms

= argmin
μ

∑
x∈X

(
DisM (x,μ|Σ)

)2 dropping constant term and factor

We thus find that the maximum-likelihood estimate of the mean of a multivariate dis-

tribution is the point that minimises the total squared Mahalanobis distance to all

points in X . For the identity covariance matrix Σ= I we can replace Mahalanobis dis-

tance with Euclidean distance, and by Theorem 8.1 the point minimising total squared

Euclidean distance to all points in X is the arithmetic mean 1
|X |
∑

x∈X x.

As a final example of how geometric and probabilistic views of the same problem

can be strongly connected I will now demonstrate how the �least-squares solution to

a linear regression problem (Section 7.1) can be derived as a maximum-likelihood esti-

mate. For ease of notation we will look at the univariate case discussed in Example 7.1.

The starting point is the assumption that our training examples (hi , yi ) are noisy mea-

surements of true function points (xi , f (xi )): i.e., yi = f (xi )+εi , where the εi are inde-

pendently and identically distributed errors. (Notice the slight change of notation as yi

is now no longer the true function value.) We want to derive the maximum-likelihood

estimates ŷi of f (xi ). We can derive this if we assume a particular noise distribution,

for example Gaussian with variance σ2. It then follows that each yi is normally dis-

tributed with mean a+bxi and variance σ2, and thus

P (yi |a,b,σ2)= 1�
2πσ2

exp

(
−
(
yi − (a+bxi )

)2
2σ2

)

Since the noise terms εi are independent for different i , so are the yi and so the joint

probability over all i is simply the product of n of these Gaussians:

P (y1, . . . , yn |a,b,σ2)=
n∏

i=1

1�
2πσ2

exp

(
−
(
yi − (a+bxi )

)2
2σ2

)

=
(

1�
2πσ2

)n
exp

(
−
∑n

i=1

(
yi − (a+bxi )

)2
2σ2

)

For ease of algebraic manipulation we take the negative natural logarithm:

− lnP (y1, . . . , yn |a,b,σ2)= n

2
ln2π+ n

2
lnσ2+

∑n
i=1

(
yi − (a+bxi )

)2
2σ2
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Taking the partial derivatives with respect to a, b and σ2 and setting to zero in order to

maximise the negative log likelihood gives the following three equations:

n∑
i=1

yi − (a+bxi )= 0

n∑
i=1

(
yi − (a+bxi )

)
xi = 0

n

2

1

σ2 −
∑n

i=1

(
yi − (a+bxi )

)2
2(σ2)2 = 0

The first two equations are essentially the same as derived in Example 7.1 and give us

â = y − b̂x and b̂ = σx y /σxx , respectively. The third equation tells us that the sum of

squared residuals is equal to nσ2 and gives the maximum-likelihood estimate of the

noise variance as
(∑n

i=1

(
yi − (a+bxi )

)2)/n.

It is reassuring that the probabilistic viewpoint allows us to derive (ordinary) east-

squares regression from first principles. On the other hand, a full treatment would re-

quire noise on the x-values as well (total least squares), but this complicates the math-

ematics and does not necessarily have a unique solution. This illustrates that a good

probabilistic treatment of a machine learning problem achieves a balance between solid

theoretical foundations and the pragmatism required to obtain a workable solution.

9.2 Probabilistic models for categorical data

To kill time during long drives to some faraway holiday destination, my sisters and I

would often play games involving passing cars. For example, we would ask each other

to look out for cars that had a particular colour, were from a particular country or had

a particular letter on the numberplate. A binary question such as ‘is the car blue?’ is

called a Bernoulli trial by statisticians. They are modelled as a binary random variable

whose probability of success is fixed over each independent trial. We used a Bernoulli

distribution to model the event of an e-mail being ham in Example 9.1. On top of such

a random variable, other probability distributions can be built. For example, we may

want to guess how many of the next n cars are blue: this is governed by the binomial

distribution. Or the task may be to estimate how many cars we need to see until the

first Dutch one: this number follows a geometric definition. Background 9.2 will help

to refresh your memory regarding the main definitions.

Categorical variables or features (also called discrete or nominal) are ubiquitous

in machine learning. Perhaps the most common form of the Bernoulli distribution

models whether or not a word occurs in a document. That is, for the i -th word in our

vocabulary we have a random variable Xi governed by a Bernoulli distribution. The

joint distribution over the bit vector X = (X1, . . . , Xk ) is called a multivariate Bernoulli

distribution. Variables with more than two outcomes are also common: for example,
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The Bernoulli distribution, named after the Swiss seventeenth century mathematician Ja-

cob Bernoulli, concerns Boolean or binary events with two possible outcomes: success or

1, and failure or 0. A Bernoulli distribution has a single parameter θ which gives the prob-

ability of success: hence P (X = 1)= θ and P (X = 0)= 1−θ. The Bernoulli distribution has

expected value E [X ]= θ and variance E
[
(X −E [X ])2]= θ(1−θ).

The binomial distribution arises when counting the number of successes S in n indepen-

dent Bernoulli trials with the same parameter θ. It is described by

P (S = s)=
(

n

s

)
θs (1−θ)n−s for s ∈ {0, . . . ,n}

This distribution has expected value E [S]= nθ and variance E
[
(S−E [S])2]= nθ(1−θ).

The categorical distribution generalises the Bernoulli distribution to k ≥ 2 outcomes. The

parameter of the distribution is a k-vector θ = (θ1, . . . ,θk
)

such that
∑k

i=1 θi = 1.

Finally, the multinomial distribution tabulates the outcomes of n independent and iden-

tically distributed (i.i.d.) categorical trials. That is, X= (X1, . . . , Xk
)

is a k-vector of integer

counts, and

P (X= (x1, . . . , xk
)
)= n!

θ
x1
1

x1!
· · ·

θ
xk
k

xk !

with
∑k

i=1 xi = n. Notice that setting n = 1 gives us an alternative way of stating the cat-

egorical distribution as P (X = (x1, . . . , xk
)
) = θ

x1
1 · · ·θxk

k , with exactly one of the xi equal

to 1 and the rest set to 0. Furthermore, setting k = 2 gives an alternative expression for

the Bernoulli distribution as P (X = x)= θx (1−θ)1−x for x ∈ {0,1}. It is also useful to note

that if X follows a multinomial distribution, then each component Xi follows a binomial

distribution with parameter θi .

We can estimate the parameters of these distributions by counting in a straightforward

way. Suppose a b a c c b a a b c is a sequence of words. We might be interested in

individual words being a or not, and interpret the data as coming from 10 i.i.d. Bernoulli

trials, which would allow us to estimate θ̂a = 4/10 = 0.4. This same parameter generates

a binomial distribution of the number of occurrences of the word a in similar sequences.

Alternatively, we can estimate the parameters of the categorical (word occurrences) and

multinomial (word counts) distributions as θ̂ = (0.4,0.3,0.3).

It is almost always a good idea to smooth these distributions by including pseudo-counts.

