Xl

Link Analysis

Based on the outcome of the preprocessing stage, we can establish links between enti-
ties either by using co-occurrence information (within some lexical unit such as a doc-
ument, paragraph, or sentence) or by using the semantic relationships between the
entities as extracted by the information extraction module (such as family relations,
employment relationship, mutual service in the army, etc.). This chapter describes
the link analysis techniques that can be applied to results of the preprocessing stage
(information extraction, term extraction, and text categorization).

A social network is a set of entities (e.g., people, companies, organizations, univer-
sities, countries) and a set of relationships between them (e.g., family relationships,
various types of communication, business transactions, social interactions, hierarchy
relationships, and shared memberships of people in organizations). Visualizing a
social network as a graph enables the viewer to see patterns that were not evident
before.

We begin with preliminaries from graph theory used throughout the chapter. We
next describe the running example of the 9/11 hijacker’s network followed by a brief
description of graph layout algorithms. After the concepts of paths and cycles in
graphs are presented, the chapter proceeds with a discussion of the notion of cen-
trality and the various ways of computing it. Various algorithms for partitioning and
clustering nodes inside the network are then presented followed by a brief description
of finding specific patterns in networks. The chapter concludes with a presentation
of three low-cost software packages for performing link analysis.

XI1.1 PRELIMINARIES

We model the set of entities and relationships as a graph, and most of the operations
performed on those sets are modeled as operations on graphs. The following notation
is used throughout the chapter:

Let V = {W, V5, Va,...V,} be a set of entities extracted from the documents.

A binary relation R over Vis a subset of V' x V.
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5 2
Figure XI.1. A simple undirected network with V = {1, 2, 3,4, 5}, R, = {(1, 2), (1, 3), (2, 3),
(3,4),(3,5)}and N =(V, Ry).

We use the prefix notation for relations — that is, if X and Y are related by relation
Ry, then it will be denoted by R; (X, Y).

Examples of such binary relations are friendship, marriage, school mates, army
mates, and so on.

A network N is a tuple (V, Ry, R2, R3...R,,), where R; (1 <i < m) is a binary
relation over V.

A visual representation of N is shown in Figure XI.1.

We can also describe a binary relation R using a binary matrix M, where M;; =1
if R(V;, V;), and 0 otherwise. For example, the matrix that represents the relation R

01100
1 01 00
11011
00100
00100

shown in Figure XI.1 is as follows:

Each row in the matrix corresponds to the connection vector of one of the ver-
tices. The ith row (M1, ..., M;,) corresponds to the connection vector of the ith
vertex.

The set of edges connecting all vertices in the undirected graph is denoted by E,
and |E| is the number of edges in the graph. If the graph is directed, then the lines
that connect the vertices are called arcs. Our focus is mostly on undirected networks
and hence also on undirected graphs, and so we use vertices and edges. The network
can also have weights or values attached to each of its edges. The weight function
denoted W: E — R (the real numbers) is attaching a real value to each edge. If there
are no values for any of the edges, then Ve € E, W(e) = 1.

If the relations R are not symmetric, then G = (V, E) is a directed graph:

A sequence of vertices (v1, vo, ..., vg) in G is called a walk if (v;,v;11) € E;i =
1...k—1.
A sequence of vertices (vq, Vs, ..., V) in G is called a chain if ((v;,viy1) €

E||(Vi+1, V,’) S E)l =1...k—1.
In a walk, we care about the direction of the edge, whereas in a chain we do not.
A path is a walk in which no vertices, except maybe the initial and terminal ones,
are repeated.
A walk is simple if all its edges are different.
A cycle is a simple path of at least three vertices, where v = vy.
The length of the path (vq, vo, ..., vi) is k—1.
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A special type of network is a two-mode network. This network contains two
types of vertices, and there are edges that connect the two sets of vertices. A classic
example would be a set of people and a set of events as vertices with edges connecting
a person vertex to an event vertex if the person participated in the event.

If there are no self-loops in the network (i.e., a vertex can not connect to itself),
then the maximal number of edges in an undirected network with n vertex is n(n —
1)/2. Such network, in which each vertex is connected to every other vertex, is also
called a clique. If the number of edges is roughly the same as the number of vertices,
we say that the network is sparse, whereas if the network is close to being a clique
we say that it is dense.

We can quantify the density level of a given undirected network by using the
following formula:

ND (Network Density) = n('ﬂ) = n(ziiﬂ)
Clearly 0 < ND < 1. :
Similarly, ND for a directed network would be

LE|
n(n—1)
For example ND for the network of Figure XI.1 is g%i =0.5.

XL.1.1 Running Example: 9/11 Hijackers

We have collected information about the 19 9/11 hijackers from the following
sources:

1. Names of the 19 hijackers, and the flights they boarded were taken from the FBI
site <http://www.fbi.gov/pressrel/pressrel01/091401hj.htm> (see Table XI.1).

2. Prior connections between the hijackers are based on information col-
lected from the Washington Post site given below. If there was a connection
between n > 2 people, it was converted to C(n, 2) symmetric binary rela-
tions between each pair of people. <http://www.washingtonpost.com/wp-srv/
nation/graphics/attack/investigation 24.html.>

The undirected graph of binary relations between the hijackers is shown in
Figure XI.2. The graph was drawn using Pajek dedicated freeware link analy-
sis software (Batagelj and Mrvar 2003). More details on Pajek are presented in
Section XI.7.1.

The 19 hijackers boarded 4 flights, and in Table XI.1 we can see the names of the
hijackers who boarded each flight. The flight information is used when we discuss
the various clustering schemes of the hijackers.

XI1.2 AUTOMATIC LAYOUT OF NETWORKS

To display large networks on the screen, we need to use automatic layout algo-
rithms. These algorithms display the graphs in an aesthetic way without any user
intervention.

The most commonly used aesthetic objectives are to expose symmetries and to
make the drawing as compact as possible or, alternatively, to fill the space available for

https://doi.org/10.1017/CB0978051 15465+ @M B HORIRHROSKH OB e GHERMRNIdSE Priversity Press, 2009


https://doi.org/10.1017/CBO9780511546914.012

X1.2 Automatic Layout of Networks 245

=
Mohamed Atta_,

Nawaq Alhamzi
*Ahmed Alhaznawi

.
Ahmed Alnami

Wail Alshehri Waleed M. Alshehri

Figure XI.2. Connections between the 9/11 hijackers.

the drawing. Many of the “higher level” aesthetic criteria are implicit consequences
of the

minimized number of edge crossings,

evenly distributed edge length,

evenly distributed vertex positions on the graph area,
sufficiently large vertex-edge distances, and
sufficiently large angular resolution between edges.

