B

Background Mathematics

B.1 Vector Spaces

We begin with the definition of a vector space. Where appropriate, we will give
simpler definitions, which at the expense of some generality will be sufficient for
the use made of them in the text. For example a vector space can be defined
over any field, but we will consider vector spaces over the real numbers, so that
what we now introduce are sometimes called ‘real vector spaces’.

Definition B.1 A set X is a vector space (VS) if two operations (addition, and
multiplication by scalar) are defined on X such that, for x,y € X, and « € R,

x+y € X,
ox € X,
Ix = x
0x = 0,

and such that in addition X is a commutative group with identity 0 under the
addition operation and satisfies the distributive laws for scalar multiplication

o(x +y) = ax + ay,
and
0+ B)x = ax + Bx,

The elements of X are also called vectors while the real numbers are referred to
as scalars.

Example B.2 The standard example of a VS is the set R” of real column vectors
of fixed dimension n. We use a dash to denote transposition of vectors (and
matrices) so that a general column vector can be written as

X=(x1...,%),

where x; e R, i=1,... ,n
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166 B Background Mathematics

Definition B.3 A non-empty subset M of a vector space X is a subspace of X, if
the restriction of the operations to M makes it a vector space.

Definition B.4 A linear combination of the vectors xy,... , X, in a vector space is
a sum of the form a;x; + - + a,x, where o; € R. If the «; are positive and
iy =1, the sum is also called a convex combination.

It is easy to see that a linear combination of vectors from a subspace is
still in the subspace, and that linear combinations can actually be used to build
subspaces from an arbitrary subset of a VS. If § is a subset of X, we denote by
span(S) the subspace of all possible linear combinations of vectors in S.

Definition B.5 A finite set of vectors S = {xy,...,X,} is linearly dependent if it
is possible to find constants ay,... ,a, not all zero such that

Xy + -+ X, = 0.
If this is not possible, the vectors are called linearly independent.

This implies that a vector y in span(S),where S is a set of linearly independent
vectors, has a unique expression of the form

Y =oiXy + ...+ dpXy,
forsomenand x; €S,i=1,... ,n

Definition B.6 A set of vectors S = {Xy,... ,X,} is said to form a basis for X if
S is linearly independent, and if every x € X can be uniquely expressed as a
linear combination of the vectors in the set S. Though there will always be many
different bases, their sizes are always the same. The size of a basis of a vector
space is known as its dimension.

Finite dimensional spaces are easier to study, as fewer pathological cases
arise. Special requirements have to be added in order to extend to the infinite
dimensional case some basic properties of finite dimensional VSs. We consider
introducing a measure of distance in a VS.

Definition B.7 A normed linear space is a VS X together with a real-valued
function that maps each element x € X into a real number |x| called the norm
of x, satisfying the following three properties:

1. Pesitivity ||x|| > 0, Vx € X, equality holding if and only if x = 0;
2. Triangle inequality ||x + y|l < |x|| + llyl, Vx,y € X;

3. Homogeneity |ax|| = |o| |x{, Vo € R, and ¥x € X.
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Example B.8 Consider countable sequences of real numbers and let 1 < p < 0.
The space 7, is the set of sequences z = {zy,2,... ,2,... } such that

0 1/p
o, = (z Iz,-l") .
i=1

The space ¢, is formed of those sequences z that satisfy
= i1} < oo.
Iz, = max (|z)

The distance between two vectors x and y can be defined as the norm of
their difference d(x,y) = |x —y|.

Definition B.9 In a normed linear space an infinite sequence of vectors x,, is said
to converge to a vector x if the sequence ||x — x,| of real numbers converges to
Zero.

Definition B.10 A sequence X, in a normed linear space is said to be a Cauchy
sequence if |[X,—X,|| — 0 as n,m — oo. More precisely, given ¢ > 0, there is an
integer N such that |[x,—x,|| < & for all n,m > N. A space is said to be complete
when every Cauchy sequence converges to an element of the space.