Imagine our vocabulary includes the word d but we haven’t yet observed it, then a

maximum-likelihood estimate would set θ̂d = 0. We can smooth this by adding a virtual

occurrence of each word to our observations, leading to θ̂′ = (5/14,4/14,4/14,1/14). In

the case of a binomial this is the Laplace correction.

Background 9.2. Probability distributions for categorical data.
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every word position in an e-mail corresponds to a categorical variable with k out-

comes, where k is the size of the vocabulary. The multinomial distribution manifests

itself as a count vector: a histogram of the number of occurrences of all vocabulary

words in a document. This establishes an alternative way of modelling text documents

that allows the number of occurrences of a word to influence the classification of a

document.

Both these document models are in common use. Despite their differences, they

both assume independence between word occurrences, generally referred to as the

naive Bayes assumption. In the multinomial document model, this follows from the

very use of the multinomial distribution, which assumes that words at different word

positions are drawn independently from the same categorical distribution. In the mul-

tivariate Bernoulli model we assume that the bits in a bit vector are statistically inde-

pendent, which allows us to compute the joint probability of a particular bit vector

(x1, . . . , xk ) as the product of the probabilities of each component P (Xi = xi ). In prac-

tice, such word independence assumptions are often not true: if we know that an e-

mail contains the word ‘Viagra’, we can be quite sure that it will also contain the word

‘pill’. In any case, the experience is that, while the naive Bayes assumption almost cer-

tainly leads to poor probability estimates, it often doesn’t harm ranking performance.

This means that, provided the classification threshold is chosen with some care, we

can usually get good classification performance too.

Using a naive Bayes model for classification

Assume that we have chosen one of the possible distributions to model our data X .

In a classification context, we furthermore assume that the distribution depends on

the class, so that P (X |Y = spam) and P (X |Y = ham) are different distributions. The

more different these two distributions are, the more useful the features X are for clas-

sification. Thus, for a specific e-mail x we calculate both P (X = x|Y = spam) and

P (X = x|Y = ham), and apply one of several possible decision rules:

maximum likelihood (ML) – predict argmaxy P (X = x|Y = y);

maximum a posteriori (MAP) – predict argmaxy P (X = x|Y = y)P (Y = y);

recalibrated likelihood – predict argmaxy wy P (X = x|Y = y).

The relation between the first two decision rules is that ML classification is equivalent

to MAP classification with a uniform class distribution. The third decision rule gener-

alises the first two in that it replaces the class distribution with a set of weights learned

from the data: this makes it possible to correct for estimation errors in the likelihoods,

as we shall see later.

https://doi.org/10.1017/CBO9780511973000.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.011


276 9. Probabilistic models

Example 9.4 (Prediction using a naive Bayes model). Suppose our vocabulary

contains three words a, b and c, and we use a multivariate Bernoulli model for

our e-mails, with parameters

θ⊕ = (0.5,0.67,0.33) θ� = (0.67,0.33,0.33)

This means, for example, that the presence of b is twice as likely in spam (+),

compared with ham.

The e-mail to be classified contains words a and b but not c, and hence is

described by the bit vector x= (1,1,0). We obtain likelihoods

P (x|⊕)= 0.5 ·0.67 · (1−0.33)= 0.222 P (x|�)= 0.67 ·0.33 · (1−0.33)= 0.148

The ML classification of x is thus spam. In the case of two classes it is often conve-

nient to work with likelihood ratios and odds. The likelihood ratio can be calcu-

lated as P (x|⊕)
P (x|�) = 0.5

0.67
0.67
0.33

1−0.33
1−0.33 = 3/2 > 1. This means that the MAP classification

of x is also spam if the prior odds are more than 2/3, but ham if they are less than

that. For example, with 33% spam and 67% ham the prior odds are P (⊕)
P (�) = 0.33

0.67 =
1/2, resulting in a posterior odds of P (⊕|x)

P (�|x) = P (x|⊕)
P (x|�)

P (⊕)
P (�) = 3/2 · 1/2 = 3/4 < 1. In

this case the likelihood ratio for x is not strong enough to push the decision away

from the prior.

Alternatively, we can employ a multinomial model. The parameters of a

multinomial establish a distribution over the words in the vocabulary, say

θ⊕ = (0.3,0.5,0.2) θ� = (0.6,0.2,0.2)

The e-mail to be classified contains three occurrences of word a, one single oc-

currence of word b and no occurrences of word c, and hence is described by the

count vector x = (3,1,0). The total number of vocabulary word occurrences is

n = 4. We obtain likelihoods

P (x|⊕)= 4!
0.33

3!

0.51

1!

0.20

0!
= 0.054 P (x|�)= 4!

0.63

3!

0.21

1!

0.20

0!
= 0.1728

The likelihood ratio is
( 0.3

0.6

)3 ( 0.5
0.2

)1 ( 0.2
0.2

)0 = 5/16. The ML classification of x is thus

ham, the opposite of the multivariate Bernoulli model. This is mainly because of

the three occurrences of word a, which provide strong evidence for ham.
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Notice how the likelihood ratio for the multivariate Bernoulli model is a product of

factors θ⊕i /θ�i if xi = 1 in the bit vector to be classified, and (1−θ⊕i )/(1−θ�i ) if xi = 0.

For the multinomial model the factors are
(
θ⊕i /θ�i

)xi . One consequence of this is that

the multinomial model only takes the presence of words into account, whereas in the

multivariate Bernoulli model absent words can make a difference. In the previous ex-

ample, not containing word b corresponds to a factor of (1− 0.67)/(1−0.33) = 1/2 in

the likelihood ratio. The other main difference between the two models is that multi-

ple occurrences of words are treated like duplicated features in the multinomial model,

through the exponential ‘weight’ xi . This becomes clearer by taking the logarithm of

the likelihood ratio, which is
∑

i xi (lnθ⊕i − lnθ�i ): this expression is linear in lnθ⊕i and

lnθ�i with xi as weights. Notice that this does not mean that naive Bayes classifiers

are linear in the sense discussed in Chapter 7 unless we can demonstrate a linear rela-

tionship between lnθ and the corresponding feature value. But we can say that naive

Bayes models are linear in a particular space (the ‘log-odds’ space) obtained by apply-

ing a well-defined transformation to the features. We will return to this point when we

discuss �feature calibration in Section 10.2.

The fact that the joint likelihood ratio of a naive Bayes model factorises as a prod-

uct of likelihood ratios of individual words is a direct consequence of the naive Bayes

assumption. In other words, the learning task decomposes into univariate tasks, one

for each word in the vocabulary. We have encountered such a decomposition before

when we discussed �multivariate linear regression in Section 7.1. There, we saw an

example of how ignoring feature correlation could be harmful. Can we come up with

similar examples for naive Bayes classifiers? Consider the situation when a particular

word occurs twice in the vocabulary. In that case, we have the same factor occurring

twice in the product for the likelihood ratio, and are effectively giving the word in ques-

tion twice the weight of other words. While this is an extreme example, such double-

counting does have noticeable effects in practice. I previously gave the example that if

a spam e-mail contains the word ‘Viagra’, it is also expected to contain the word ‘pill’,

so seeing the two words together should not give much more evidence for spam than

seeing the first word on its own, and the likelihood ratio for the two words should not

be much higher than that of the first word. However, multiplying two likelihood ratios

larger than 1 will result in an even larger likelihood ratio. As a result, the probability

estimates of a naive Bayes classifier are often pushed too far towards 0 or 1.