X1.2.1 Force-Directed Graph Layout Algorithms

Force-directed or spring-based algorithms are among the most common automatic
network layout strategies. These algorithms treat the collection of vertices and edges
as a system of forces and the layout as an “equilibrium state” of the system. The edges
between vertices are represented as an attractive force (each edge is simulated by

Table XI.1. The 19 Hijackers Ordered by Flights

Flight 77: Pentagon Flight 11: WTC 1 Flight 175: WTC 2 Flight 93: PA

Khalid Al-Midhar Satam Al Sugami Marwan Al-Shehhi Saeed Alghamdi
Majed Moged Waleed M. Alshehri Fayez Ahmed Ahmed Alhaznawi
Nawaq Alhamzi Wail Alshehri Ahmed Alghamdi Ahmed Alnami
Salem Alhamzi Mohamed Atta Hamza Alghamdi Ziad Jarrahi

Hani Hanjour Abdulaziz Alomari Mohald Alshehri
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Nawaq Alhamzi

Khalid Al-Midhal \_—7 Hani Hanjour

Ahmed Alghamdi

Ahmed Alnami

7 Abdulaziz Alomari
Marwan Al-Shehhi /'/l Hamza Alghamdi Saged Alghamdi
Ny
b
"'.\"V Fayez Ahmed
Wail AI /S \\‘

Satam Al Sugami

Ziad Jarrahi Ahmed Alhaznawi

Mohald Alshehri

Figure XI.3. KK layout of the hijackers’ graph.

a spring that pulls the vertices together), whereas distinct vertices are pushed apart
by some constraint to help prevent them from being drawn at the same point. The
method seeks equilibrium of these contradicting constraints. The first such algorithm
was introduced by Eades (Eades 1984). Following Eades, two additional layout algo-
rithms were introduced by Kamada and Kawai (KK) (Kamada and Kawai 1989) and
Fruchterman and Reingold (FR) (Fruchterman and Reingold 1991).

Kamada and Kawai’s (KK) Method

Utilizing Hooke’s law, Kamada and Kawai modeled a graph as a system of springs.
Every two vertices are connected by a spring whose rest length is proportional to
the graph-theoretic distance between its two endpoints. Each spring’s stiffness is
inversely proportional to the square of its rest length. The optimization algorithm
used by the KK method tries to minimize the total energy of the system and achieves
faster convergence by calculating the derivatives of the force equations. One of the
main benefits of the KK method is that it can be used for drawing weighted graphs
if the edge lengths are proportional to their weights. The KK method proceeds by
moving a single vertex at a time, choosing the “most promising” vertex — that is, the
one with the maximum gradient value.

In Figure XI.3 we can see the graph shown in Figure XI.2 drawn by using the KK
layout. Unlike the circular drawing of Figure X1.2 in which it is hard to see who the
leaders of the groups are, we can see here that the main leaders are Mohamed Atta,
Abdulaziz Alomari, and Hamza Alghamdi.

Fruchterman—Reingold (FR) Method

This method utilizes a simple heuristic approach to force-directed layout that works
surprisingly well in practice. The underlying physical model roughly corresponds to
electrostatic attraction in which the attractive force between connected vertices is
balanced by a repulsive force between all vertices. The basic idea is just to calculate
the attractive and repulsive forces at each vertex independently and to update all
vertices iteratively. As in simulated annealing, the maximum displacement of each
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Nawaq Alhamzi

Knalid AIMld

Salem Alhamzi

\

X Hani Hanjour
Majed Moged

Ahmed Alghamdi

BN
Satam Al Sugami Ziad Jarrahi

Fayez Ahmed

Hamza Alghamdi

Ahmed Alnami
Mohald Alshehri
Saeed Alghamdi

Ahmed Alhaznawi

Figure XI.4. FR layout of the hijackers’ graph.

vertex in any iteration is limited by a constant that is slightly decreased with each
iteration. In Figure XI.4 we can see the graph shown in Figure XI.2 drawn by using
the FR layout.

For both KK and FR, the relations between vertices must be expressed as dis-
tances between the vertices. For both algorithms we need to build a “dissimilar-
ity” matrix. In the KK algorithm this matrix is constructed from geodesic distances
between vertices, whereas in the FR algorithm the matrix is constructed directly
from adjacencies between the vertices. Spring-based methods are very successful
with small-sized graphs of up to around 100 vertices.

Simulated annealing has also been successfully applied to the layout of general
undirected graphs (Davidson and Harel 1996).

Although force-directed methods are quite useful in automatically exposing most
of the symmetries of the given graphs, they share several disadvantages:

B They are computationally expensive, and hence minimizing the energy function
when dealing with large graphs is computationally prohibitive.

B Because all methods rely on heuristics, there is no guarantee that the “best”
layout will be found.

B The methods behave as black boxes, and thus it is almost impossible to integrate
additional constraints on the layout (such as fixing the positions of certain vertices
or specifying the relative ordering of the vertices)

m Even when the graphs are planar it is quite possible that we will obtain edge
crossings.
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B The methods try to optimize just the placement of vertices and edges while ignor-
ing the exact shape of the vertices or the possibility the vertices have labels (and
hence the labels, vertices, or both may overlap each other).

X1.2.2 Drawing Large Graphs

A fast algorithm for drawing general graphs with straight edges was proposed by
Harel and Koren based on the work of Hadany and Harel (Hadany and Harel 2001).
Their algorithm works by producing a sequence of improved approximations of the
final layout. Each approximation allows vertices to deviate from their final place by
an extent limited by a decreasing constant r. As a result, the layout can be com-
puted using increasingly coarse representations of the graph in which closely drawn
vertices are collapsed into a single vertex. Each layout in the sequence is generated
very rapidly by performing a local beautification on the previously generated layout.
The main idea of Hadany and Harel’s work is to consider a series of abstractions of
the graph called coarse graphs in which the combinatorial structure is significantly
simplified but important topological features are well preserved. The energy mini-
mization is divided between these coarse graphs in such a way that globally related
properties are optimized on coarser graphs, whereas locally related properties are
optimized on finer graphs. As a result, the energy minimization process considers
only small neighborhoods at once, yielding a quick running time.

XI.3 PATHS AND CYCLES IN GRAPHS

Given two vertices in a directed graph, we can compute the shortest path between
them. The diameter of a graph is defined as the length of the longest shortest path
between any two vertices in the graph. Albert et al. (Albert, Jeong, and Barabasi
1999) found that, when the Web contained around 8 x 108 documents, the average
shortest path between any 2 pages was 19. The interpretation of the shortest path in
this case is the smallest number of URL links that must be followed to navigate from
one Web page to the other.