Note that in a normed space every convergent sequence is a Cauchy sequence,
but the converse in not always true. Spaces in which every Cauchy sequence has
a limit are said to be complete. Complete normed linear spaces are called Banach
spaces.

B.2 Inner Product Spaces

The theory of inner product spaces is a tool used in geometry, algebra, calculus,
functional analysis and approximation theory. We use it at different levels
throughout this book, and it is useful to summarise here the main results we
need. Once again, we give the definitions and basic results only for the real case.

Definition B.11 A function f from a vector space X to a vector space Y is said
to be linear if for all o, f e Rand x,y € X,

flax+ By) = of (x) + Bf (¥)-

Note that we can view the real numbers as a vector space of dimension 1.
Hence, a real-valued function is linear if is satisfies the same definition.

Example B.12 Let X =R" and Y = R™. A linear function from X to Y can be
denoted by an m x n matrix A with entries A;; so that the vector x = (x3,...,X,)
is mapped to the vector y = (y1,... ,ym) where

n
Vi= E A,'ij, i= 1, ,m.
j=1

A matrix with entries A;; = 0, for i £&j, is called diagonal.
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Definition B.13 A vector space X is called an inner product space if there is a
bilinear map (linear in each argument) that for each two elements x, y € X gives
a real number denoted by {(x -y) satisfying the following properties:

o (x-y)=(y-x),
e (x'x)>0,and (x X)=0<=x=0.

The quantity (x -y) is called the inner product of x and y, though it is also
known as the dot product or scalar product.

Example B.14 Let X = R", x = (x1,...,%,), ¥ = V1, ,yn). Let 4; be fixed
positive numbers. The following defines a valid inner product:
h
x-y) = Z Aixiyi = X Ay,
i=1
where A is the n x n diagonal matrix with non zero entries A; = 4;.

Example B.15 Let X = Cl[a,b] be the vector space of continuous functions on
the interval [a,b] of the real line with the obvious definitions of addition and
scalar multiplication. For f, g € X, define

o= ’ fgtodt.
From the definition of an inner product, two further properties follow:
* {0-y)=0,
e X is automatically a normed space, with the norm

Il = v/ {x - x).

Definition B.16 Two elements x and y of X are called orthogonal if (x-y) =0.
A set S = {xy,...,x,} of vectors from X is called orthonormal if (x;'x;) = dij,
where 6;; = 1 if i = j, and O otherwise. For an orthonormal set S, and a vector
y € X, the expression

Z (xi'y) X;
i=1

is said to be a Fourier series for y.
If S forms an orthonormal basis each vector y is equal to its Fourier series.
Theorem B.17 (Schwarz inequality)) In an inner product space
lx- PP < (x-x) (¥ y)

and the equality sign holds if and only if X and y are dependent.
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Theorem B.18 For x and y vectors of an inner product space X

Ix +yl? IxI? + Iyl +2(xy),
Ix—yI* = Ixi>+Iyl>=2(x-y).

]

Definition B.19 The angle 0 between two vectors x and y of an inner product
space is defined by
g XY

~lxilyl

If [{x-y)| = x|l llyll, the cosine is 1, § = 0, and x and y are said to be parallel.
If (x-y) = 0, the cosine is 0, & = § and the vectors are said to be orthogonal.

cos

Definition B.20 Given a set § = {Xi,... ,X,} of vectors from an inner product
space X, the n X n matrix G with entries G;; = (x;'x;) is called the Gram matrix
of S.

B.3 Hilbert Spaces

Definition B.21 A space H is separable if there exists a countable subset D = H,
such that every element of H is the limit of a sequence of elements of D. A
Hilbert space is a complete separable inner product space.

Finite dimensional vector spaces such as R" are Hilbert spaces.

Theorem B.22 Let H be a Hilbert space, M a closed subspace of H, and x € H.
There is a unique vector mg € M, known as the projection of x onto M, such that

Ix —mp|| < inf {|x —m| :m € M}.

A necessary and sufficient condition for mg € M to be the projection of x onto M
is that the vector x —my be orthogonal to vectors in M.