This may not seem such a big deal if we are only interested in classification, and not

in the probability estimates as such. However, an often overlooked consequence of hav-

ing uncalibrated probability estimates such as those produced by naive Bayes is that both

the ML and MAP decision rules become inadequate. Unless we have evidence that the

model assumptions are satisfied, the only sensible thing to do in this case is to invoke

the recalibrated likelihood decision rule, which requires one to learn a weight vector
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Figure 9.4. (left) ROC curves produced by two naive Bayes classifiers (solid line: a variant of the

multivariate Bernoulli model; dashed line: a variant of the multinomial model). Both models

have similar ranking performance and yield almost the same – more or less optimal – MAP de-

cision threshold. (right) On a different data set from the same domain, the multinomial model’s

MAP threshold is slightly better, hinting at somewhat better calibrated probability estimates. But

since the slope of the accuracy isometrics indicates that there are about four positives for every

negative, the optimal decision rule is in fact to always predict positive.

over the classes, in order to correct for the estimation errors in the likelihoods. Specif-

ically, we want to find weights wi such that predicting argmaxy wy P (X = x|Y = y) re-

sults in the smallest possible loss – e.g., the number of misclassified examples – over

a test set. For two classes this can be solved by the same procedure we considered for

�turning rankers into classifiers in Section 2.2. To see this, notice that for two classes

the recalibrated likelihood decision rule can be rewritten as

� predict positive if w⊕P (X = x|Y = ⊕) > w�P (X = x|Y = �) and negative other-

wise; which is equivalent to

� predict positive if P (X = x|Y =⊕)/P (X = x|Y =�)>w�/w⊕ and negative other-

wise

This demonstrates that in the two-class case we really have just one degree of freedom,

as multiplying the weights by a constant does not affect the decisions. In other words,

what we are interested in is finding the best threshold t = w�/w⊕ on the likelihood

ratio, which is essentially the same problem as finding the best operating point on an

ROC curve. The solution is given by the point on the highest accuracy isometric. Figure

9.4 illustrates this on two real-life data sets: in the left figure we see that the MAP deci-

sion threshold is more or less optimal, whereas in the right figure the optimal point is

in the top right-hand corner.
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For more than two classes, finding a globally optimal weight vector is computation-

ally intractable, which means that we need to resort to a heuristic method. In Section

3.1 such a method was demonstrated for three classes. The idea is to fix the weights

one by one, using some ordering of the classes. That is, we use the two-class procedure

to optimally separate the i -th class from the previous i −1 classes.

Training a naive Bayes model

Training a probabilistic model usually involves estimating the parameters of the dis-

tributions used in the model. The parameter of a Bernoulli distribution can be es-

timated by counting the number of successes d in n trials and setting θ̂ = d/n. In

other words, we count, for each class, how many e-mails contain the word in ques-

tion. Such relative frequency estimates are usually smoothed by including pseudo-

counts, representing the outcome of virtual trials according to some fixed distributions.

In the case of a Bernoulli distribution the most common smoothing operation is the

Laplace correction, which involves two virtual trials, one of which results in success

and the other in failure. Consequently, the relative frequency estimate is changed to

(d +1)/(n+2). From a Bayesian perspective this amounts to adopting a uniform prior,

representing our initial belief that success and failure are equally likely. If appropriate,

we can strengthen the influence of the prior by including a larger number of virtual tri-

als, which means that more data is needed to move the estimate away from the prior.

For a categorical distribution smoothing adds one pseudo-count to each of the k cat-

egories, leading to the smoothed estimate (d +1)/(n+k). The m-estimate generalises

this further by making both the total number of pseudo-counts m and the way they

are distributed over the categories into parameters. The estimate for the i -th cate-

gory is defined as (d+pi m)/(n+m), where pi is a distribution over the categories (i.e.,∑k
i=1 pi = 1). Notice that smoothed relative frequency estimates – and hence products

of such estimates – can never attain the extreme values θ̂ = 0 or θ̂ = 1.

Example 9.5 (Training a naive Bayes model). We now show how the parameter

vectors in the previous example might have been obtained. Consider the follow-

ing e-mails consisting of five words a, b, c, d , e:

e1: b d e b b d e

e2: b c e b b d d e c c

e3: a d a d e a e e

e4: b a d b e d a b

e5: a b a b a b a e d

e6: a c a c a c a e d

e7: e a e d a e a

e8: d e d e d

We are told that the e-mails on the left are spam and those on the right are ham,

and so we use them as a small training set to train our Bayesian classifier. First,
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E-mail #a #b #c Class

e1 0 3 0 +
e2 0 3 3 +
e3 3 0 0 +
e4 2 3 0 +
e5 4 3 0 −
e6 4 0 3 −
e7 3 0 0 −
e8 0 0 0 −

E-mail a? b? c? Class

e1 0 1 0 +
e2 0 1 1 +
e3 1 0 0 +
e4 1 1 0 +
e5 1 1 0 −
e6 1 0 1 −
e7 1 0 0 −
e8 0 0 0 −

Table 9.1. (left) A small e-mail data set described by count vectors. (right) The same data set

described by bit vectors.

we decide that d and e are so-called stop words that are too common to convey

class information. The remaining words, a, b and c, constitute our vocabulary.

For the multinomial model, we represent each e-mail as a count vector, as in

Table 9.1 (left). In order to estimate the parameters of the multinomial, we sum

up the count vectors for each class, which gives (5,9,3) for spam and (11,3,3)

for ham. To smooth these probability estimates we add one pseudo-count for

each vocabulary word, which brings the total number of occurrences of vo-

cabulary words to 20 for each class. The estimated parameter vectors are thus

θ̂⊕ = (6/20,10/20,4/20) = (0.3,0.5,0.2) for spam and θ̂� = (12/20,4/20,4/20) =
(0.6,0.2,0.2) for ham.

In the multivariate Bernoulli model e-mails are represented by bit vectors,

as in Table 9.1 (right). Adding the bit vectors for each class results in (2,3,1) for

spam and (3,1,1) for ham. Each count is to be divided by the number of docu-

ments in a class, in order to get an estimate of the probability of a document con-

taining a particular vocabulary word. Probability smoothing now means adding

two pseudo-documents, one containing each word and one containing none

of them. This results in the estimated parameter vectors θ̂⊕ = (3/6,4/6,2/6) =
(0.5,0.67,0.33) for spam and θ̂� = (4/6,2/6,2/6)= (0.67,0.33,0.33) for ham.

