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ABSTRACT

Functional magnetic resonance imaging produces high dimensional data, with a
less then ideal number of labelled samples for brain decoding tasks (predicting
brain states). In this study, we propose a new deep temporal convolutional neu-
ral network architecture with spatial pooling for brain decoding which aims to
reduce dimensionality of feature space along with improved classification per-
formance. Temporal representations (filters) for each layer of the convolutional
model are learned by leveraging unlabelled fMRI data in an unsupervised fashion
with regularized autoencoders. Learned temporal representations in multiple lev-
els capture the regularities in the temporal domain and are observed to be a rich
bank of activation patterns which also exhibit similarities to the actual hemody-
namic responses. Further, spatial pooling layers in the convolutional architecture
reduce the dimensionality without losing excessive information. By employing
the proposed temporal convolutional architecture with spatial pooling, raw input
fMRI data is mapped to a non-linear, highly-expressive and low-dimensional fea-
ture space where the final classification is conducted. In addition, we propose a
simple heuristic approach for hyper-parameter tuning when no validation data is
available. Proposed method is tested on a ten class recognition memory exper-
iment with nine subjects. The results support the efficiency and potential of the
proposed model, compared to the baseline multi-voxel pattern analysis techniques.

1 INTRODUCTION

Revealing the relation between brain activity and stimuli is one of the milestones to be reached in
order to understand the neural code. Data driven approaches such as Multi-Voxel Pattern Analysis
(MVPA) in systems neuroscience help to achieve this goal by formulating it as a machine learning
task. When presented a stimulus and the simultaneous brain activity is recorded for a subject, the
relation between the recorded signal and the category of the stimulus may provide percepts for
the underlying cognitive process. And the classification problem of predicting the stimulus from
the brain recording is called brain decoding. Brain decoding using functional magnetic resonance
imaging (fMRI) is a challenging problem that has received much attention recently because of its
non-invasive nature, see Haxby et al.|(2014) for a review.

The major difficulty for the machine learning tasks using fMRI data is the scarcity of labelled sam-
ples compared to the high dimensional input spaces. In a typical task related fMRI experiment, the
number of labelled samples over several time points reaches at most hundreds while dimension of
the input space (number of voxels) easily exceeds thousands even if a small region of interest is con-
sidered. Therefore, in order to improve the classification accuracy and significance, there has been a
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Figure 1: Example of a typical task fMRI experiment for brain decoding. 4-dimensional fMRI data
consists of several volumes across time, some of which are assigned to a class label according to
the semantic type and timing of the stimulus. The classification problem is to predict the class of a
labelled sample given rest of the samples. Unlabelled volumes, majority of the samples, are usually
consist of interstimulus side-tasks or resting periods, and usually discarded during the classification
in classical MVPA methods. The whole experimental data can be used to form a data matrix, rows
correspond to voxel time-series (time-axis) and columns correspond to voxels in a 3-dimensional
volume (space/spatial-axis).

great deal of effort spent to either reduce the dimensionality |Viviani et al.|(2005);|Sidhu et al.[(2012));
Mwangi et al.| (2014} or employ spatial/temporal structures [Battle et al.| (2006)); Pereira & Botvinick
(2011); [Firat et al.| (2013)) for a better representation. As a result, many brain decoding systems rely
on cleverly hand-crafted features [Norman et al.| (2006)); Haynes & Rees| (2006); |[Shirer et al.| (2012));
Hausfeld et al|(2014) to represent cognitive processes. Another issue related to the low number of
labelled samples is the labelling procedure which is strongly coupled with the experimental design.
Within the time points acquired during an experiment, only few are assigned to corresponding class
labels by considering timing of the stimulus. For example in a block design, a predetermined num-
ber of time points within a block are averaged to obtain a smoothed intensity value [Mitchell et al.
(2008)) and assigned to a single class label. Similarly, in an event related design, class labels are
assigned to time points according to the prior knowledge of the peaks of hemo-dynamic response
function (e.g. 2-3 time points after the stimulus) Norman et al.| (2006)); Oztekin & Badre| (2011)).
The rest of the unlabelled samples are generally thrown away and not used further in the decoding
tasks. A typical fMRI experiment for braind decoding is depicted in Figure[T]

Recent improvements in unsupervised feature learning and transfer learning points out the impor-
tance of employing unlabelled data for a better classification|Raina et al.|(2007); |[Erhan et al.[{(2010),
especially for the cases that we do not have enough labelled data. It is hypothesised that learning
the data generating distribution p(z) by leveraging unlabelled data improves further discriminative
tasks p(y|x), when p(x) and p(y|z) share some structure Bengio et al.| (2013). We experimented
this hypothesis by proposing that the discarded unlabelled samples of fMRI data still contain infor-
mation and can be exploited in brain decoding tasks. Learning of p(x) is reformulated as learning a
set of basis functions that can be used to represent temporal behaviour of brain activity. Likewise,
and learning of p(y|z) is formulated as a mapping between learned representations and class labels.