There are many kinds of paths between entities that can be traced in a dataset. In
the Kevin Bacon game, for example, a player takes any actor and finds a path between
the actor and Kevin Bacon that has less than six edges. For instance, Kevin Costner
links to Kevin Bacon by using one direct link: Both were in JFK. Julia Louis-Dreyfus
of TV’s Seinfeld, however, needs two links to make a path: Julia Louis-Dreyfus
was in Christmas Vacation (1989) with Keith MacKechnie. Keith MacKechnie was
in We Married Margo (2000) with Kevin Bacon. You can play the game by using the
following URL: <http://www.cs.virginia.edu/oracle>.

A similar idea is also used in the mathematical society and is called the Erdos
number of a researcher. Paul Erdos (1913-1996) wrote hundreds of mathematical
research papers in many different areas — many in collaboration with others. There
is a link between any two mathematicians if they coauthored a paper. Paul Erdos is
the root of the mathematical research network, and his Erdos number is 0. Erdos’s
coauthors have Erdos number 1. People other than Erdos who have written a joint
paper with someone with Erdés number 1 but not with Erdos have Erdés number 2,
and so on.
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In Figure XI.5 we can see the split of the hijackers into five levels according to
their distance from Mohammed Atta. The size of the little circle associated with
each hijacker manifests the proximity of the hijacker to Atta; the larger the cir-
cle, the shorter the geodesic (the shortest path between two vertices in the graph)
between the hijacker and Atta. There are ten hijackers who have a geodesic of size 1,
four hijackers who have a geodesic of size 2, one hijacker who has a geodesic of size 3,
one hijacker who has a geodesic of size 4, and finally two hijackers who have a geodesic
of size 5. A much better visualization of the different degree levels can be seen in
Figure XI.6. The diagram was produced by using Pajek’s drawing module and select-
ing Layers | in y direction. The various levels are coded by the distance from the nodes
with the highest degree. Connections are shown just between entities of different
levels.

XI1.4 CENTRALITY

The notion of centrality enables us to identify the main and most powerful actors
within a social network. Those actors should get special attention when monitoring
the behavior of the network.

Centrality is a structural attribute of vertices in a network; it has nothing to do
with the features of the actual objects represented by the vertices of the network
(i.e., if it is a network of people, their nationality, title, or any physical feature).
When dealing with directed networks we use the term prestige. There are two types
of prestige; the one defined on outgoing arcs is called influence, whereas the one
defined on incoming arcs is called support. Because most of our networks are based
on co-occurrence of entities in the same lexical unit, we will confine our attention to
undirected networks and use the term centrality. The different measures of centrality
we will present can be adapted easily for directed networks and measure influence or
support.

Five major definitions are used for centrality: degree centrality, closeness central-
ity, betweeness centrality, eigenvector centrality, and power centrality. We discuss
these in the next several sections.

X1.4.1 Degree Centrality

If the graph is undirected, then the degree of a vertex v € V is the number of other
vertices that are directly connected to it.

Definition: degree(v) = [{(v1,v2) € E| vl =vor v2 = v}

If the graph is directed, then we can talk about in-degree or out-degree. An edge
(v1,v2) € E in the directed graph is leading from vertex v1 to v2.

In-degree(v) = |{(v1, v) € E}|

Out-degree(v) = |{(v, v2) € E}|

If the graph represents a social network, then clearly people who have more
connections to other people can be more influential and can utilize more of the
resources of the network as a whole. Such people are often mediators and dealmakers
in exchanges among others and are able to benefit from this brokerage.

When dealing with undirected connections, people differ from one another only
in how many connections they have. In contrast, when the connections are directed,
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Figure XI1.5. Computing the shortest distance between Atta and all other 18 hijackers.
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Mohamed Atta

Khalid Al-MidharMarwan Al-Shér Majed Moged’ \Salem Alhamzi” Abdulaziz Aloma Ziad Jarrahi ~Satam Al Sugan Waleed M. Alshe Wail Alshehrj/ Fayez Ahmed

Ahmed Alghamdi Mohald Alshehri

Nawaq Alhamzi Hani Hanjour

Hamza Alghamdi

Saeed Alghamdi

Ahmed Alnami Ahmed Alhaznawi

Figure XI.6. Layered display of the geodesic distance between Atta and the other hijackers.

it is important to distinguish centrality based on in-degree from centrality based on
out-degree. If a person has a high in-degree, we say that this person is prominent and
has high prestige. Many people seek direct connections to him or her, indicating that
persons’s importance. People who have high out-degree are people who are able to
interact with many others and possibly spread their ideas. Such people are said to
be influential. In Table XI.2, we can see the hijackers sorted in decreasing order of
their (undirected) degree measures. We can see that Mohamed Atta and Abdulaziz
Alomari have the highest degree.

X1.4.2 Closeness Centrality

Degree centrality measures might be criticized because they take into account only
the direct connections that an entity has rather than indirect connections to all other
entities. One entity might be directly connected to a large number of entities that
might be rather isolated from the network. Such an entity is central only in a local
neighborhood of the network.

To solve the shortcomings of the degree measure, we can utilize the closeness cen-
trality. This measure is based on the calculation of the geodesic distance between the
entity and all other entities in the network. We can either use directed or undirected
geodesic distances between the entities. In our current example, we have decided to
look at undirected connections. The sum of these geodesic distances for each entity
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Table XI.2. All Degree Measures of the Hijackers

Name Degree

Mohamed Atta 11
Abdulaziz Alomari 11
Ziad Jarrahi

Fayez Ahmed
Waleed M. Alshehri
Wail Alshehri
Satam Al Sugami
Salem Alhamzi
Marwan Al-Shehhi
Majed Moged
Khalid Al-Midhar
Hani Hanjour
Nawaq Alhamzi
Ahmed Alghamdi
Saeed Alghamdi
Mohald Alshehri
Hamza Alghamdi
Ahmed Alnami
Ahmed Alhaznawi

PP OWWOOOOONNNNNNOO©

is the “farness” of the entity from all other entities. We can convert this into a mea-
sure of closeness centrality by taking its reciprocal. We can normalize the closeness
measure by dividing it by the closeness measure of the most central entity.

Formally, let d(vy, v,) = the minimal distance between v; and v, — that is, the
minimal number of vertices we need to pass on the way from v; to v;.

The closeness centrality of vertex v; is defined as C; = % This is the
reciprocal of the average geodesic distance between v; and any other vertex in the
network. In Table XI.3, we can see the hijackers sorted in decreasing order of their
closeness.