Many other variations of the naive Bayes classifier exist. In fact, what is normally

understood as ‘the’ naive Bayes classifier employs neither a multinomial nor a multi-

variate Bernoulli model, but rather a multivariate categorical model. This means that

features are categorical, and the probability of the i -th feature taking on its l-th value

for class c examples is given by θ(c)
i l , under the constraint that

∑ki
l=1θ

(c)
i l = 1, where ki
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is the number of values of the i -th feature. These parameters can be estimated by

smoothed relative frequencies in the training set, as in the multivariate Bernoulli case.

We again have that the joint probability of the feature vector is the product of the in-

dividual feature probabilities, and hence P (Fi ,F j |C ) = P (Fi |C )P (F j |C ) for all pairs of

features and for all classes.

Notice, by the way, that conditional independence is quite different from uncondi-

tional independence: neither implies the other. To see that conditional independence

does not imply unconditional independence, imagine two words that are very likely to

occur in spam, but they are independent (i.e., the probability of both of them occurring

in a spam e-mail is the product of the marginal probabilities). Imagine further that they

are very unlikely – but also independent – in ham. Suppose I tell you an unclassified

e-mail contains one of the words: you would probably guess that it is a spam e-mail,

from which you would further guess that it also contains the other word – demonstrat-

ing that the words are not unconditionally independent. To see that unconditional

independence does not imply conditional independence, consider two different inde-

pendent words, and let an e-mail be spam if it contains at least one of the words and

ham otherwise, then among spam e-mails the two words are dependent (since if I know

that a spam e-mail doesn’t contain one of the words, then it must contain the other).

Another extension of the naive Bayes model is required when some of the features

are real-valued. One option is to discretise the real-valued features in a pre-processing

stage: this will be discussed in Chapter 10. Another option is to assume that the feature

values are normally distributed within each class, as discussed in the previous section.

In this context it is worth noting that the naive Bayes assumption boils down to as-

suming a diagonal covariance matrix within each class, so that each feature can be

treated independently. A third option that is also used in practice is to model the class-

conditional likelihood of each feature by a non-parametric density estimator. These

three options are illustrated in Figure 9.5.

In summary, the naive Bayes model is a popular model for dealing with textual,

categorical and mixed categorical/real-valued data. Its main shortcoming as a proba-

bilistic model – poorly calibrated probability estimates – are outweighed by generally

good ranking performance. Another apparent paradox with naive Bayes is that it isn’t

particularly Bayesian at all! For one thing, we have seen that the poor probability es-

timates necessitate the use of reweighted likelihoods, which avoids using Bayes’ rule

altogether. Secondly, in training a naive Bayes model we use maximum-likelihood pa-

rameter estimation, whereas a fully fledged Bayesian approach would not commit to a

particular parameter value, but rather employ a full posterior distribution. Personally, I

think the essence of naive Bayes is the decomposition of joint likelihoods into marginal

likelihoods. This decomposition is evocatively visualised by the Scottish tartan pattern

in Figure 1.3 on p.31, which is why I like to call naive Bayes the ‘Scottish classifier’.
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Figure 9.5. (left) Examples of three density estimators on 20 points sampled from a normal

distribution with zero mean and unit variance (dotted line)). A histogram is a simple non-

parametric method which employs a fixed number of equal-width intervals. A kernel density

estimator (in red) applies interpolation to obtain a smooth density function. The solid bell curve

(in blue) is obtained by estimating the sample mean and variance, assuming the true distribu-

tion is normal. (right) Here, the 20 points are sampled uniformly from [−2,2], and the non-

parametric methods generally do better.

9.3 Discriminative learning by optimising conditional likelihood

In the introduction to this chapter we distinguished between generative and discrim-

inative probabilistic models. Naive Bayes models are generative: after training they

can be used to generate data. In this section we look at one of the most commonly

used discriminative models: logistic regression.5 The easiest way to understand logis-

tic regression is as a linear classifier whose probability estimates have been logistically

calibrated using the method described in Section 7.4, but with one crucial difference:

calibration is an integral part of the training algorithm, rather than a post-processing

step. While in generative models the decision boundary is a by-product of modelling

the distributions of each class, logistic regression models the decision boundary di-

rectly. For example, if the classes are overlapping then logistic regression will tend to

locate the decision boundary in an area where classes are maximally overlapping, re-

gardless of the ‘shapes’ of the samples of each class. This results in decision boundaries

that are noticeably different from those learned by generative classifiers (Figure 9.6).

Equation 7.13 on p.222 expresses the likelihood ratio as exp
(
γ(d(x)−d0)

)
with

d(x) = w · x− t . Since we are learning the parameters all at once in discriminative

learning, we can absorb γ and d0 into w and t . So the logistic regression model is

5Notice that the term ‘regression’ is a bit of a misnomer here, since, even though a probability estimator

approximates an unknown function, the training labels are classes rather than true function values.
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Figure 9.6. (left) On this data set, logistic regression (in blue) outperforms the basic linear clas-

sifier (in red) and the least squares classifier (in orange) because the latter two are more sensitive

to the shape of the classes, while logistic regression concentrates on where the classes overlap.

(right) On this slightly different set of points, logistic regression is outperformed by the other

two methods because it concentrates too much on tracking the transition from mostly positive

to mostly negative.

simply given by

p̂(x)= exp(w ·x− t )

exp(w ·x− t )+1
= 1

1+exp(−(w ·x− t ))

Assuming the class labels are y = 1 for positives and y = 0 for negatives, this defines a

Bernoulli distribution for each training example:

P (yi |xi )= p̂(xi )yi (1− p̂(xi ))(1−yi )

It is important to note that the parameters of these Bernoulli distributions are linked

through w and t , and consequently there is one parameter for every feature dimension,

rather than for every training instance.

The likelihood function is

CL(w, t )=∏
i

P (yi |xi )=∏
i

p̂(xi )yi (1− p̂(xi ))(1−yi )

This is called conditional likelihood to stress that it gives us the conditional probability

P (yi |xi ) rather than P (xi ) as in a generative model. Notice that our use of the prod-

uct requires the assumption that the y-values are independent given x; but this is an

entirely reasonable assumption and not nearly as strong as the naive Bayes assump-

tion of x being independent within each class. As usual, the logarithm of the likelihood
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function is easier to work with:

LCL(w, t )=∑
i

yi ln p̂(xi )+ (1− yi ) ln(1− p̂(xi ))= ∑
x⊕∈Tr⊕

ln p̂(x⊕)+ ∑
x�∈Tr�

ln(1− p̂(x�))

We want to maximise the log-conditional likelihood with respect to these parame-

ters, which means that all partial derivatives must be zero:

∇wLCL(w, t )= 0

∂

∂t
LCL(w, t )= 0

Although these equations do not yield an analytic solution, they can be used to obtain

further insight into the nature of logistic regression. Concentrating on t , we first need

to do some algebraic groundwork.

ln p̂(x)= ln
exp(w ·x− t )

exp(w ·x− t )+1

=w ·x− t − ln(exp(w ·x− t )+1)

∂

∂t
ln p̂(x)=−1− ∂

∂t
ln(exp(w ·x− t )+1)