In this paper, we attack the brain decoding problem from perspectives of dimensionality reduction
and leveraging the unlabelled data. In order to represent noisy and redundant fMRI data, we employ
an unsupervised feature learning algorithm that can automatically extract multiple levels of temporal
features using unlabelled data. Such approaches are common in computer vision |Le et al.| (2011
but have not been adapted for neuroimaging data, especially for brain decoding. By incorporating
unlabelled data and very little prior knowledge, we learn two levels of temporal filters for fMRI data
representation without hand-crafting them. Further, we integrate learned temporal representations
into a deep temporal convolutional neural network (CNN) which have demonstrated many successes
recently Krizhevsky et al.| (2012). We employ the temporal representations to capture the temporal
information by convolution following spatial pooling within CNN layers to reduce dimensionality.
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By leveraging unlabelled data and the representational power of CNNs, we are able to train robust
classifiers. The constructed feature spaces are automatically formed by temporal representations
and have a reduced dimensionality thanks to spatial pooling. The proposed method substantially
improves classical and enhanced multi-voxel pattern analysis (MVPA) methods for brain decoding
on a recognition memory experiment with nine participants. Although there exist few studies that
employ and analyse deep learning methods for neuroimaging data Cadieu et al.|(2014)); Hjelm et al.
(2014); Plis et al.| (2014), we believe that the potential of deep learning should be further studied
thoroughly for brain decoding tasks as well.

2 UNSUPERVISED LEARNING OF TEMPORAL REPRESENTATIONS AND
CONVOLUTIONAL ARCHITECTURE

In this section, we describe proposed unsupervised learning architecture for deep temporal represen-
tations. fMRI data is composed of 3-dimensional brain volumes across time {¢; }!"_;, where each 3D
volume is formed by stacking several 2D slices (scans) and n is the total length of the experiment
across runs (see Figure[T). Each pixel in these 2D images actually represents the intensity of a small
volume of brain tissue (voxel) at a time instant ¢;. The intensity value of a voxel at location j at a
time instant ¢ can be denoted as v}, where j = 1,...,m and m is the total number of voxels in the
experiment. A typical fMRI experiment consists of several runs in which the subjects are presented
task specific stimuli at predetermined time points. Each of these stimulus corresponds to a class
(semantic class label) and the data acquired at that instant is assigned to corresponding class label
(orange vertical lines in Figure[I)). The entire experimental data can be represented by a voxel x time
matrix V'T', where columns are representing the brain volumes in terms of voxels (space), the rows
stand for voxel time series (time). Further in the classification, the labelled samples are separated
into two sets, where the first set is employed in training the classifier and the second set is used for
generalization test. Conventional MVPA methods discard columns of the data matrix VT that do
not have do not have class labels and represent the cognitive states by using raw voxel intensity val-
ues as features. Although the discarded data do not carry label information, it carries the temporal
structure (activation pattern) of each voxel across time. In order to improve representation power of
features, it is promising to capture and employ the temporal activation pattern as a substitute for raw
intensity values.

In this study we use the entire V'I" matrix (except the columns separated for test) to learn temporal
filters in two layers. Our aim is to learn a number of activation patterns delimited by short time-
window and able to reflect temporal regularities in the data without hand-crafting them. For the aim
of learning temporal filters in an unsupervised fashion, we employ sparse autoencoders | Kavukcuoglu
et al| (2009). An autoencoder is a neural network trained by back-propagation which attempts
to reconstruct its input by setting the target values to be equal to the inputs, x ~ . Let = be
the dataset of time windows of length 7; that are randomly sampled from the rows of the VT
matrix. Autoencoder consists of two consecutive functions. First, an encoder function fy, (x) is
applied on x with parameters #; which maps x to a hidden representation h. Second, a decoder
function gg, (fp, (x)) mapping the hidden representations to the reconstruction & with parameters
f>. By enforcing a sparsity constraint (activation around zero) to hidden layer neurons via the cost
function, autoencoder learns a compact, non-linear and possibly over-complete representation of its
input . The number of hidden neurons is equal to the number of filters (bases) to be learned and
will be referred as kq for the first layer temporal representations. The sparse autoencoder having k-
hidden neurons is trained to minimize reconstruction error using back-propagation by minimizing
the following cost function,