X1.4.3 Betweeness Centrality

Betweeness centrality measures the effectiveness in which a vertex connects the var-
ious parts of the network. Entities that are on many geodesic paths between other
pairs of entities are more powerful because they control the flow of information
between the pairs. That is, the more other entities depend on a certain entity to
make connections, the more power this entity has. If, however, two entities are con-
nected by more than one geodesic path and a given entity is not on all of them, it
loses some power. If we add up, for each entity, the proportion of times this entity
is “between” other entities for transmission of information, we obtain the betwee-
ness centrality of that entity. We can normalize this measure by dividing it by the
maximum possible betweeness that an entity could have had (which is the number

of })osmble pairs of entities for which the entity is on every geodesic between them
4 1)(\VI 2))
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Table XI.3. Closeness Measures of the Hijackers
Name Closeness
Abdulaziz Alomari 0.6
Ahmed Alghamdi 0.5454545
Ziad Jarrahi 0.5294118
Fayez Ahmed 0.5294118
Mohamed Atta 0.5142857
Majed Moged 0.5142857
Salem Alhamzi 0.5142857
Hani Hanjour 0.5
Marwan Al Shehhi 0.4615385
Satam Al Sugami 0.4615385
Waleed M. Alshehri 0.4615385
Wail Alshehri 0.4615385
Hamza Alghamdi 0.45
Khalid Al Midhar 0.4390244
Mohald Alshehri 0.4390244
Nawaq Alhamzi 0.3673469
Saeed Alghamdi 0.3396226
Ahmed Alnami 0.2571429
Ahmed Alhaznawi 0.2571429
Formally,

gjk = the number of geodetic paths that connect v; with vy;
gjk(vi) = the number of geodetic paths that connect v; with v and pass via v;.
B — jr(vi)
;{ 8k
_ 2B
~(VI=DvVI-2)

NB;

In Table X1.4, we can see the hijackers sorted in decreasing order of their between
measures.

X1.4.4 Eigenvector Centrality

The main idea behind eigenvector centrality is that entities receiving many commu-
nications from other well-connected entities will be better and more valuable sources
of information and hence be considered central. The eigenvector centrality scores
correspond to the values of the principal eigenvector of the adjacency matrix M.

Formally, the vector v satisfies the equation Av = Mv, where A is the corresponding
eigenvalue and M is the adjacency matrix.

The score of each vertex is proportional to the sum of the centralities of neighbor-
ing vertices. Intuitively, vertices with high eigenvector centrality scores are connected
to many other vertices with high scores, which are, in turn, connected to many other
vertices, and this continues recursively. Clearly, the highest score will be obtained
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Table XI.4. Betweeness Measures of the Hijackers

Name Betweeness (B;)
Hamza Alghamdi 0.3059446
Saeed Alghamdi 0.2156863
Ahmed Alghamdi 0.210084
Abdulaziz Alomari 0.1848669
Mohald Alshehri 0.1350763
Mohamed Atta 0.1224783
Ziad Jarrahi 0.0807656
Fayez Ahmed 0.0686275
Majed Moged 0.0483901
Salem Alhamzi 0.0483901
Hani Hanjour 0.0317955
Khalid Al-Midhar 0.0184832

Nawaq Alhamzi
Marwan Al-Shehhi
Satam Al Sugami
Waleed M. Alshehri
Wail Alshehri
Ahmed Alnami
Ahmed Alhaznawi

eNeoNeoNeoNoNoNe)

by vertices that are members of large cliques or large p-cliques. In Table XI.5 we
can see that the members of the big clique (with eight members) are those that got
the highest scores. Atta and Al-Shehhi got much higher scores than all the other
hijackers mainly because the connection between them is so strong. They were also
the pilots of the planes going into WTC1 and WTC2 and are believed to have been
the leaders of the hijackers.

X1.4.5 Power Centrality

Power centrality was introduced by Bonacich. Given an adjacency matrix M, the
power centrality of vertex i (denoted c;) is given by

ci=Y Mj(a+p-cj).
J#
where « is used to normalize the score (the normalization parameter is automatically
selected so that the sum of squares of the vertices’s centralities is equal to the number
of vertices in the network) and 8 is an attenuation factor that controls the effect that
the power centralities of the neighboring vertices should have on the power centrality
of the vertex.

Asin the eigenvector centrality, the power centrality of each vertex is determined
by the centrality of the vertices it is connected to. By specifying positive or negative
values to $, the user can control whether a vertex’s being connected to powerful
vertices should have a positive effect on its score or a negative effect. The rationale
for specifying a positive g8 is that, if you are connected to powerful colleagues it
makes you more powerful. On the other hand, the rationale for a negative g is
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Table XI.5. Eigenvector Centrality Scores of
the Hijackers

Name E1
Mohamed Atta 0.518
Marwan Al-Shehhi 0.489
Abdulaziz Alomari 0.296
Ziad Jarrahi 0.246
Fayez Ahmed 0.246
Satam Al Sugami 0.241
Waleed M. Alshehri 0.241
Wail Alshehri 0.241
Salem Alhamzi 0.179
Majed Moged 0.165
Hani Hanjour 0.151
Khalid Al-Midhar 0.114
Ahmed Alghamdi 0.085
Nawaq Alhamzi 0.064
Mohald Alshehri 0.054
Hamza Alghamdi 0.015
Saeed Alghamdi 0.002
Ahmed Alnami 0
Ahmed Alhaznawi 0

that powerful colleagues have many connections and hence are not controlled by
you, whereas isolated colleagues have no other sources of information and hence are
largely controlled by you. In Table XI.6, we can see the hijackers sorted in decreasing
order of their power measure.

X1.4.6 Network Centralization

In addition to the individual vertex centralization measures, we can assign a number
between 0 and 1 that will signal the whole network’s level of centralization. The
network centralization measures are computed based on the centralization values of
the network’s vertices; hence, we will have for each type of individual centralization
measure an associated network centralization measure. A network structured like a
circle will have a network centralization value of 0 (because all vertices have the same
centralization value), whereas a network structured like a star will have a network
centralization value of 1. We now provide some of the formulas for the different
network centralization measures.

Degree
Degree* (V) = Max,cyDegree(v)

Y vey Degree*(V) — Degree(v)

NETDbegree =
Degree (n—1)%(n—2)
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Table XI.6. Power Centrality for the Hijackers Graph
Power : 3 = 0.99 Power : 3 = —0.99

Mohamed Atta 2.254 2.214
Marwan Al-Shehhi 2.121 0.969
Abdulaziz Alomari 1.296 1.494
Ziad Jarrahi 1.07 1.087
Fayez Ahmed 1.07 1.087
Satam Al Sugami 1.047 0.861
Waleed M. Alshehri 1.047 0.861
Wail Alshehri 1.047 0.861
Salem Alhamzi 0.795 1.153
Majed Moqged 0.73 1.029
Hani Hanjour 0.673 1.334
Khalid Al-Midhar 0.503 0.596
Ahmed Alghamdi 0.38 0.672
Nawaq Alhamzi 0.288 0.574
Mohald Alshehri 0.236 0.467
Hamza Alghamdi 0.07 0.566
Saeed Alghamdi 0.012 0.656
Ahmed Alnami 0.003 0.183
Ahmed Alhaznawi 0.003 0.183