=−1− 1

exp(w ·x− t )+1
exp(w ·x− t ) · (−1)

= p̂(x)−1

Similarly for the negatives:

ln(1− p̂(x))= ln
1

exp(w ·x− t )+1

=− ln(exp(w ·x− t )+1)

∂

∂t
ln(1− p̂(x))= ∂

∂t
− ln(exp(w ·x− t )+1)

= −1

exp(w ·x− t )+1
exp(w ·x− t ) · (−1)

= p̂(x)

It follows that the partial derivative of LCL with respect to t has a simple form:

∂

∂t
LCL(w, t )= ∑

x⊕∈Tr⊕
(p̂(x)−1)+ ∑

x�∈Tr�
p̂(x�)

= ∑
xi∈Tr

(p̂(xi )− yi )

For the optimal solution this partial derivative is zero. What this means is that, on aver-

age, the predicted probability should be equal to the proportion of positives pos. This

is a satisfying result, as it is clearly a desirable global property of a calibrated classifier.

https://doi.org/10.1017/CBO9780511973000.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.011


9.3 Discriminative learning by optimising conditional likelihood 285

Notice that grouping models such as probability estimating trees have this property by

construction, as they set the predicted probability equal to the empirical probability in

a segment.

A very similar derivation leads to the partial derivative of the log-conditional like-

lihood with respect to the j -th weight w j . The point to note here is that, whereas
∂
∂t (w ·x− t ) = −1, we have ∂

∂w j
(w ·x− t ) = ∂

∂w j

(∑
j w j x j − t

) = x j , the instance’s j -th

feature value. This then leads to

∂

∂w j
LCL(w, t )= ∑

xi∈Tr
(yi − p̂(xi ))xi j (9.5)

Setting this partial derivative to zero expresses another, feature-wise calibration prop-

erty. For example, if the j -th feature is a sparse Boolean feature that is mostly zero,

then this calibration property only involves the instances xi for which xi j = 1: on av-

erage, those instances should have their predicted probability equal the proportion of

positives among them.

Example 9.6 (Univariate logistic regression). Consider the data in Figure 9.7

with 20 points in each class. Although both classes were generated from nor-

mal distributions, class overlap in this particular sample is less than what could

be expected on the basis of the class means. Logistic regression is able to take

advantage of this and gives a much steeper sigmoid than the basic linear classi-

fier with logistic calibration (explained in Example 7.7 on p.222), which is entirely

formulated in terms of class means and variance. Also shown are the probabil-

ity estimates obtained from the convex hull of the ROC curve (see Figure 7.13

on p.224); this calibration procedure is non-parametric and hence better able to

detect the limited class overlap.

In terms of statistics, logistic regression has better mean squared error (0.040)

than the logistically calibrated classifier (0.057). Isotonic calibration leads to the

lowest error (0.021), but note that no probability smoothing has been applied

to mitigate the risk of overfitting. The sum of predicted probabilities is 18.7 for

the logistically calibrated classifier and 20 for the other two – i.e., equal to the

number of examples, which is a necessary condition for full calibration. Finally,∑
xi∈Tr(yi − p̂(xi ))xi is 2.6 for the logistically calibrated classifier, 4.7 for the ROC-

calibrated classifier, and 0 for logistic regression as expected from Equation 9.5.

In order to train a logistic regression model we need to find

w∗, t∗ = argmax
w,t

CL(w, t )= argmax
w,t

LCL(w, t )
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Figure 9.7. Logistic regression (in red) compared with probability estimates obtained by logistic

calibration (in blue) and isotonic calibration (in green); the latter two are applied to the basic lin-

ear classifier (estimated class means are indicated by circles). The corresponding three decision

boundaries are shown as vertical dotted lines.

This can be shown to be a convex optimisation problem, which means that there is

only one maximum. A range of optimisation techniques can be applied. One simple

approach is inspired by the perceptron algorithm and iterates over examples, using the

following update rule:

w=w+η(yi − p̂i )xi

where η is the learning rate. Notice the relationship with the partial derivative in Equa-

tion 9.5. Essentially, we are using single examples to approximate the direction of

steepest ascent.

9.4 Probabilistic models with hidden variables

Suppose you are dealing with a four-class classification problem with classes A, B ,

C and D . If you have a sufficiently large and representative training sample of size

n, you can use the relative frequencies in the sample nA , . . . ,nD to estimate the class

prior p̂ A = nA/n, . . . , p̂D = nD /n, as we have done many times before.6 Conversely, if

you know the prior and want to know the most likely class distribution in a random

6Of course, if you’re not sure whether the sample is large enough it is better to smooth these relative

frequency estimates by, e.g., the �Laplace correction (Section 2.3).
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sample of n instances, you would use the prior to calculate expected values E [nA] =
p A ·n, . . . ,E [nD ]= pD ·n. So, complete knowledge of one allows us to estimate or infer

the other. However, sometimes we have a bit of knowledge about both. For example,

we may know that p A = 1/2 and that C is twice as likely as B , without knowing the

complete prior. And we may know that the sample we saw last week was evenly split

between A∪B and C ∪D , and that C and D were equally large, but we can’t remember

the size of A and B separately. What should we do?

Formalising what we know about the prior, we have p A = 1/2; pB = β, as yet un-

known; pC = 2β, since it is twice pB ; and pD = 1/2−3β, since the four cases need to

add up to 1. Furthermore: nA +nB = a + b = s, nC = c and nD = d , with s, c and d

known. We want to infer a, b and β: however, it seems we are stuck in a chicken-and-

egg problem. If we knew β we would have full knowledge about the prior and we could

use that to infer expected values for a and b:

E [a]

E [b]
= 1/2

β
E [a]+E [b]= s

from which we could derive

E [a]= 1

1+2β
s E [b]= 2β

1+2β
s (9.6)

So, for example, if s = 20 and β= 1/10, then E [a]= 16 2
3 and E [b]= 3 1

3 .

Conversely, if we knew a and b, then we could estimate β by maximum-likelihood

estimation, using a multinomial distribution for a, b, c and d :

P (a,b,c,d |β)=K (1/2)aβb(2β)c (1/2−3β)d

lnP (a,b,c,d |β)= lnK +a ln(1/2)+b lnβ+ c ln(2β)+d ln(1/2−3β)

Here, K is a combinatorial constant that doesn’t affect the value of β which maximises

the likelihood. Taking the partial derivative with respect to β gives

∂

∂β
lnP (a,b,c,d |β)= b

β
+ 2c

2β
− 3d

1/2−3β

Setting to 0 and solving for β finally gives

β̂= b+ c

6(b+c+d)
(9.7)

So, for example, if b = 5 and c = d = 10, then β̂= 1/10.

The way out of this chicken-and-egg problem is to iterate the following two steps:

(i) calculate an expected value of the missing frequencies a and b from an assumed or

previously estimated value of the parameterβ; and (ii) calculate a maximum-likelihood

estimate of the parameter β from assumed or expected values of the missing frequen-

cies a and b. These two steps are iterated until a stationary configuration is reached.
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So, if we start with a = 15, b = 5 and c = d = 10, then we have just seen that β̂ = 1/10.