Jsparse(©) = Inn(©) + BJ; + A[O|[3, (1

where Jyy = 2 57, 1|12 — z(9||2 is the neural network reconstruction term and A||©||3 is the L2
regularization term on parameters and 3 is the hyper-parameter controlling importance of sparsity
in the model. Sparsity term J; is the crucial term in our autoencoder. Let a(.) be an element-wise
non-linear activation function and p; = E[a;(z)] be the expected activation of hidden unit j over
the dataset. By enforcing the constraint p; = p where p is the sparsity hyper-parameter, hidden
layer activations can be adjusted to be sparse. In order to measure the sparsity cost, Kullback-
Leibler divergence between average activation of a unit p and sparsity parameter p is calculated
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Figure 2: Temporal Convolutional Neural Network with spatial pooling units used for brain decod-
ing.

as J; = Zfl KL(p||p;). The optimization of the cost function (1) yields the model parameters

© = {61,605}, and columns of the transition weights 6, of encoder function fp, (), constitutes the
temporal filters. After learning k1 number of filters in the first layer, V'I" matrix is convolved along
the time axis (1D full temporal convolution) with the learned filters and k; number of response
matrices are extracted. Note that resulting response matrices are the same size as V'I" with a full
convolution.

In a convolutional neural network, a general processing block is constructed by three consecutive op-
erations; convolution, pooling and applying an element-wise non-linearity |Krizhevsky et al.| (2012).
Further, these blocks can be repeated consecutively by feeding output of one block to the next one|Le
et al.[|(2011). We construct our temporal convolutional model with two processing blocks as shown
in Figure [2| with dashed boxes. To complete our first processing block, we determine a spatial pool-
ing function p, a pooling range in a vicinity d; and point-wise non-linearity function o. Considering
the capillary structure of the brain and point spread function of fMRI medium, it is expected that
nearby voxels exhibit correlated activations |Pereira & Botvinick|(2011)). Therefore for the choice of
1 we employ max pooling function on the columns of response matrices. Note that the columns of
the response matrices correspond to spatial domain of fMRI data. As we increase the pooling range
without any overlaps between pooling functions, the final dimensionality decreases. As an example,
a spatial pooling with range §; = 2 on a response matrix with m rows (voxels) and n columns (time
points) response matrix results in an m /2 rows and n columned pooled response matrix where the
maximum of each of 2 closest voxel responses are taken[ﬂ We finalize the first processing block by
applying o, which is set to hyperbolic tangent, to all elements of the pooled response matrices.

The second level of our deep temporal convolutional net takes the pooled response matrices as in-
put and repeats the same pipeline conducted in the first block. The only difference for the second
block is the number of input matrices, which is k1 number of m/§; rowed and n columned pooled
response matrices. For each of these matrices, a separate ko number of temporal filters are learned
again by employing sparse autoencoders for each. Same procedure is followed % times: first col-
lecting 7 length time windows from the rows of an input response matrix then training a sparse
autoencoder having ke number of hidden units. Each k, filters are then convolved with the cor-
responding first level pooled response matrix. Repeating this process for all inputs of the second
block then applying pooling and non-linearity similarly, we obtain k; X ko number of second level
pooled response matrices. Note that second level pooled response matrices have m /(1 x d3) rows
and n columns, where J5 is the pooling range for second processing block. As mentioned above,
the class labels are carried along the columns of the initial V'I" matrix. After processing raw input
data with the proposed temporal convolutional model, the resulting second level pooled response
matrices have the same number of columns 7, hence still carries the class label information. Finally
at this point, all the second level pooled response matrices are concatenated along their time axis
resulting our final representation matrix which has (m x k2) /(1 X d2) rows and n columns. We then
separate the training and test data by extracting corresponding columns of V1" matrix, according to
the experiment design class labels positions.

