
Modified Soft Brood Crossover in Genetic Programming

Hardik M. Parekh Vipul K. Dabhi

Information Technology Department Information Technology Department

Dharmsinh Desai University Dharmsinh Desai University

Nadiad, India Nadiad, India

hrdk018@gmail.com vipul.k.dabhi@gmail.com

 Abstract – Premature convergence is one of the important

issues while using Genetic Programming for data modeling. It

can be avoided by improving population diversity. Intelligent

genetic operators can help to improve the population diversity.

Crossover is an important operator in Genetic Programming.

So, we have analyzed number of intelligent crossover operators

and proposed an algorithm with the modification of soft brood

crossover operator. It will help to improve the population

diversity and reduce the premature convergence. We have

performed experiments on three different symbolic regression

problems. Then we made the performance comparison of our

proposed crossover (Modified Soft Brood Crossover) with the

existing soft brood crossover and subtree crossover operators.

 Index Terms – Intelligent Crossover, Genetic Programming,

Soft Brood Crossover

I. INTRODUCTION

 Genetic programming is a model of programming which

uses the ideas of biological evolution to handle a complex

problem. From the number of possible solutions, the most

effective solutions survive and compete with other solutions

in such a way to reach closer to the needed solution.

Premature convergence is one of the most important issues

while using Genetic Programming for data modeling.

Premature convergence leads to evolution of solutions which

are locally optimal. Premature convergence can be avoided by

improving population diversity. Population diversity can be

improved using intelligent crossover. Our research aim is to

improve population diversity using intelligent crossover. We

have analyzed different toolkits available for GP and found

the JCLEC[3] (Java Class Library for Evolutionary

Computation) useful for our research work. JCLEC is an

open source, platform independent and implemented in java.

II. INTELLIGENT CROSSOVER OPERATORS

Crossover is an important operator in genetic

programming. Standard crossover may produce the offspring

same as their parents. Standard crossover does not having

intelligence that how to avoid this problem of generating

offspring same as their parents. Intelligent crossover

combines the parents in such a way that it can generate the

offspring having better fitness than their parents. Premature

convergence leads to evolution of solutions which are locally

optimal. To evolve globally optimal solutions, avoidance of

premature convergence is required. Our aim is to avoid

premature convergence during GP run and hence we have to

improve the population diversity. Intelligent crossover

operator can be useful to improve population diversity. We

have analyzed few intelligent crossover operators like Context

Aware Crossover (CAC) [4], Semantic Aware Crossover

(SAC) [1], Semantic Similarity based Crossover (SSC) [5],

Soft Brood Crossover [2], Approximating Geometric

Crossover [6], Selective Crossover [8] and Size Fair

Crossover [7].

From the comparison of different crossover operators, bases

on different criteria specified in Table 1, we have observed

that soft brood crossover operator can be useful to improve

the population diversity.

TABLE I

COMPARISON OF INTELLIGENT CROSSOVER OPERATORS

A. Soft Brood Crossover(SBC)

Soft brood crossover differs from the other crossover

operators. The number of crossover performs on the same pair

of parents. The performed operations generate the number of

offspring. Then each offspring is evaluated based on their

fitness. From the generated offspring two best fittest offspring

passes into next generation and the rest are discarded.

mailto:hrdk018@gmail.com
mailto:vipul.k.dabhi@gmail.com

B. Modified Soft Brood Crossover(MSBC)

We have proposed a crossover operator that modifies

existing soft brood crossover operator. This can help to

prevent premature convergence and improve the population

diversity. Algorithm1 presents the pseudo code for proposed

crossover operator in detail.

 Algorithm 1: Modified Soft Brood Crossover

1. Select parent P1 and P2 for crossover

2. N random crossover operations are performed to

generate a brood of 2N children

3. If generation <= (1/2) Total generation

a. The fitness of all children is calculated

b. Most two dissimilar (based on fitness) children

are copied into next generation and rest are

discarded

4. Else

a. The evaluated children sorted based on their

fitness

b. Two best fittest children are copied into next

generation and other are discarded.

