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 Abstract – Premature convergence is one of the important 

issues while using Genetic Programming for data modeling. It 

can be avoided by improving population diversity. Intelligent 

genetic operators can help to improve the population diversity. 

Crossover is an important operator in Genetic Programming.  

So, we have analyzed number of intelligent crossover operators 

and proposed an algorithm with the modification of soft brood 

crossover operator. It will help to improve the population 

diversity and reduce the premature convergence. We have 

performed experiments on three different symbolic regression 

problems. Then we made the performance comparison of our 

proposed crossover (Modified Soft Brood Crossover) with the 

existing soft brood crossover and subtree crossover operators.  
 

 Index Terms – Intelligent Crossover, Genetic Programming, 

Soft Brood Crossover 

 

I.  INTRODUCTION 

 Genetic programming is a model of programming which 

uses the ideas of biological evolution to handle a complex 

problem. From the number of possible solutions, the most 

effective solutions survive and compete with other solutions 

in such a way to reach closer to the needed solution.  

Premature convergence is one of the most important issues 

while using Genetic Programming for data modeling. 

Premature convergence leads to evolution of solutions which 

are locally optimal. Premature convergence can be avoided by 

improving population diversity. Population diversity can be 

improved using intelligent crossover. Our research aim is to 

improve population diversity using intelligent crossover. We 

have analyzed different toolkits available for GP and found 

the JCLEC[3] (Java Class Library for Evolutionary 

Computation) useful for our research work.  JCLEC is an 

open source, platform independent and implemented in java. 

 

 

II. INTELLIGENT CROSSOVER OPERATORS 

  

Crossover is an important operator in genetic 

programming. Standard crossover may produce the offspring 

same as their parents. Standard crossover does not having 

intelligence that how to avoid this problem of generating 

offspring same as their parents. Intelligent crossover 

combines the parents in such a way that it can generate the 

offspring having better fitness than their parents. Premature 

convergence leads to evolution of solutions which are locally 

optimal. To evolve globally optimal solutions, avoidance of 

premature convergence is required. Our aim is to avoid 

premature convergence during GP run and hence we have to 

improve the population diversity. Intelligent crossover 

operator can be useful to improve population diversity. We 

have analyzed few intelligent crossover operators like Context 

Aware Crossover (CAC) [4], Semantic Aware Crossover 

(SAC) [1], Semantic Similarity based Crossover (SSC) [5], 

Soft Brood Crossover [2], Approximating Geometric 

Crossover [6], Selective Crossover [8] and Size Fair 

Crossover [7]. 

 

From the comparison of different crossover operators, bases 

on different criteria specified in Table 1, we have observed 

that soft brood crossover operator can be useful to improve 

the population diversity.  

 
TABLE I 

COMPARISON OF INTELLIGENT CROSSOVER OPERATORS 

 
 

 

A. Soft Brood Crossover(SBC) 

 

Soft brood crossover differs from the other crossover 

operators. The number of crossover performs on the same pair 

of parents. The performed operations generate the number of 

offspring.  Then each offspring is evaluated based on their 

fitness. From the generated offspring two best fittest offspring 

passes into next generation and the rest are discarded. 
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B. Modified Soft Brood Crossover(MSBC) 

We have proposed a crossover operator that modifies 

existing soft brood crossover operator. This can help to 

prevent premature convergence and improve the population 

diversity.  Algorithm1 presents the pseudo code for proposed 

crossover operator in detail. 

 

   Algorithm 1: Modified Soft Brood Crossover 

 

1. Select parent P1 and P2 for crossover 

2. N random crossover operations are performed to 

generate a brood of 2N children 

3. If generation <= (1/2) Total generation 

a. The fitness of all children is calculated 

b. Most two dissimilar (based on fitness) children 

are copied into next generation and rest are 

discarded 

4. Else 

a. The evaluated children sorted based on their 

fitness 

b. Two best fittest children are copied into next 

generation and other are discarded. 

 

 

Modified Soft Brood Crossover operator generates the number 

of offspring from the same pair of parent. For the first half of 

the generation we are passing two most dissimilar offspring 

into next generation based on their fitness. And for the rest 

half generation we are passing two best fittest offspring into 

next generation.  

 
TABLE II 

RESULTS FOR DIFFERENT RATIO OF GENERATIONS 

 
 

We performed 30 runs for each problem using different 

percentage of generations by passing them into the first and 

second half of the crossover operator. From the obtained 

results represented in Table II, we found that passing the 50% 

of generations in the first half and the 50%of generations in 

the second half gives the best results. 