Plugging this value of β into Equation 9.6 gives us E [a]= 16 2
3 and E [b]= 3 1

3 . Plugging

these values back into Equation 9.7 yields β̂ = 2/21, which in turn gives E [a] = 16.8

and E [b] = 3.2, and so on. A stationary configuration with β = 0.0948, a = 16.813 and

b = 3.187 is reached in fewer than 10 iterations. In this simple case this is a global

optimum that is reached regardless of the starting point, essentially because the rela-

tionship between b and β is monotonic (E [b] increases with β according to Equation

9.6 and β̂ increases with b according to Equation 9.7). However, this is not normally

the case: we will return to this point later.

Expectation-Maximisation

The problem that we have just discussed is an example of a problem with missing data,

where the full data Y separates into observed variables X and hidden variables Z (also

called latent variables). In the example, the observed variables are c, d and s, and the

hidden variables are a and b. We also have model parameter(s) θ, which is β in the

example.7 Denote the estimate of θ in the t-th iteration as θt . We have two relevant

quantities:

� the expectation E
[

Z |X ,θt
]

of the hidden variables given the observed variables

and the current estimate of the parameters (so in Equation 9.6 the expectations

of a and b depend on s and β);

� the likelihood P (Y |θ), which is used to find the maximising value of θ.

In the likelihood function we need values for Y = X ∪Z . We obviously use the observed

values for X , but we need to use previously calculated expectations for Z . This means

that we really want to maximise P (X ∪ E
[

Z |X ,θt
] |θ), or equivalently, the logarithm

of that function. We now make the assumption that the logarithm of the likelihood

function is linear in Y : notice that this assumption is valid in the example above. For

any linear function f , f (E [Z ])= E
[

f (Z )
]

and thus we can bring the expectation outside

in our objective function:

lnP (X ∪E
[

Z |X ,θt ]|θ)= E
[
lnP (X ∪Z |θ)|X ,θt ]= E

[
lnP (Y |θ)|X ,θt ] (9.8)

This last expression is usually denoted as Q(θ|θt ), as it essentially tells us how to calcu-

late the next value of θ from the current one:

θt+1 = argmax
θ

Q(θ|θt )= argmax
θ

E
[
lnP (Y |θ)|X ,θt ] (9.9)

7Model parameters are also ‘hidden’ in a sense, but they are different from hidden variables in that you

would never expect to observe the value of a parameter (e.g., a class mean), whereas a hidden variable could

be observed in principle but happens to be unobserved in the case at hand.
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This, then, is the general form of the celebrated Expectation-Maximisation (EM)

algorithm, which is a powerful approach to probabilistic modelling with hidden vari-

ables or missing data. Similar to the example above, we iterate over assigning an ex-

pected value to the hidden variables given our current estimates of the parameters,

and re-estimating the parameters from these updated expectations, until a stationary

configuration is reached. We can start the iteration by initialising either the parameters

or the hidden variables in some way. The algorithm bears a striking resemblance to the

�K -means algorithm (Algorithm 8.1 on p.248), which also iterates over assigning data

points to current cluster means, and re-estimating the cluster means from the new as-

signments. This resemblance is not accidental, as we shall see in a moment. Like the

K -means algorithm, EM can be proved to always converge to a stationary configura-

tion for a wide class of probabilistic models. However, EM can get trapped in a local

optimum that is dependent on the initial configuration.

Gaussian mixture models

A common application of Expectation-Maximisation is to estimate the parameters of a

Gaussian mixture model from data. In such a model the data points are generated by K

normal distributions, each with their own mean μ j and covariance matrix Σ j , and the

proportion of points coming from each Gaussian is governed by a prior τ = (τ1, . . . ,τK ).

If each data point in a sample were labelled with the index of the Gaussian it came from

this would be a straightforward classification problem, which could be solved easily

by estimating each Gaussian’s μ j and Σ j separately from the data points belonging

to class j . However, we are now considering the much harder predictive clustering

problem in which the class labels are hidden and need to be reconstructed from the

observed feature values.

A convenient way to model this is to have for each data point xi a Boolean vector

zi = (zi 1, . . . , zi K ) such that exactly one bit zi j is set to 1 and the rest set to 0, signalling

that the i -th data point comes from the j -th Gaussian. Using this notation we can

adapt the expression for the�multivariate normal distribution (Equation 9.2 on p.267)

to obtain a general expression for a Gaussian mixture model:

P (xi ,zi |θ)=
K∑

j=1
zi jτ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)
(9.10)

Here, θ collects all the parameters τ, μ1, . . . ,μK and Σ1, . . . ,ΣK . The interpretation as a

generative model is as follows: we first randomly select a Gaussian using the prior τ ,

and then we invoke the corresponding Gaussian using the indicator variables zi j .
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In order to apply Expectation-Maximisation we form the Q function:

Q(θ|θt )= E
[

lnP (X∪Z|θ)|X,θt ]
= E

[
ln

n∏
i=1

P (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
lnP (xi ∪zi |θ)

∣∣∣∣∣X,θt

]

= E

[
n∑

i=1
ln

K∑
j=1

zi jτ j
1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)∣∣∣∣∣X,θt

]

= E

[
n∑

i=1

K∑
j=1

zi j ln

(
τ j

1

(2π)d/2
√|Σ j |

exp

(
−1

2
(xi −μ j )TΣ−1

j (xi −μ j )

))∣∣∣∣∣X,θt

]
(*)

= E

[
n∑

i=1

K∑
j=1

zi j

(
lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)∣∣∣∣∣X,θt

]

=
n∑

i=1

K∑
j=1

E
[

zi j
∣∣X,θt ](lnτ j − d

2
ln(2π)− 1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

(9.11)

The step marked (*) is possible because for a given i only one zi j is switched on, hence

we can bring the indicator variables outside the logarithm. The last line shows the Q

function in the desired form, involving on the one hand expectations over the hidden

variables conditioned on the observable data X and the previously estimated parame-

ters θt , and on the other hand expressions in θ that allow us to find θt+1 by maximisa-

tion.

The Expectation step of the EM algorithm is thus the calculation of the expected

values of the indicator variables E
[

zi j
∣∣X,θt

]
. Notice that expectations of Boolean vari-

ables take values on the entire interval [0,1], under the constraint that
∑K

j=1 zi j = 1 for

all i . In effect, the hard cluster assignment of K -means is changed into a soft assign-

ment – one of the ways in which Gaussian mixture models generalise K -means. Now,

suppose that K = 2 and we expect both clusters to be of equal size and with equal co-

variances. If a given data point xi is equidistant from the two cluster means (or rather,

our current estimates of these), then clearly E
[

zi 1|X,θt
] = E

[
zi 2|X,θt

] = 1/2. In the

general case these expectations are apportioned proportionally to the probability mass

assigned to the point by each Gaussian:

E
[

zi j
∣∣X,θt ]= τt

j f (xi |μt
j ,Σt

j )∑K
k=1τ

t
k f (xi |μt

k ,Σt
k )

(9.12)

where f (x|μ,Σ) stands for the multivariate Gaussian density function.