Clearly, if we have a circle, all vertices have a degree of 2; hence, NETpegree = 0. If
we have a star of n nodes (one node in the middle), then that node will have a degree
of n—1, and all other nodes will have a degree of 1; hence,

ZVEV\V* (I’l - 1) -1 _ (I’l — 1)(” - 2) _

NETDegree = (n _ 1)(” _ 2) - (n — 1)(11 — 2) =

For the hijackers’ graph, NETpegree = 0.31

Betweenness
NB*(V) = Max,c.yNB(v)

2 ev NB*(V) — NB(v)
(n—1)

For the hijackers’ network, NETge; = 0.24

NETg: =

X1.4.7 Summary Diagram

Figure XI.7 presents a summary diagram of the different centrality measures as
they are applied to the hijacker’s network. We marked by solid arrows the hijackers
who got the highest value for the various centrality measures and by dashed arrows
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Figure XI1.7. Summary diagram of centrality measures (solid arrows point to highest value;
dashed arrows point to second largest (done using Netminer (Cyram 2004)).

Nawag Alhamzi
M

the runners-up. We can see for instance that Atta has the highest value for degree
centrality, eigenvector centrality, and power centrality, whereas Alomari has the
highest value for degree centrality (tied with Atta) and closeness centrality and is
the runner-up for power centrality (with a negative beta).

On the basis of our experience the most important centrality measures are power
and eigenvector (which are typically in agreement). Closeness and, even more so,
betweeness centrality signal the people who are crucial in securing fast communica-
tion between the different parts of the network.

X1.5 PARTITIONING OF NETWORKS

Often we obtain networks that contain hundreds and even thousands of vertices. To
analyze the network effectively it is crucial to partition it into smaller subgraphs.

We present three methods below for taking a network and partitioning it into
clusters. The first method is based on core computation, the second on classic graph
algorithms for finding strong and weak components and biconnected components,
and the third on block modeling.
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Figure X1.8. Core partitioning of the hijackers’ graph.

X1.5.1 Cores

Definition: Let G = (V, E) be a graph. A subgraph S = (W, E|W) induced by
the vertex set W is a k-core or a core of order k iff Vn € W:degg(n) > k and S
is a maximal with respect to this property. The main core is the core of highest
order. The core number of vertex n is the highest order of a core that contains this
vertex.

Algorithm for finding the main core

Given a graph G = (V, E), delete all vertices n and edges attached to them such that
degs(n) < k and repeat until no vertices or edges can be deleted. The subgraph that
remains after the iterative deletion is a core of order k. If an empty graph results,
we know that no core of order k exists. We can perform a simple log |V| search for
the order of the main core. After the main core is discovered, we can remove these
vertices and the associated edges from the graph and search again for the next core
in the reduced graph. The process will terminate when an empty graph is reached. In
Figure XI.8, we can see the cores that were discovered in the hijacker’s graph. When
a core was discovered, it was deleted from the graph and the search for the biggest
core in the remaining graph started again.

We can see that four cores were found. The main core contains eight nodes and
is of order seven (each vertex is connected to all other seven vertices), the second
largest core has six vertices in it and an order of 3, the third core has three vertices
and an order of 1, and the fourth one has two vertices and an order of 1.

We then used the shrinking option of Pajek (Operations | Shrink Network |
Partition) to obtain a schematic view of the network based on the core partition.
Each core is reduced to the name of its first member. For instance, the first member
in the core marked 1 is Mohammed Atta, and hence the core is reduced to him. If
there is at least one edge between the vertices of any two cores, then we will have
an edge between the associated vertices in the reduced graph. The reduced graph,
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# Nawaqg Alhamzi

Ahmed Alghamdi

#Saeed Alghamdi

“#Hamza Alghamdi

#Mohamed Atta

Figure X1.9. Shrinking the hijackers’ graphs based on the core partition.

which is based on the shrinking of the core partitioning, is shown in Figure XI.9. A
layered display of the cores is shown in Figure XI.10.

Alternatively, we can use a layered display of the network to see the different cores
and the relations between them better. Each core is shown in a different y-level. This
representation mainly enables us to focus on the intraconnections between the cores.

Saeed Alghamdi Ahmed Alnami Ahmed Alhaznawi

Mohald Alshehri

Hamza Alghamdi

Khalid Al-Midhar

Salem Alhamzi

Hani Hanjour Ahmed Alghamdi

Nawaq Alhamzi

Mohamed Atta  Marwan Al-Shehhi Abdulaziz Alomari Ziad Jarrahi Satam Al Sugami Waleed M. Alshehri Wail Alshehri Fayez Ahmed

Figure XI.10. Layered display of the cores.
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X1.5.2 Classic Graph Analysis Algorithms

Another way of partitioning a network is to use classic graph algorithms such as weak
and strong component analysis and identification of bidirectional components.

Strong and Weak Components
Whether the network is directed or undirected is crucial to the component analysis
of the network. A subset of vertices is called a strongly connected component if there
is at least one walk from any vertex to any other vertex in the subset. A subset of
vertices is called a weakly connected component if there exists at least one chain
from any vertex to any other vertex in the subset.

A subset of vertices is called a biconnected component if there exist at least two
chains from any vertex to any other vertex in the subset, where the chains share no
common vertex.

Biconnected Components and Articulation Points

A vertex d of the network is an articulation point of the network if there exist two
additional vertices b and c so that every chain between b and c also includes d. It
follows that vertex d is an articulation point if the removal of d from the network dis-
connects it. A network is termed biconnected if, for every triple of vertices d, b, and
¢, there is a chain between b and ¢ that does not include d. This means that a bicon-
nected network remain connected even after any vertex from it is removed. There are
no articulation points in a biconnected network. Articulation points expose weak-
nesses of networks, and elimination of articulation points will cause the network to be
fragmented. The articulation points of the hijackers’ graph are shown in Figure XI.11.

X1.5.3 Equivalence between Entities

Given a network of entities, we are often interested in measuring the similarity
between the entities based on their interaction with other entities in the network. This

Nawaqg Alhamzi

~*Ahmed Alghamdi

|~ Ahmed Alrfami

Hamza Alghamdi Saeed Alghamdi

(o .
Mohald Alshehri Ahmed Alhaznljwi

Figure XI1.11. Articulation points of the hijackers’ network (the number above the arrow signals
the number of components that will result after removing the articulation point).
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section formalizes this notion of similarity between entities and provides examples
of how to find similar entities and how to use the similarity measure to cluster the
entities.