"Pooling functions are applied to closest voxel pairs in the 3D-brain volume, not in the consecutive elements
of VT matrix columns. Pooling regions in Figure@are drawn for the ease of understanding.
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Figure 3: A collection of the first level temporal filters learned from unlabelled data across different
subjects. Each small box represents a temporal filter. Filters are randomly chosen across all subjects.
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3 EXPERIMENTS ON FMRI DATA

fMRI recording was conducted during a recognition memory task on nine participants. Each par-
ticipant is shown a list of words belonging to a specified semantic category in the working memory
encoding phase within ten categories, namely fruits, vegetables, furniture, animals, herbs, clothes,
body parts, chemical elements, colors and tools. Following a delay period where the participant
solves mathematical problems, a test probe is presented and the participant executes a yes/no re-
sponse indicating whether the word belongs to the current study list (e.g., see (Oztekin & Badre
(2011)). For the decoding task, we focused on anterior lateral temporal cortex region having 1024
voxels (m). fMRI data consists of 2400 time points (n) in 8 runs, with 240 class labels for the
memory encoding phase and 240 class labels for the memory retrieval phase (for each of ten classes,
24 samples for both memory encoding and memory retrieval). The classification task we seek to
accomplish is to predict class labels of the samples in the memory retrieval phase by using samples
in the memory encoding phase. Measurements recorded in the memory encoding phase are used as
labelled training samples and measurements in the memory retrieval phase are used as test samples.
The recording was conducted using a 3T Siemens scanner with a 2 seconds TR (repetition time),
meaning that we obtained a separate brain volume each 2 seconds (0.5 Hz sampling rate). Apart
from slice-scan time correction, 3D motion correction and registration, no additional pre-processing
was employed.

3.1 MODEL DETAILS

The proposed model is tested using fMRI experiment data with various architectural choices. Our
main consideration was to reduce the final representation dimensions with varying pooling ranges.
For this purpose, we adjusted the pooling ranges d; and d5 to retract number of dimensions compa-
rable with the standard MVPA method (which is equal to number of voxels m) and even lower. It is
well known that, hemo-dynamic response function (HRF) peaks around 4-6 seconds after a stimulus
and returns to baseline after 10-12 seconds |[Huettel et al.| (2004). Considering the experimental pro-
tocol TR as 2sec, a full HRF could be captured with a temporal window size of 6 samples. Therefore
the sampling window length for the first convolutional block 7 (resp. input unit size for the first
autoencoder, filter length), is set to 6. It is also common for CNNs that the higher level receptive
fields get wider to capture more abstract regularities [Krizhevsky et al.[(2012), so we increased the
second block temporal sampling window length 72, to 9 samples (7-10 range give similar results).
Note that the collected windows that overlap with the test samples are discarded for fairness. The
necessity to explicity increasing the window length of the second layer compared to standard CNNs
is that we do not conduct convolution and pooling in the same domain, namely we conduct pooling
on spatial domain not in time domain. Another important difference compared to common CNNs is
the summation of the response maps for each filter. The pattern we seek for brain decoding is the
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activity peaks corresponding to the cognitive task which is very sensitive to noise and comparably
small signal in magnitude. We observed that summation of the response maps for each filter results
very smoothed activity peaks in the response map, which makes it difficult for decoding task to
distinguish between class specific activations. Therefore, we avoided such summations for all of the
learned filters. Lastly, we observed a rapid overfitting as we fine-tune the whole model with labelled
data, which is expected with such high capacity models, hence we did not finetune our pre-trained
model.

3.2 SELECTION OF HYPER-PARAMETERS WITHOUT A VALIDATION SET

A major strait of CNNs and many other deep learning methods is the large number of hyper-
parameters to be tuned Bengio et al.| (2013)). Without a proper cross-validation set, as in our case,
these hyper parameters are left to be tuned with trial and error fashion which we avoided in this
study. As a heuristic, for the hyper-parameters of the autoencoders in both levels k1, ko, 3, p, A,
we propose following numerical quality assurance. It is obvious that the hidden representations of
an autoencoder are expected to learn different regularities from the input, hence, the representation
power will be increased and diversified as the learned filters are decorrelated. We searched in a
parameter search space for these hyper-parameter combinations. For k1, the inverval 9-25 and for
ko the interval 4-9, for sparsity parameter p 0.01-0.3 with multiples of 3 and 1,3,5 for 3. For each
learned filter bank with an hyper-parameter combination, we calculated the correlation matrix of
learned filters. In fully decorrelated filters case, the diagonalized correlation matrix should be close
to the identity matrix (all eigenvalues should be equal to one). Therefore, we calculated the L1 dis-
tance between the eigenvalues of the correlation matrix of the learned filters to a vector of ones. For
example, the hyper-parameters k1, 3 and p for the first layer autoencoder are calculated as follows,