For the Maximisation step we optimise the parameters in Equation 9.11. Notice

there is no interaction between the terms containing τ j and the terms containing the
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other parameters, and so the prior distribution τ can be optimised separately:

τ t+1 = argmax
τ

n∑
i=1

K∑
j=1

E
[

zi j
∣∣X,θt ] lnτ j

= argmax
τ

K∑
j=1

E j lnτ j under the constraint
K∑

j=1
τ j = 1

where I have written E j for
∑n

i=1E
[

zi j
∣∣X,θt

]
, which is the total (partial) membership

of the j -th cluster – notice that
∑K

j=1 E j = n. For simplicity we assume K = 2, so that

τ2 = 1−τ1: then

τt+1
1 = argmax

τ1

E1 lnτ1+E2 ln(1−τ1)

Setting the derivative with respect to τ1 to zero and solving for τ1, it can be easily ver-

ified that τt+1
1 = E1/(E1 +E2) = E1/n and thus τt+1

2 = E2/n. In the general case of K

clusters we have analogously

τt+1
j = E j∑K

k=1 Ek
= 1

n

n∑
i=1

E
[

zi j
∣∣X,θt ] (9.13)

The means and covariance matrices can be optimised for each cluster separately:

μt+1
j ,Σt+1

j = argmax
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt ](−1

2
ln |Σ j |− 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

= argmin
μ j ,Σ j

n∑
i=1

E
[

zi j
∣∣X,θt ](1

2
ln |Σ j |+ 1

2
(xi −μ j )TΣ−1

j (xi −μ j )

)

Notice that the term between brackets is a squared-distance term with the expectations

functioning as instance weights on each instance. This describes a generalised version

of the problem of finding the point that �minimises the sum of squared Euclidean dis-

tances to a set of points (Theorem 8.1 on p.238). While that problem is solved by the

arithmetic mean, here we simply take the weighted average over all the points:

μt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt ]xi =

∑n
i=1E
[

zi j
∣∣X,θt

]
xi∑n

i=1E
[

zi j
∣∣X,θt

] (9.14)

Similarly, the covariance matrix is computed as a weighted average of covariance ma-

trices obtained from each data point, taking into account the newly estimated mean:

Σt+1
j = 1

E j

n∑
i=1

E
[

zi j
∣∣X,θt ] (xi −μt+1

j )(xi −μt+1
j )T

=
∑n

i=1E
[

zi j
∣∣X,θt

]
(xi −μt+1

j )(xi −μt+1
j )T

∑n
i=1E
[

zi j
∣∣X,θt

] (9.15)

Equations 9.12–9.15, then, constitute the EM solution to learning a Gaussian mix-

ture model from an unlabelled sample. I have presented it here in its most general
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Figure 9.8. (left) The blue line shows the true Gaussian mixture model from which the 10 points

on the x-axis were sampled; the colour of the points indicates whether they came from the left

or the right Gaussian. The other lines show convergence of Expectation-Maximisation to a sta-

tionary configuration from a random initialisation. (right) This plot shows four stationary con-

figurations for the same set of points. The EM algorithm was run for 20 iterations; the thickness

of one of the lines demonstrates that this configuration takes longer to converge.

form, explicitly modelling unequal cluster sizes and covariance matrices. The latter is

important as it allows for clusters of different shapes, unlike the K -means algorithm

which assumes that all clusters have the same spherical shape. Consequently, the

boundaries between clusters will not be linear, as they are in the clusterings learned

by K -means. Figure 9.8 demonstrates the convergence of EM on a simple univariate

data set, as well as the existence of multiple stationary configurations.

In conclusion, Expectation-Maximisation is a versatile and powerful method to

deal with missing variables in a principled way. As we have seen in detail for the Gaus-

sian mixture model, the main ingredient is an expression for the parametric likelihood

function P (X ∪Z |θ), from which the update equations can be derived by means of the

Q function. A word of caution is also in order, since – except in the simplest cases –

there will be more than one stationary configuration. Like with K -means, the optimi-

sation should therefore be run multiple times with different starting configurations.

9.5 Compression-based models

We end this chapter with a brief discussion of an approach to machine learning that

is both closely related to and quite distinct from the probabilistic approach. Consider

the maximum a posteriori decision rule again:

yMAP = argmax
y

P (X = x|Y = y)P (Y = y)
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Y P (Viagra= 1|Y ) IC (Viagra= 1|Y ) P (Viagra= 0|Y ) IC (Viagra= 0|Y )

spam 0.40 1.32 bits 0.60 0.74 bits

ham 0.12 3.06 bits 0.88 0.18 bits

Table 9.2. Example marginal likelihoods.

Taking negative logarithms, we can turn this into an equivalent minimisation:

yMAP = argmin
y

− logP (X = x|Y = y)− logP (Y = y) (9.16)

This follows because for any two probabilities 0 < p < p ′ < 1 we have ∞ > − log p >
− log p ′ > 0. If an event has probability p of happening, the negative logarithm of p

quantifies the information content of the message that the event has indeed happened.

This makes intuitive sense, as the less expected an event is, the more information an

announcement of the event contains. The unit of information depends on the base of

the logarithm: it is customary to take logarithms to the base 2, in which case informa-

tion is measured in bits. For example, if you toss a fair coin once and tell me it came

up heads, this contains − log2 1/2 = 1 bit of information; if you roll a fair die once and

let me know it came up six, the information content of your message is − log2 1/6= 2.6

bits. Equation 9.16 tells us that the MAP decision rule chooses the least surprising or

the most expected class for an instance x given particular prior distributions and like-

lihoods. We write IC(X |Y )=− log2 P (X |Y ) and IC(Y )=− log2 P (Y ).

Example 9.7 (Information-based classification). Table 9.2 reproduces the left

table in Table 1.3 on p.29 together with the relevant information content quanti-

ties. If Y is uniformly distributed then IC(Y = spam)= 1 bit and IC(Y = ham)= 1

bit. It follows that

argmin
y

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= spam

argmin
y

(
IC(Viagra= 0|Y = y)+ IC(Y = y)

)= ham

If ham is four times as likely as spam then IC(Y = spam) = 2.32 bit and IC(Y =
ham)= 0.32 bit, and argminy

(
IC(Viagra= 1|Y = y)+ IC(Y = y)

)= ham.

Clearly, for a uniform distribution over k outcomes, each outcome has the same infor-

mation content − log2 1/k = log2 k. For a non-uniform distribution these information
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contents differ, and hence it makes sense to compute the average information con-

tent or entropy
∑k

i=1−pi log2 pi . We have encountered entropy before as an �impurity

measure in Section 5.1.

So far I have not really told you anything new, other than that there is a one-to-one

relationship between probability and information content. What really kicks things

off in compression-based learning is a fundamental result from information theory

proved by Claude Shannon in 1948. Shannon’s result says – loosely speaking – that we

cannot transmit information at a rate that surpasses entropy, but we can get arbitrarily

close to the optimal rate by designing clever binary codes. Some well-known codes

include the Shannon–Fanon code and the Huffman code, which are worth looking up

as they employ a simple tree structure to build the code from empirical probabilities.