Structural Equivalence

Two entities are said to be exactly structurally equivalent if they have the same
relationships to all other entities. If A is “structurally equivalent” to B, then these
two entities are “substitutable.” Typically, we will not be able to find entities that are
exactly structurally equivalent; hence, we are interested in calculating the degree of
structural equivalence between entities. This measure of distance makes it possible
to perform hierarchical clustering of the entities in our network.

We present two formal definitions for structural equivalence. Both are based
on the connection vectors of each of the entities. The first definition is based on the
Euclidian distance between the connection vectors and other on the number of exact
matches between the elements of the vectors.

EDis(V,, V) = \/Z(Mk—Mmz
k

n My, M; 1 =b
2 k=1 64(Mik f"), where eq(a, b) = ’

Match(V;, V;) = .
ateh( ! ) n 0 otherwise

Regular Equivalence

Two entities are said to be regularly equivalent if they have an identical profile of
connections with other entities that are also regularly equivalent. In order to establish
regular equivalence, we need to classify the entities into semantic sets such that each
set contains entities with a common role. An example would be the sets of surgeons,
nurses, and anesthesiologists. Let us assume that each surgeon is related to a set of
three nurses and one anesthesiologist. We say that two such surgeons are regularly
equivalent (and so are the nurses and the anesthesiologist) — that is, they perform
the same function in the network.

Entities that are “structurally equivalent” are also “regularly equivalent.” How-
ever, entities that are “regularly equivalent” do not have to be “structurally equiva-
lent.” It is much easier to examine if two entities are structurally equivalent because
there is a simple algorithm for finding EDis and Match. It is much harder to estab-
lish if two entities are regularly equivalent because we need to create a taxonomy
of semantic categories on top of the entities. In Figure XI.12 we can see two pairs
of people and one triplet that are structurally equivalent. In Table XI.7 we can see
the EDis computed for each pair of entities. Entities that are structurally equiva-
lent will have an EDis of 0. For instance, Waleed M. Alshehri and Wail Alshehri
are structurally equivalent, and hence their EDis is 0. Based on this table, we were
able to use a hierarchical clustering algorithm (via the UCINET software package;
see Section XI.7.2) and generate the dendogram shown in Figure XI.13. People who
are very close in the dendogram are similar structurally (i.e, they have low EDis),
whereas people who are far away in the dendogram are different structurally.
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Nawaq Alhamzi

Khalid Al-Midhai —V PHani Hanjour

alem Alhamz
7 Majed Moged

Ahmed Alghamdi Ahmed Alnami

Hamza Alghamdi Saeed Alghamdi

Ziad Jarrahi Ahmed Alhaznawi

Satam Al Sugami
Mohald Alshehri

Figure XI.12. Structural equivalences in the hijackers’ graph.

X1.5.4 Block Modeling

Block modeling is an analysis technique for finding clusters of vertices that behave
in a similar way. Block modeling is based on the notions of structural and regular
equivalence between vertices and as such is far more sensitive to the interconnections
between vertices than the standard clustering techniques introduced before. Block
modeling was introduced by Borgatti and Everett (1993). The technique is fairly
general and can use a variety of equivalence relations between the vertices. The

0.000 1.414 2.000 2.207 2.387 2449 2702 2828 3.037 3.534 4.350 5.314 8.893

Mohamed Atta
Marwan Al-Shehhi

Majed Moged

3
4

Hani Hanjour 5 |
6

Salem Alhamzi 7

Abdulaziz Alomari 8
Waleed M. Alshehri 15

Satam Al Sugami 14
Wail Alshehri 16 ——

Ziad Jarrahi 10
Fayez Ahmed 17:'_
Nawaq Alhamzi 1 —
Khalid Al-Midhar 2 ——————
Ahmed Alghamdi 9
Mohald Alshehri 12
Saeed Alghamdi 13

Hamza Alghamdi 11
Ahmed Alnami 185
Ahmed Alhaznawi 19
Figure X1.13. Clustering-based structural equivalence between the hijackers (we can see that
{15,14,16} as well as {10,17} and {18,19} are structural equivalence classes).
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Table XI.7. Euclidian Distance (Edis) between Each Pair of Entities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 Nawaq Alhamzi 0.0 14 93 96 3.7 28 3.7 42 24 49 3.7 3.7 3.7 47 47 47 49 32 3.2
2 Khalid Al-Midhar 1.4 00 94 84 40 24 35 40 28 47 40 40 40 45 45 45 47 35 35
3 Mohamed Atta 93 94 00 24 98 97 102 75 94 76 98 94 98 75 75 75 76 9.6 96
4 Marwan Al-Shehhi 96 84 24 00 107 87 93 76 95 7.2 95 91 95 71 71 71 7.2 93 93
5 Hani Hanjour 3.7 40 98 10.7 00 32 20 53 40 68 6.0 63 63 66 66 66 68 6.0 6.0
6 Majed Moged 28 24 97 87 32 00 14 42 32 53 47 51 51 51 51 51 53 4.7 47
7 Salem Alhamzi 3.7 35 102 93 20 14 00 49 40 6.2 57 60 60 60 60 60 6.2 57 57
8 Abdulaziz Alomari 42 40 75 76 53 42 49 00 40 32 49 45 53 28 28 28 3.2 49 49
9 Ahmed Alghamdi 24 28 94 95 40 32 40 40 00 47 35 35 35 45 45 45 47 35 35
10 Ziad Jarrahi 49 47 76 7.2 68 53 6.2 32 47 00 42 3.7 47 14 14 1.4 00 42 4.2
11 Hamza Alghamdi 3.7 40 98 95 6.0 47 57 49 35 42 00 28 28 45 45 45 42 20 20
12 Mohald Alshehri 3.7 40 94 91 63 51 60 45 35 37 28 00 28 35 35 35 3.7 28 28
13 Saeed Alghamdi 3.7 40 98 95 63 51 6.0 53 35 47 28 28 00 45 45 45 47 20 20
14 Satam Al Sugami 47 45 75 71 66 51 6.0 28 45 14 45 35 45 00 00 00 14 40 4.0
15 Waleed M. Alshehri 47 45 75 71 66 51 6.0 28 45 14 45 35 45 00 00 00 14 40 40
16 Wail Alshehri 47 45 75 71 66 51 6.0 28 45 14 45 35 45 00 00 00 14 40 4.0
17 Fayez Ahmed 49 47 76 7.2 68 53 6.2 32 47 00 42 37 47 14 14 14 0.0 42 4.2
18 Ahmed Alnami 32 35 96 93 6.0 47 57 49 35 42 20 28 20 40 40 40 42 0.0 0.0
19 Ahmed Alhaznawi 32 35 96 93 6.0 47 57 49 35 42 20 28 20 40 40 40 42 00 0.0
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general block modeling problem is composed of two subproblems:

1. Performing clustering of the vertices; each cluster serves as a block.
2. Calculating the links (and their associated value) between the blocks.