Problem 1: cos (√sin (q)) * cos (p) * sin(x) + tan(r-s) 

Problem 2: Sextic Polynomial:  x6  - 2x4 +x2 

Problem 3: 2x2-3x +4 

 

III TOOLKIT 

We have analyzed the different toolkits available for GP 

and found JCLEC[3] (Java Class Library for Evolutionary 

Computation) useful for our research work.  JCLEC is an 

open source, platform independent and implemented in java. 

We need to specify the GP parameters in the configuration 

file of JCLEC toolkit which is in XML file format, to run the 

experiments. 

 

(a) Configuration parameters 

 

 First of all we have to select an algorithm to solve the 

problem.  We have selected SGE (Simple Generational and 

Elitist Algorithm) which is available in JCLEC specifically 

for genetic programming. 

 

<process algorithm-type =”net.sf.jclec.algorithm.classic. 

SGE”> 

 

Standard GP uses tree representation to represent an 

individual. We have also used tree representation to represent 

an individual. Thus, the package net.sf.jclec.exprtree must be 

used, establishing the minimum tree size, the maximum tree 

size and the list of terminal symbols and functions.  Below we 

present that how to set the tree size, terminals and functions. 

 

<species type =”net.sf.jclec.exprtree.ExprTreeIndividual -

Species” > 

 

<min-tree-size> 3 </min-tree-size> 

<max-tree-size> 25 </max-tree-size> 

 

<terminal class = “ tutorial.symreg.X “/> 

 

<function class=”tutorial.symreg.Add”/> 

<function class=”tutorial.symreg.Sub”/> 

<function class=”tutorial.symreg.Mul”/> 

 

The population is randomly initialized by using expression 

trees and the class net.sf.jclec.exprtree.ExprTreeCreator. 

 

< provider type =”net.sf.jclec.exprtree.ExprTreeCreator”/> 

 

We need to specify the max of generation for stopping 

criterion.  

 

<max-of-generations> 100 </max-of-generations> 

 

Selection of parents can be set by using the 

net.sf.jclec.selector package. Tournament selection gives the 



better performance, so we have selected the tournament 

selector as parent selector.   

 

<parents-selectors type = “net.sf.jclec.selector. Tournament- 

Selector” tournament-size=”7”/> 

 

Fitness function calculated using evaluator. The declaration 

of evaluator type is mandatory. We use the symbolic 

regression problem so we specified SymregEvaluator as 

evaluator type. 

 

<evaluator type=”tutorial.symreg.SymregEvaluator”/> 

 

 

(b)  packages used for Experiment: 

 

net.sf.jclec.fitness This package contains several 

implementations of the IFitness interface.  

 

net.sf.jclec.selector   This package has implementations for 

several selection methods. Boltzmann Selector, Random 

Selector, Roulette selector, Stochastic remaining selection, 

Universal stochastic selection, Range selection, Tournament 

selection are available selectors in this package. 

 

net.sf.jclec.exprtree contains the ExprTreeIndividual which 

defines a type of individual. This package also contains the 

ExprTreeIndividualSpecies class that defines the structure of 

individuals and operators to manipulate them continuously. 

Subtree Crossover, Tree Crossover, AllNodesMutator, 

DemoteMutator, GrowMutator, OneNodeMutator, Promote- 

Mutator, PromoteMutator, TruncMutator are the available 

operators for GP in JCLEC. 

 

(c) Implementation details: 

 

Multi-dimensional symbolic regression problem solving 

facility was not available in JCLEC. We have implemented it 

by modifying SymregEvaluator class file. There are only 

three functions are available, that is Addition, Multiplication 

and Subtraction. We implemented following functions 

division, sin, cosine, tan, square root, exponential and log in 

JCLEC for our experiments. To use the newly created 

terminals and functions we need to set them in configuration 

file.  

 

We modified the seed generator class file to pass the current 

time as a seed, rather than the static seed. For the comparing 

of performance of our proposed crossover operator with 

standard subtree crossover and soft brood crossover, we have 

to generate the graphs of fitness versus generation. For that 

we have modified the PopulationReporter class file that 

generates the .csv file that contains the generation and fitness.  

  

JCLEC does not have the support for soft brood crossover 

operator. So we have implemented it. Only subtree crossover 

and tree crossover operators are available in JCLEC for 

genetic programming. Subtree crossover operators performs 

the crossover with the branches of tree where as tree 

crossover performs the crossover with the whole tree. For the 

implementation of soft brood crossover operator we have 

modified the SubtreeCrossover class and ExprTree- 

Recombinator class files. 