Modified Soft Brood Crossover operator generates the number

of offspring from the same pair of parent. For the first half of

the generation we are passing two most dissimilar offspring

into next generation based on their fitness. And for the rest

half generation we are passing two best fittest offspring into

next generation.

TABLE II

RESULTS FOR DIFFERENT RATIO OF GENERATIONS

We performed 30 runs for each problem using different

percentage of generations by passing them into the first and

second half of the crossover operator. From the obtained

results represented in Table II, we found that passing the 50%

of generations in the first half and the 50%of generations in

the second half gives the best results.

Problem 1: cos (√sin (q)) * cos (p) * sin(x) + tan(r-s)

Problem 2: Sextic Polynomial: x6 - 2x4 +x2

Problem 3: 2x2-3x +4

III TOOLKIT

We have analyzed the different toolkits available for GP

and found JCLEC[3] (Java Class Library for Evolutionary

Computation) useful for our research work. JCLEC is an

open source, platform independent and implemented in java.

We need to specify the GP parameters in the configuration

file of JCLEC toolkit which is in XML file format, to run the

experiments.

(a) Configuration parameters

 First of all we have to select an algorithm to solve the

problem. We have selected SGE (Simple Generational and

Elitist Algorithm) which is available in JCLEC specifically

for genetic programming.

<process algorithm-type =”net.sf.jclec.algorithm.classic.

SGE”>

Standard GP uses tree representation to represent an

individual. We have also used tree representation to represent

an individual. Thus, the package net.sf.jclec.exprtree must be

used, establishing the minimum tree size, the maximum tree

size and the list of terminal symbols and functions. Below we

present that how to set the tree size, terminals and functions.

<species type =”net.sf.jclec.exprtree.ExprTreeIndividual -

Species” >

<min-tree-size> 3 </min-tree-size>

<max-tree-size> 25 </max-tree-size>

<terminal class = “ tutorial.symreg.X “/>

<function class=”tutorial.symreg.Add”/>

<function class=”tutorial.symreg.Sub”/>

<function class=”tutorial.symreg.Mul”/>

The population is randomly initialized by using expression

trees and the class net.sf.jclec.exprtree.ExprTreeCreator.

< provider type =”net.sf.jclec.exprtree.ExprTreeCreator”/>

We need to specify the max of generation for stopping

criterion.

<max-of-generations> 100 </max-of-generations>

Selection of parents can be set by using the

net.sf.jclec.selector package. Tournament selection gives the

better performance, so we have selected the tournament

selector as parent selector.

<parents-selectors type = “net.sf.jclec.selector. Tournament-

Selector” tournament-size=”7”/>

Fitness function calculated using evaluator. The declaration

of evaluator type is mandatory. We use the symbolic

regression problem so we specified SymregEvaluator as

evaluator type.

<evaluator type=”tutorial.symreg.SymregEvaluator”/>

(b) packages used for Experiment:

net.sf.jclec.fitness This package contains several

implementations of the IFitness interface.

net.sf.jclec.selector This package has implementations for

several selection methods. Boltzmann Selector, Random

Selector, Roulette selector, Stochastic remaining selection,

Universal stochastic selection, Range selection, Tournament

selection are available selectors in this package.

net.sf.jclec.exprtree contains the ExprTreeIndividual which

defines a type of individual. This package also contains the

ExprTreeIndividualSpecies class that defines the structure of

individuals and operators to manipulate them continuously.

Subtree Crossover, Tree Crossover, AllNodesMutator,

DemoteMutator, GrowMutator, OneNodeMutator, Promote-

Mutator, PromoteMutator, TruncMutator are the available

operators for GP in JCLEC.