A consequence of this theorem is that the best approximation to x in the
subspace M generated by the orthonormal vectors {ey,...,e,} is given by its
Fourier series

n

Z (x-e) e

i=1

This leads naturally to studying the properties of series like this in the case of
infinite bases.

Definition B.23 If S is an orthonormal set in a Hilbert space H and no other
orthonormal set contains S as a proper subset, that is S is maximal, then S is
called an orthonormal basis (or: a complete orthonormal system) for H.
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Theorem B.24 Every Hilbert space H has an orthonormal basis. Suppose that § =
{Xu}aeca is an orthonormal basis for a Hilbert space H. Then, ¥y € H,

y=Z<Y'Xa>Xa

x€A

and [Iy)* = 3 peq Iy - %)%

This theorem states that, as in the finite dimensional case, every element of
a Hilbert space can be expressed as a linear combination of (possibly infinite)
basis elements.

The coefficients {y - x,) are often called the Fourier coefficients of y with
respect to the basis S = {X4}sea.

Example B.25 Consider countable sequences of real numbers. The Hilbert space
¢, is the set of sequences z = {z,23,...,2,... } such that

0
2 E : 2
”Z”2= Zi <wa
i=1

where the inner product of sequences x and z is defined by

0
(X . Z> = ZX,’Z,’.
i=1

If w={p, us,..., ...} is a countable sequence of positive real numbers, the
Hilbert space ¢ () is the set of sequences z = {z1,z3,...,z;,...} such that

o0
2
lzl3=> " wzt < oo,

i=1

where the inner product of sequences x and z is defined by
0
(x-z) = Z,u,-x,-zi.
i=1
The normed space ¢; is the set of sequences z = {zy,z25,...,2;,...} for which

Izl =) Izl < oo,
i=1

Example B26 Consider the set of continuous real-valued functions on a subset
X of R". The Hilbert space L,(X) is the set of functions f for which

1fl,, = /X f(xPdx < o,
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where the inner product of functions f and g ig defined by

-8 = [ S0g0x
The normed space L(X) is the set of functions for which

Ifll,, = sup If(x)] < oo0.

B.4 Operators, Eigenvalues and Eigenvectors

Definition B.27 A linear function from a Hilbert space H to itself is known as a
linear operator. The linear operator A is bounded if there exists a number ||A||
such that ||Ax| < ||4]| x|, for all x € H.

Definition B.28 Let 4 be a linear operator on a Hilbert space H. If there is a
vector, 0 # x € H, such that Ax = Ax for some scalar A, then 1 is an eigenvalue
of A with corresponding eigenvector X.

Definition B.29 A bounded linear operator A on a Hilbert space H is self-adjoint
if
(Ax - z7) = (x-Az),

for all x, z € H. For the finite dimensional space R" this implies that the
corresponding n X n matrix A satisfies A = A’, that is A;; = Aj;. Such matrices
are known as symmetric.

The following theorem involves a property known as compactness. We have
omitted the definition of this property as it is quite involved and is not important
for an understanding of the material contained in the book.

Theorem B.30 (Hilbert Schmidt) Let A be a self-adjoint compact linear operator
on a Hilbert space H. Then there is a complete orthonormal basis {¢;}2, for H
such that

A, = Ai;,
and }; = 0 as i — 0.

In the finite case the theorem states that symmetric matrices have an or-
thonormal set of eigenvectors.

Definition B.31 A square symmetric matrix is said to be positive (semi-) definite
if its eigenvalues are all positive (non-negative).

Proposition B.32 Let A be a symmetric matrix. Then A is positive (semi-) definite
if and only if for any vector x # 0

xX'Ax >0 (>0).
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Let M be any (possibly non-square) matrix and set A = M'M. Then A is a
positive semi-definite matrix since we can write
X'Ax = XM'Mx = (Mx) Mx = (Mx - Mx) = |[Mx|> > 0,

for any vector x. If we take M to be the matrix whose columns are the vectors
X;, i = 1,...,n, then A is the Gram matrix of the set S = {xi,...,X,}, showing
that Gram matrices are always positive semi-definite, and positive definite if the
set S is linearly independent.
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