arg min ||diag(I) — eigs(Ro, |1 (2)
k1,B,p

where I is identity matrix and Ry, is the correlation matrix for filters 6; (columns of the encoder
parameter matrix). We determine the hyper-parameter combination having the lowest distance, as
k1 = 16,ke = 4, p = 0.03 and S = 1. The first layer temporal representations are illustrated in
Figure E} where we observe several HRF alike filters. Moreover, the filters learned directly from
unlabelled data are capable of representing several other activation patterns such as linear trends,
boxcar, rapid dips and peaks, even some baseline trends. Note that the proposed model takes raw
fMRI intensity values as input without any normalization or pre-processing such as whitening or
Z-scores.

3.3 TESTING PROCEDURES AND COMPARISON

For the validity of the proposed model, we map the raw input fMRI data into the learned repre-
sentation space with our pre-trained temporal CNN. Further, in the representation space, training
and test samples are extracted and final design matrix is formed for classification. In order to com-
pare proposed method with other MVPA methods, we employ a k-nearest neighbor classifier for all
methods. For the proposed model, we also evaluate a single level temporal convolutional network
to monitor the impact of the depth. Three different MVPA approaches are taken into considera-
tion. The baseline is Raw MVPA method where raw intensity values are directly fed to classifier.
To make a fair comparison, we further employ temporal information in classical MVPA method in
two different ways. First, to account for temporal activation pattern in a hand-crafted fashion, we
convolved the raw intensity values with a double gamma HRF function spanning 6 samples, which
we called as HRF MVPA. After convolving with the HRF, resulting response matrix is used in a
similar way with Raw MVPA. Second, we considered a 6 sample time window from onset of the
stimulus and concatenated all of the intensity values acquired during that period, which we called as
Temporal MVPA (T-MVPA). This process yields a single feature vector for each sample which is 6
times larger than MVPA and HRF MVPA.

3.4 SIGNIFICANCE TESTS AND OVERFITTING ANALYSIS

The fewer number of samples (as in our case) may result in greater variability of the estimation. We
conducted simple, yet diagnostic tests to determine how precise the proposed method performs. Sta-
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Figure 4: Learning curves of Raw MVPA (1024 dimension) on left and our method (256 dimension)
with 16 pooling range in both layers on right. The horizontal-axis corresponding to number of
training samples while the vertical-axis is presenting error of the model.

tistical significance measures the improbability of the observed classification accuracy given the null
hypothesis is true. [Pereira et al.| (2009) proposes Binomial test (see |Alpaydin| (2010)) to estimate
the significance of a classifier provided that the samples are drawn independently. In our experi-
ment, the trials were clearly separated by irrelevant tasks between memory encoding and memory
decoding phases, which makes it plausible to assume that precondition holds. The null hypothesis
was regarded as randomness, i.e., the classifier performs at chance level (10% for general, 50% for
one-vs-all fashion). The largest p-value the tests yielded was 0.0004, and the null hypothesis was
rejected for all methods proposed.

Learning curve is a modest diagnosis tool, telling how fast a model learns with respect to training
data size and whether it suffers more from variance or bias error (seeNg/notes). For an ideal setting,
both test and training error curves need to be converging to each other. A large gap between them
is an indication of high-variance problem. With very few number of samples in relatively high
dimensional feature space of fMRI data, a model can easily over fit. In terms of data, getting more
training examples or using smaller set of features are possible solutions likely to help the high-
variance problem. However, for fMRI case, it is usually hard to increase number of samples due
to the physical limitations of MRI, forcing us to learn fewer number of representative features. To
be able to observe effect of different feature sets, learning curves of two methods are presented in
Figure 4, We mixed samples of different runs to get a larger pool of samples. At each step, 20
new samples (uniformly distributed) are inserted into the training set, and test and training errors
are plotted. The gap between test and training errors of MVPA remains much larger as amount of
training data increases. However, by using the temporal representations learned by our model, we
are able to get a method suffering much less from high-variance problem. However, the end point of
the plots (training with all samples) is indicating that both methods still requires more data before
convergence.