(c) Implementation details:

Multi-dimensional symbolic regression problem solving

facility was not available in JCLEC. We have implemented it

by modifying SymregEvaluator class file. There are only

three functions are available, that is Addition, Multiplication

and Subtraction. We implemented following functions

division, sin, cosine, tan, square root, exponential and log in

JCLEC for our experiments. To use the newly created

terminals and functions we need to set them in configuration

file.

We modified the seed generator class file to pass the current

time as a seed, rather than the static seed. For the comparing

of performance of our proposed crossover operator with

standard subtree crossover and soft brood crossover, we have

to generate the graphs of fitness versus generation. For that

we have modified the PopulationReporter class file that

generates the .csv file that contains the generation and fitness.

JCLEC does not have the support for soft brood crossover

operator. So we have implemented it. Only subtree crossover

and tree crossover operators are available in JCLEC for

genetic programming. Subtree crossover operators performs

the crossover with the branches of tree where as tree

crossover performs the crossover with the whole tree. For the

implementation of soft brood crossover operator we have

modified the SubtreeCrossover class and ExprTree-

Recombinator class files.

We modified the SubtreeCrossover class file because it

contains the logic of crossover point selection and helpful to

implement the proposed crossover. The modification of

ExprTreeRecombinator class file is required because it

contains the method that called the genetic operator which is

set into the configuration file that is in xml format.

IV EXPERIMENTS

We have performed the experiments on three different

symbolic regression problems.

Problem 1: cos (√sin (q)) * cos (p) * sin(x) + tan(r-s)

Problem 2: Sextic Polynomial: x6 - 2x4 +x2

Problem 3: 2x2-3x +4

TABLE III

GP PARAMETERS FOR THE ABOVE PROBLEMS

Parameters Value

Population size 100

Maximum Generation 50

Min Tree Size 3

Max Tree Size 25

Terminal Set for Problem 1 {X,P,Q,R,S}

Terminal Set Problem 2 {X}

Terminal Set Problem 3 {X, Constants(0 to 1)}

Function Set for Problem 1 {+, -, *, Sqrt, Sin, Cos, Tan}

Function Set for Problem 2 and

Problem 3
{+, -, *}

Parent selector Tournament selector with size 7

Crossover Probability 0.8

Mutation Probability 0.1

For the Problem 1, 2 and 3 we have set the GP parameters as

shown in the Table III. And we have prepared the results of

30 runs for each problem using subtree crossover, soft brood

crossover and modified soft brood crossover operators.

Fig. 1 Plot of Generations v/s Fitness for Problem1 using SubtreeCrossover

Fig. 2 Plot of Generations v/s Fitness for Problem 1 using Soft Brood Crossover

Fig. 3 Plot of Generations v/s Fitness for Problem1 using Modified Soft Brood

Crossover.

Figure 1 shows that best fitness obtained at 48th generation

using subtree crossover. Figure 2 shows that best fitness

obtained at 39th generation using Soft brood crossover and

Figure 3 represents that best fitness obtained at 5th generation

using Modified soft brood crossover. For the Problem 1, our

proposed crossover gives the best fitness into less number of

generations compare to subtree crossover and soft brood

crossover operators.

Fig. 4 Plot of Generations v/s Fitness for Problem2 using SubtreeCrossover

Fig. 5 Plot of Generations v/s Fitness for Problem2 using Soft Brood Crossover

Fig. 6 Plot of Generations v/s Fitness for Problem2 using Modified Soft Brood

Crossover

Figure 4 shows that best fitness obtained at 27th generation

using subtree crossover. Figure 5 shows that best fitness

obtained at 43rd generation using Soft brood crossover and

Figure 6 represents that modified soft brood crossover

obtained best fitness at 5th generation. From the obtained

results for Problem 2, we can say that our proposed crossover

obtains the best fitness into less number of generations

compare to soft brood crossover and subtree crossover

operators.