 

We modified the SubtreeCrossover class file because it 

contains the logic of crossover point selection and helpful to 

implement the proposed crossover. The modification of 

ExprTreeRecombinator class file is required because it 

contains the method that called the genetic operator which is 

set into the configuration file that is in xml format.  

 

IV EXPERIMENTS 

We have performed the experiments on three different 

symbolic regression problems. 

 

Problem 1: cos (√sin (q)) * cos (p) * sin(x) + tan(r-s) 

Problem 2: Sextic Polynomial:  x6  - 2x4 +x2 

Problem 3: 2x2-3x +4 

 
TABLE III 

GP PARAMETERS FOR THE ABOVE PROBLEMS 

Parameters Value 

Population size 100 

Maximum Generation 50 

Min Tree Size 3 

Max Tree Size 25 

Terminal Set for Problem 1 {X,P,Q,R,S} 

Terminal Set Problem 2 {X} 

Terminal Set Problem 3 {X, Constants(0 to 1)} 

Function Set for Problem 1 {+, -, *, Sqrt, Sin, Cos, Tan} 

Function Set for Problem 2 and 

Problem 3 
{+, -, *} 

Parent selector Tournament selector with size 7 

Crossover Probability 0.8 

Mutation Probability 0.1 

 

For the Problem 1, 2 and 3 we have set the GP parameters as 

shown in the Table III. And we have prepared the results of 

30 runs for each problem using subtree crossover, soft brood 

crossover and modified soft brood crossover operators. 

 



 
Fig. 1 Plot of Generations v/s Fitness for Problem1 using SubtreeCrossover 

 

 
Fig. 2 Plot of Generations v/s Fitness for Problem 1 using Soft Brood Crossover 

 

 

Fig. 3 Plot of Generations v/s Fitness for Problem1 using Modified Soft Brood 

Crossover. 

 

Figure 1 shows that best fitness obtained at 48th generation 

using subtree crossover. Figure 2 shows that best fitness 

obtained at 39th generation using Soft brood crossover and 

Figure 3 represents that best fitness obtained at 5th generation 

using Modified soft brood crossover. For the Problem 1, our 

proposed crossover gives the best fitness into less number of 

generations compare to subtree crossover and soft brood 

crossover operators. 

 
Fig. 4 Plot of Generations v/s Fitness for Problem2 using SubtreeCrossover 

 

 

Fig. 5 Plot of Generations v/s Fitness for Problem2 using Soft Brood Crossover 

 

 

Fig. 6 Plot of Generations v/s Fitness for Problem2 using Modified Soft Brood 

Crossover 

 

Figure 4 shows that best fitness obtained at 27th generation 

using subtree crossover. Figure 5 shows that best fitness 

obtained at 43rd generation using Soft brood crossover and 

Figure 6 represents that modified soft brood crossover 

obtained best fitness at 5th generation. From the obtained 

results for Problem 2, we can say that our proposed crossover 

obtains the best fitness into less number of generations 

compare to soft brood crossover and subtree crossover 

operators. 



Fig. 7 Plot of Generations v/s Fitness for Problem3 using SubtreeCrossover 

Fig. 8 Plot of Generations v/s Fitness for Problem3 using Soft Brood Crossover 

Fig. 9 Plot of Generations v/s Fitness for Problem3 using Modified Soft Brood 

Crossover 

Figure 7 shows that subtree crossover obtained the best fitness 

at 8th generation. Figure 8 shows that Soft brood crossover 

obtained best fitness at 3rd generation and Figure 9 represents 

that modified soft brood crossover obtained best fitness at 2nd 

generation. In the case of Problem 3, modified soft brood 

crossover obtained the same fitness as soft brood crossover 

and subtree crossover. But, modified soft brood crossover 

obtained the fitness in less number of generations than the 

other two crossover operators. 

CONCLUSIONS 

We proposed a new crossover operator for genetic 

programming that modifies the existing soft brood crossover 

operator.  We have implemented soft brood crossover and 

proposed crossover (modified soft brood crossover) into the 

JCLEC toolkit. Then we have performed the experiments on 

three different symbolic regression problems (high 

dimension, sextic polynomial, symbolic regression with 

constants) using subtree crossover, soft brood crossover and 

modified soft brood crossover operators. From the obtained 

results for three different problems, we can conclude that our 

proposed crossover (Modified Soft Brood Crossover) gives 

good performance than the existing Soft Brood Crossover and 

Subtree Crossover operators. 
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