4 RESULTS

In this section, we present and analyse performance results of the proposed approach. Experimental
results are analysed by considering final feature space dimensions (last column of Table I) in clas-
sifiers by comparing classification accuracies. Overall results are also illustrated in Table |1} For
the classical and temporal MVPA approaches (first three rows of Table[T), Raw MVPA approach is
taken as baseline method. HRF convolved MVPA model performed poorly compared to Raw MVPA
results only for two subjects (indicated by Sub) and improved performance up to 8% for the rest of
the participants. This is expected as we employ temporal information. However, without adjusting
HREF to the regularities in the data, it remains rather hand-crafted. Similarly T-MVPA method use
temporal information without any HRF assumption and improves performance compared to other
MVPA methods.

Proposed temporal CNN architecture is tested with varying depth (single layer and two layer rows in
Table[T)) and pooling ranges (d; and d, columns). A single layer (shallow) temporal feature learning
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Table 1: Comparison of Classification performance of the proposed method and Baseline methods.

Method 01 02 Subl Sub2 Sub3 Sub4 Sub5> Sub6 Sub7 Sub8 Sub9 Dim
Raw MVPA - - 289 415 43.1 455 423 319 340 40.6 414 1024
HRFMVPA - - 323 444 423 538 36.1 41.1 445 465 482 1024
T-MVPA - - 419 524 520 539 453 44.0 449 51.1 525 6144
Single Layer 2 - 54.0 657 653 67.8 66.7 64.1 66.1 657 69.5 8192
Single Layer 4 56.1 645 636 69.5 662 653 66.1 665 68.6 4096
Single Layer 8 - 557 653 628 69.5 640 649 66.1 674 700 2028
Single Layer 16 519 640 632 68.6 623 633 649 673 67.0 1024

69.0 71.6 729 724 728 712 723 703 712 8142
68.6 69.1 712 724 69.1 686 60.7 703 72.8 4096
69.5 686 71.6 732 700 699 66.1 703 728 2048
699 695 733 728 712 700 67.0 69.5 71.6 1024
68.6 674 720 70.8 71.1 687 67.0 703 708 512
6 63.6 665 699 70.7 683 666 644 682 665 256

Two Layers 4

Two Layers 16
Two Layers 16
Two Layers 16
Two Layers 16
Two Layers 16

— 00 AN = !

and convolution architecture with varying pooling range between 2 to 16 yields a feature space with
dimensions from 8192 to 1024. For all nine subjects, single layer architecture outperforms classical
and temporal MVPA methods substantially and achieving performance up to 60%s. By appropriate
pooling, the feature dimensions of the single layer architecture retracted to 1024 where we still
observe 20% improvement.

In order to analyse the impact of the depth and further reduce feature dimensionality, two layer archi-
tecture is tested with varying pooling ranges in the second level. The proposed model in two layers
reduces feature dimensions down to 256 where we still observe better performance in 8 subjects
compared to the single layer architecture with lowest dimensions. We did not observe any perfor-
mance improvements by increasing depth more than two, as model gets more complex and starts
to overfit rapidly. The results suggest that employing temporal structures with appropriate pooling
for brain decoding gives rise to better classification accuracies. Hierarchical convolutional models
pre-trained with a slightly larger amount of unlabelled data are appropriate candidates to employ
temporal information in an efficient way. Furthermore, increasing depth of such temporal convolu-
tional architectures up to some extent, makes it possible to reduce feature dimensionality, and the
learned filters become more complex and non-linear, resulting a better classification performance.

5 CONCLUSION

In this study, we have considered a novel approach for brain decoding on fMRI data using unsu-
pervised feature learning and convolutional neural networks. By leveraging unlabelled data and
employing multi-layer temporal CNNs, we learn multiple layers of temporal filters which represent
the activation patterns of voxels under experimental conditions. By making use of deep temporal
representations, we train powerful and robust brain decoding models, which may initiate a slight
departure from conventional MVPA approaches generally relying on voxel intensity values as fea-
tures or carefully hand-crafting them. As evidence of the power of proposed model, we conducted a
recognition memory experiment on 9 subjects and observed significant performance improvements.
The proposed model has potential to further improvements by incorporating spatial structures with
spatial convolution and pooling, or learning spatio-temporal filters all-together which is left as a
future work. Also, hyper-parameter selection and preventing overfitting is partially and naively
handled in this study, which should be further analysed in details.
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