Formal Notations

Given two clusters C; and C,, L(Cy, () is the set of edges that connect vertices in

C; to vertices in C,. Formally, L(C;, G;) = {(x, y)|(x, y) € E,x € C1,y € G}.
Because there are many ways to partition our vertices into clusters, we will intro-

duce an optimization criterion that will help pick the optimal clustering scheme.
Before defining the problem formally, we will introduce a few predicates on the

connections between two clusters. Visualizations of some of these predicates are

shown in Figure XI.14

Predicate name Formula and Acronym Explanation
Null Null(C1,Cr) =Vx € Cq,Vy € No connection at all between
Co,(x,y)¢ E the clusters
Com (Complete) Com(C41,Co) =Vx € C4,Vy(y # x) € Full connection between the
Co,(x,y)e E clusters
Row Regular Rreg(C1,Co)=Vx € Cq,3y € Each vertex in the first cluster
Co,(x,y)€e E is connected to at least one
vertex in the second cluster.
Column Regular Creg(C1,Co)=Vy € Cy,Ix € Each vertex in the second
Ci,(x,y)e E cluster is connected to at
least one vertex in the first
cluster.
Regular Reg(C4,Cy) = All vertices in both clusters
Rreg(C4,Co) A Creg(C4, C2) must have at least one vertex

in the other cluster to which
they are connected.
Row Dominant Rdom(C1,C3)=3x € C1,Vy(y # x) € There is at least one vertex in
Co,(x,y)€ E the first cluster that is
connected to all the vertices
in the second cluster.
Column Dominant  Cdom(C4,C,) =3y € C,,Vx(x # y) € There is at least one vertex in
Cq,(x,y)€ E the second cluster that is
connected to all the vertices
in the first cluster.

Row Functional Rfun(C41,C,) =Vy € Cp, 3 single x € All vertices in the second
Ci,(x,y)€e E cluster are connected to
exactly one vertex in the first
cluster.
Column Cfun(C4,C,) =Vx € C1,3 single y € All vertices in the first cluster
Functional Co,(x,y) € E are connected to exactly one

vertex in the second cluster.

Formally, a block model of graph G = (V, E)isatuple M = (U, K, T, Q, =, o), where

m U s the set of clusters that we get by partitioning V.
m K is the set of connections between elements of U, K C U x U.
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Figure XI.14. Visualization of some of the predicates on the connections between clusters.

B 7 is aset of predicates that describe the connections between the clusters.

B 7 is a mapping function between the cluster’s connections and the predicates —
7w : K — T\{Null}.

B Qisasetof averaging rules enabling us to compute the strength of the connection
between any two clusters.

B o is amapping function from the connection between the clusters to the averaging
rules—a: K — Q

Averaging rules (Q)
Listed below are a few options for giving a value to a connection between two clusters
C; and G, based on the weights assigned to edges in L(C1,C3).

ZeeL(Cl,Cz) w(e)
|L(C1, Gy)
Max(Cy, C3) = maXee(c;,c,) W(e)
Med(Cl, Cz) = medianeeL(Clqcz) w(e)
2eer(ci,cn (@)
[C1]

ZeeL(Cl.Cz) w(e)
(&)

Ave(Cl, Cz) =

Ave — row(Cy, G) =

Ave — col(Cy, Gy) =

Finding the Best Block Model

We can define a quality measure for any clustering and on the basis of that measure
seek the clustering that will yield the ultimate block model of the network. First, we
compute the quality of any clustering of the vertices.

We start with a fundamental problem. Given two clusters C; and C; and a predi-
catet € T, how can we find the deviation of L(Cy, C,) that satisfies #? This deviation
will be denoted by §(Cy, Cy, t). The approach here is to measure the number of 1’s
missing in the matrix C; x C, from a perfect matrix that satisfies t. Clearly, §(Cy, C,,
1) = 0iff t(Cy, C3) is true.

For example, if the matrix that represents L(C;, Cy) is

1
0
1
1

=)
S ===
— _ O

’

then, because there are four 0’s in the matrix, §(Cy, C;, Com) = 4.
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If we assign some weight to each predicate ¢, we can introduce the notion of
error with respect to two clusters and a predicate ¢(Cy, Cy, t) = w(t) - §(C1, Cy, £).
This notion can now be extended to the error over a set of predicates. We seek the
minimal error from all individual errors on the members of the predicate set. This
will also determine which predicate should selected to be the value of 7 (Cy, ().

8(C1, G, T) = merl 8(C1, G, t)
te

7 (Cy, Gy, T) = argmin ¢(Cy, Gy, t)
teT

Now that the error for a pair of clusters has been defined, we can define the total
error for the complete clustering. Basically, it will be the sum of the errors on all pairs
of clusters as expressed by

PWU.T)= Y  &C.G.T).
C1€U,C2€U

If, for a given U, P(U, T) = 0, we can say that U is a perfect block model of the
graph G = (V, E) with respect to 7. In most cases, it will not be possible to find a
perfect block model; hence, we will try to find the clustering U’ that minimizes the
total error over all possible clustering of V.

If T = {Null, Com} we are seeking a structural block model (Lorrain and White
1971), and if T = {Null, Reg} we are seeking a regular block model (White and Reitz
1983).

Block Modeling of the Hijacker Network

We present two experiments with the hijacker network. In both experiments we seek
a structural block model. The objective of the first experiment is to obtain four blocks
(mainly because there were four flights). Using Pajek to do the modeling, we obtain
the following connection matrix between the blocks (shown in Figure XI.15):

Final predicate matrix for the block modeling of Figure XI.15

1 2 3 4
1 Com - - -
2 null com - -
3 Com com null -
4 null null null Null

We can see that only four almost complete connections were identified (after
removing the symmetric entries). Two of them are the clique of cluster 2 and the
almost clique of cluster 1. In addition, we have almost a complete connection between
clusters 1 and 3 and between clusters 2 and 3. All other connections between clus-
ters are closer to satisfying the null predicate than they are to satisfying the com
predicate.

https://doi.org/10.1017/CB0978051 15465+ @M B HORIRHROSKH OB e GHERMRNIdSE Priversity Press, 2009


https://doi.org/10.1017/CBO9780511546914.012

ssald Aussanun abpuquied Ag auljuo paysiiand Z10'7 16975 L L50826082/£10L°0L/B1010p//:sdny
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4
#Hamza Alghamdi

# Mohamed Atta

#Nawaq Alhamzi 5

1

3
Abdulaziz Alomari

Figure X1.16. Shrinking the network based on the 4 blocks of 15.