Fig. 7 Plot of Generations v/s Fitness for Problem3 using SubtreeCrossover

Fig. 8 Plot of Generations v/s Fitness for Problem3 using Soft Brood Crossover

Fig. 9 Plot of Generations v/s Fitness for Problem3 using Modified Soft Brood

Crossover

Figure 7 shows that subtree crossover obtained the best fitness

at 8th generation. Figure 8 shows that Soft brood crossover

obtained best fitness at 3rd generation and Figure 9 represents

that modified soft brood crossover obtained best fitness at 2nd

generation. In the case of Problem 3, modified soft brood

crossover obtained the same fitness as soft brood crossover

and subtree crossover. But, modified soft brood crossover

obtained the fitness in less number of generations than the

other two crossover operators.

CONCLUSIONS

We proposed a new crossover operator for genetic

programming that modifies the existing soft brood crossover

operator. We have implemented soft brood crossover and

proposed crossover (modified soft brood crossover) into the

JCLEC toolkit. Then we have performed the experiments on

three different symbolic regression problems (high

dimension, sextic polynomial, symbolic regression with

constants) using subtree crossover, soft brood crossover and

modified soft brood crossover operators. From the obtained

results for three different problems, we can conclude that our

proposed crossover (Modified Soft Brood Crossover) gives

good performance than the existing Soft Brood Crossover and

Subtree Crossover operators.

REFERENCES

[1] Q. U. Nguyen, X. H. Nguyen, and M. O. Neill, “Semantic Aware Crossover

for Genetic Programming: The Case for Real-Valued Function Regression,” pp.

292–302, 2009.

[2] TACKETT, W. A. Recombination, Selection and the Genetic Construction

of Computer Programs. PhD thesis, University of Southern California,

Department of Electrical Engineering Systems, 1994.

[3] S. Ventura, C. Romero, A. Zafra, J. a. Delgado, and C. Hervás, “JCLEC: a

Java framework for evolutionary computation,” Soft Computing, vol. 12, no. 4,

pp. 381–392, Apr. 2007.

[4] Hammad Majeed and Conor Ryan. A less destructive, context-aware

crossover opera tor for GP. In Proceedings of the 9th European Conference on

Genetic Programming, pages 36–48. Lecture Notes in Computer Science,

Springer, April 2006.

[5] N. Q. Uy, M. O. Neill, N. X. Hoai, B. Mckay, and E. Galv, “Semantic

Similarity based Crossover in GP for Real-valued Function Regression.” In

Proceedings of the 9
th
 International conference on Artificial evolution, 2010.

[6] K. Krawiec and P. Lichocki, “Approximating geometric crossover in

semantic space,” Proceedings of the 11th Annual conference on Genetic and

evolutionary computation - GECCO ’09, p. 987, 2009.

[7] W. B. Langdon, “Size Fair and Homologous Tree Genetic Programming

Crossovers It has been known for some time that programs within,” pp. 1–6.

[8] S. Hengpraprohm and P. Chongstitvatana. Selective crossover in genetic

programming. In Proceedings of ISCIT International Symposium on

Communications and Information Technologies, pages 14–16, November 2001.

[9] J. H. Holland, C. Langton, S. W. Wilson, and J. H. Holland,

Genetic Programming On the Programming of Computers by Means of Natural

Selection. MIT Press Cambridge, MA, USA ©1992. pp-76

[10] N. Quang, U. Nguyen, X. Hoai, and E. Galv, “Semantically-based

Crossover in Genetic Programming: Application to Real-valued Symbolic

Regression”. Journal of Genetic Programming and Evolvable Machines,

Volume 12 Issue 2, June 2011.

[11] O’Neill, M., Vanneschi, L., Gustafson, S., & Banzhaf, W. (2010). Open

issues in genetic programming. Genetic Programming and Evolvable Machines,

11(3-4), 339–363.

[12] N. T. Hien and N. X. Hoai, “A Brief Overview of Population Diversity

Measures in Genetic Programming”, In: Proceedings of the Third Asian-

Pacific workshop on Genetic Programming Military Technical Academy,

Hanoi, VietNam: (2006), pp.128-139.