Even more efficient codes, such as arithmetic coding, combine multiple messages into

a single code word.

Assuming the availability of a near-optimal code, we can now turn the tables and

use information content – or ‘description length’ as it is more commonly called – as

a proxy for probability. One simplified version of the minimum description length

(MDL) principle runs as follows.

Definition 9.1 (Minimum description length principle). Let L(m) denote the length

in bits of a description of model m, and let L(D|m) denote the length in bits of a de-

scription of data D given model m. According to the minimum description length

principle, the preferred model is the one minimising the description length of model

and data given model:

mMDL = argmin
m∈M

(L(m)+L(D|m)) (9.17)

�

In a predictive learning context, ‘description of data given model’ refers to whatever

information we need, in addition to the model and the feature values of the data, to

infer the target labels. If the model is 100% accurate no further information is needed,

so this term essentially quantifies the extent to which the model is incorrect. For ex-

ample, in a uniform two-class setting we need one bit for every data point incorrectly

classified by the model. The term L(m) quantifies the complexity of the model. For

instance, if we are fitting a polynomial to the data we need to encode the degree of the

polynomial as well as its roots, up to a certain resolution. MDL learning thus trades off

accuracy and complexity of a model: the complexity term serves to avoid overfitting

in a similar way to the �regularisation term in ridge regression in Section 7.1 and the

�slack variable term in soft-margin SVMs in Section 7.3.

What encoding to use in order to determine the model complexity L(m) is often

not straightforward and to some extent subjective. This is similar to the Bayesian
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perspective, where we need to define a prior distribution on models. The MDL view-

point offers a concrete way of defining model priors by means of codes.

9.6 Probabilistic models: Summary and further reading

In this chapter we covered a range of machine learning models that are all based on the

idea that features and target variables can be modelled as random variables, giving the

opportunity to explicitly represent and manipulate the level of certainty we have about

those variables. Such models are usually predictive in that they result in a conditional

distribution P (Y |X ) with which Y can be predicted from X . Generative models esti-

mate the joint distribution P (Y , X ) – often through the likelihood P (X |Y ) and the prior

P (Y ) – from which the posterior P (Y |X ) can be obtained, while conditional models

learn the posterior P (Y |X ) directly without spending resources on learning P (X ). The

‘Bayesian’ approach to machine learning is characterised by concentrating on the full

posterior distribution wherever this is feasible, rather than just deriving a maximising

value.

� In Section 9.1 we saw that the normal or Gaussian distribution supports many

useful geometric intuitions, essentially because the negative logarithm of the

Gaussian likelihood can be interpreted as a squared distance. Straight decision

boundaries result from having the same per-class covariance matrices, which

means that models resulting in such linear boundaries, including linear classi-

fiers, linear regression and K -means clustering, can be interpreted from a prob-

abilistic viewpoint that makes their inherent assumptions explicit. Two exam-

ples of this are that the basic linear classifier is Bayes-optimal for uncorrelated,

unit-variance Gaussian features; and least-squares regression is optimal for lin-

ear functions contaminated by Gaussian noise on the target variable.

� Section 9.2 was devoted to different versions of the naive Bayes classifier, which

makes the simplifying assumption that features are independent within each

class. Lewis (1998) gives an overview and history. This model is widely used

in information retrieval and text classification as it is often a good ranker if not a

good probability estimator. While the model that is usually understood as naive

Bayes treats features as categorical or Bernoulli random variables, variants em-

ploying a multinomial model tend to better model the number of occurrences

of words in a document (McCallum and Nigam, 1998). Real-valued features can

be taken into account by either modelling them as normally distributed within

each class, or by non-parametric density estimation – John and Langley (1995)

suggest that the latter gives better empirical results. Webb, Boughton and Wang

(2005) discuss ways of relaxing the strong independence assumptions made by
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naive Bayes. Probability smoothing by means of the m-estimate was introduced

by Cestnik (1990).

� Perhaps paradoxically, I don’t think there is anything particularly ‘Bayesian’ about

the naive Bayes classifier. While it is a generative probabilistic model estimating

the posterior P (Y |X ) through the joint P (Y , X ), in practice the posterior is very

poorly calibrated owing to the unrealistic independence assumptions. The rea-

son naive Bayes is often successful is because of the quality of argmaxY P (Y |X )

rather than the quality of the posterior as such, as analysed by Domingos and

Pazzani (1997). Furthermore, even the use of Bayes’ rule in determining the max-

imising Y can be avoided, as it only serves to transform uncalibrated likelihoods

into uncalibrated posteriors. So my recommendation is to use naive Bayes like-

lihoods as scores on an unknown scale whose decision threshold needs to be

calibrated by means of ROC analysis, as has been discussed several times before.

� In Section 9.3 we looked at the widely used logistic regression model. The ba-

sic idea is to combine a linear decision boundary with logistic calibration, but to

train this in a discriminative fashion by optimising conditional likelihood. So,

rather than modelling the classes as clouds of points and deriving a decision

boundary from those clouds, logistic regression concentrates on areas of class

overlap. It is an instance of the larger class of generalised linear models (Nelder

and Wedderburn, 1972). Jebara (2004) discusses the advantages of discrimina-

tive learning in comparison with generative models. Discriminative learning can

also be applied to sequential data in the form of conditional random fields (Laf-

ferty et al., 2001)

� Section 9.4 presented the Expectation-Maximisation algorithm as a general way

of learning models involving unobserved variables. This general form of EM was

proposed by Dempster, Laird and Rubin (1977) based on a variety of earlier work.

We have seen how it can be applied to Gaussian mixture models to obtain a more

general version of K -means predictive clustering, which is also able to estimate

cluster shapes and sizes. However, this increases the number of parameters of

the model and thus the risk of getting stuck in a non-optimal stationary config-

uration. (Little and Rubin, 1987) is a standard reference for dealing with missing

data.

� Finally, in Section 9.5 we briefly discussed some ideas related to learning as com-

pression. The link with probabilistic modelling is that both seek to model and ex-

ploit the non-random aspects of the data. In a simplified setting, the minimum

description length principle can be derived from Bayes’ rule by taking the nega-

tive logarithm, and states that models minimising the description length of the
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model and of the data given the model should be preferred. The first term quan-

tifies the complexity of the model, and the second term quantifies its accuracy

(as only the model’s errors need to be encoded explicitly). The advantage of the

MDL principle is that encoding schemes are often more tangible and easier to

define than prior distributions. However, not just any encoding will do: as with

their probabilistic counterparts, these schemes need to be justified in the do-

main being modelled. Pioneering work in this area has been done by Solomonoff

(1964a,b); Wallace and Boulton (1968); Rissanen (1978), among others. An excel-

lent introduction and overview is provided by Grünwald (2007).

�

https://doi.org/10.1017/CBO9780511973000.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.011