The final error matrix is shown below; we can see that cluster 2 is a complete clique
because its error is 0, whereas we can see that the connection between clusters 3 and 1
is not complete because three connections are missing — namely, between Abdulaziz
Alomari and any of {Khalid Al-Midhar, Majed Moqed, and Nawaq Alhamzi}. The
total error is 16. In order to see a schematic view of the network, we shrank the
clusters into single nodes. If there was at least one connection between the clusters,
we will see a line between the cluster’s representatives. The name selected for each
cluster is the name of the first member of the cluster (alphabetically based on last
name, first name). The shrunk network is shown in Figure XI.16.

Final error matrix for the block modeling of Figure X1.16

1 2 3 4
1 4 - - -
2 3 0 - -
3 2 0 0 -
4 1 2 0 4

The objective of the second experiment is to see how the clustering and associated
error cost changes when we set a higher number of target clusters. We run the block
modeling of Pajek again specifying that we want to obtain six blocks or clusters. In
this case the total error dropped to 9. The six blocks are shown in Figure XI.14 and
then we show the predicate matrix of the block modeling and the final error matrix.
We can see that five of the six blocks are close to a complete block (clique), whereas
there are only three connections between the blocks.
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Figure X1.17. Block modeling with six blocks.
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Here are the final predicate matrix and error matrix for the block modeling of
Figure XI1.17

1 2 3 4 5 6
1 com - - - - -
2 null Null - - - -
3 null Null com - - -
4 com Com Null com - -
5 com Null Null null Com -
6 null Null Null null Null Com

1 2 3 4 5 6
1 0 - - - -
2 0 0 - - - -
3 1 0 1 - - -
4 0 0 0 0 - -
5 2 0 1 0 0 -
6 0 1 1 2 0 0

XI1.6 PATTERN MATCHING IN NETWORKS

Often we have a pattern expressed as a small graph P and we want to see if it is possible
to find a subgraph of G that will match P. This problem may arise, for instance, when
we want to see if an instance of a given scenario can be found in a large network. The
scenario would be expressed as a small graph containing a small number of vertices
with specific relations that connect them. We then want to see if instances of the
scenario can be found within our network. An example of such a pattern is shown
in Figure XI.18. We have specified a pattern of one person who is connected only
to three other people who have no connections between themselves. We can find
three subgraphs within the hijackers’ graph that contain a vertex connected to only
three other vertices (marked 1, 2, and 3 in the figure); however, only 1 and 2 fully
match the pattern. Subgraph 3 does not match the pattern because Fayez Ahmed
and Ziad Jarrahi are connected. The naive algorithm for finding exact matches of the
pattern is based on simple backtracking — that is, if a mismatch is found the algorithm
backtracks to the most recent junction in the graph visited before the failure. We can
also search for approximate matches using techniques such as edit distances to find
subgraphs that are similar to the pattern at hand. One of the most common patterns
to be searched in a graph is some form of a directed graph that involves three vertices
and some arcs connecting the vertices. This form of pattern is called a triad, and there
are 16 different types of triads. One of them is the empty triad, in which there are no
arcs at all, and another one is the full triad in which six arcs connect every possible
pair of vertices in the triad.
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Figure XI.18. Pattern matching in the hijackers’ graph.

X1.7 SOFTWARE PACKAGES FOR LINK ANALYSIS

There are several packages for performing link analysis in networks. Some are fairly
expensive and hence are probably out of reach for the causal user. We describe here
three packages that are either totally free or relatively inexpensive.

X1.7.1 Pajek

Pajek is a freeware developed by the University of Ljubljana that can handle net-
works containing hundreds of thousands of vertices. Pajek expects to get the input
networks in a proprietary format, which includes the list of vertices and then lists of
arcs (directed) and edges (undirected) between the vertices. There are programs that
enable converting a simple set of binary connections to the Pajek (.net) format. Pajek
supports a very large number of operations on networks, including centrality com-
putations, path finding, component analysis, clustering, block modeling, and many
other operations. In addition it includes a built-in drawing module that incorporates
most the layout algorithms described in this chapter.

Pajek can be downloaded from

<http://vlado.fmf.uni-lj.si/pub/networks/pajek/>.

The converters can be downloaded from

<http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/text2pajek.htm> and
<http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/excel2Pajek.htm>.

XI.7.2 UCINET

UCINET is a fairly robust network analysis package. It is not free, but even for
nonacademics it costs less than 300 dollars. It covers all the operations described
in this chapter, including centrality measures (with a larger variety of options than
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Pajek), clustering, path finding, and component analysis. UCINET can export and
import Pajek files. Netdraw is the visualization package of UCINET.

UCINET and Netdraw can be downloaded from <http://www.analytictech.
com/download_products.htm>.

X1.7.3 NetMiner

NetMiner is the most comprehensive package of the three, but it is also the most
expensive. The professional version costs a little less than 1,000 dollars for commercial
use. The package offers all the operations included in UCINET and Pajek and is fairly
intuitive to use.

NetMiner can be downloaded from <http://www.netminer.com/NetMiner>.

X1.8 CITATIONS AND NOTES

Section XI.1
For a great introduction to graph algorithms, please refer to Aho, Hopcroft, and

Ullman (1983). For in-depth coverage of the area of social network analysis, see
Wasserman and Faust (1994) and Scott (2000).

Section XI1.2
Force-based graph drawing algorithms are described in Kamada and Kawai (1989)
and Fruchterman and Reingold (1991). Algorithms for drawing large graphs are
addressed in Davidson and Harel (1996), Harel and Koren (2000), and Hadany and
Harel (2001).

Section XI.4

The degree centrality was introduced in Freeman (1979). The betweenness central-
ity measure is due to Freeman (1977, 1979). The closeness centrality measure was
introduced in Sabidussi (1966). The power centrality is due to Bonacich (1987). The
eigenvector centrality originates from Bonacich (1972). Good descriptions of basic
graph algorithms can be found in Aho et al. (1983). Cores have been introduced in
Seidman (1983).

Section XI.5

The notions of structural equivalence and regular equivalence were introduced in
Lorrain and White (1971) and further expanded in Batagalj, Doreian, and Ferligoi
(1992) and Borgatti and Everett (1993). Block modeling was introduced in Borgatti
and Everett (1992) and Hummon and Carley (1993). The implementation of block
modeling in Pajek is described in Batagelj (1997) and De Nooy, Mrvar, and Batageli
(2004).

Section XI.6

The notion of edit distance between graphs as vehicles for finding patterns in graphs
is described in Zhang, Wang, and Shasha (1995). Finding approximate matches in
undirected graphs is discussed in Wang et al. (2002).

https://doi.org/10.1017/CB0978051 15465+ @M B HORIRHROSKH OB e GHERMRNIdSE Priversity Press, 2009


https://doi.org/10.1017/CBO9780511546914.012



