
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 14

MPI – Message Passing Interface

I MPI is used for distributed memory parallelism (communication
between nodes of a cluster)

I Interface specification with many implementations
I Portability was a major goal
I Widespread use in parallel scientific computing
I Six basic MPI functions

I MPI_Init, MPI_Finalize,
I MPI_Comm_size, MPI_Comm_rank,
I MPI_Send, MPI_Recv

I Many other functions. . .

MPI

I An MPI job consists of multiple processes running on multiple
nodes, e.g., 1 or more processes per node.

I Processes do not share memory. MPI provides functions for
passing messages between processes.

I If there are fewer processes than cores (usual case), then multiple
threads are used in each process.

MPI Hello World!

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{

int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello, world! from %d of %d\n", rank, size);

MPI_Finalize();

return 0;
}

Compiling MPI programs

Use mpicc which calls a compiler and links to appropriate libraries, etc.

mpicc # wrapper around gcc
mpiicc # wrapper around icc
mpiicpc # wrapper around icpc

Running MPI programs

Use mpirun -n <numproc>/progname

I mpirun will contact all nodes, set up communication between
nodes, and run your program on all nodes

I Usually MPI jobs are run on multiple nodes of a cluster (1 or more
processes per node), and multiple threads per MPI process

Running MPI programs on MIC

I We will use MPI to run multiple processes on a single coprocessor
(although this is shared memory hardware)

I It is also possible to use MPI to run multiple processes on multiple
coprocessors, and multiple coprocessors and CPU hosts, but we
will not do this

I Run in native mode

I compile on host using mpiicc -mmic ...
I scp executable to coprocessor
I log into coprocessor and use mpirun

I Run from the host

I compile on host using mpiicc -mmic ...
I scp executable to coprocessor
I use mpirun but must also set I_MPI_MIC

I_MPI_MIC=1 mpirun -host mic0 -n 60 ~/progname

Blocking Send and Recv

I MPI_Send

I Function does not return until send buffer can be reused
I Does not imply the message has been sent
I Must be assured that the receiver posts a receive call

I MPI_Recv

I Function does not return until recv buffer contains received
message

I Deadlock example (will deadlock if no buffering)

I Two processes, each performs

Send(to other)
Recv(from other)

deadlock.c

void main(int argc, char *argv[])
{

int size, rank;
double sum;
double sendbuf[MSGLEN];
double recvbuf[MSGLEN];
MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

double val = (double) rank;
sendbuf[0] = (double) rank;

MPI_Send(sendbuf, MSGLEN, MPI_DOUBLE, (rank+1)%size,
0, MPI_COMM_WORLD);

MPI_Recv(recvbuf, MSGLEN, MPI_DOUBLE, (rank-1+size)%size,
0, MPI_COMM_WORLD, &status);

printf("Recv on node %d is %f\n", rank, recvbuf[0]);

MPI_Finalize();
}

Non-blocking Send and Recv

I MPI_Isend

I Function returns immediately; the data may be buffered, and the
message may not be sent yet

I MPI_Irecv

I Function returns immediately; the message has not necessarily
arrived

I MPI_Wait

I Block until Isend/Irecv completes (buffer can only be used at this
point)

I Allows overlap of communication with computation
I Easier to avoid deadlocks than using blocking calls
I Can combine blocking and non-blocking calls

nonblocking.c

MPI_Request request;
MPI_Status status;

MPI_Irecv(recvbuf, length, MPI_CHAR, (rank-1+size)%size,
0, MPI_COMM_WORLD, &request);

MPI_Send(sendbuf, length, MPI_CHAR, (rank+1)%size,
0, MPI_COMM_WORLD);

MPI_Wait(&request, &status);

Measured latency and bandwidth

2 CPU Xeon host (bidirectional bandwidth, one pair of processes)

Message length

10
0

10
2

10
4

10
6

10
8

T
im

e
 (

s
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Message length

10
0

10
2

10
4

10
6

10
8

B
a

n
d

w
id

th
 (

b
y
te

s
/s

)

10
6

10
8

10
10

I latency is around 1 microsecond
I bandwidth is comparable to single thread memory bandwidth (MPI

is using shared memory in this case)
I how does this curve change when multiple pairs are running?
I more efficient to send long messages than short messages (group

your messages together if possible, unless you are pipelining
computations)

Measured latency and bandwidth

2 CPU Xeon host (bidirectional bandwidth, one pair of processes)

Message length

10
0

10
2

10
4

10
6

10
8

T
im

e
 (

s
)

10
-6

10
-4

10
-2

Same socket

Different sockets

Measured latency and bandwidth

Xeon Phi coprocessor (bidirectional bandwidth, one pair of processes)

Message length

10
0

10
2

10
4

10
6

10
8

T
im

e
 (

s
)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Message length

10
0

10
2

10
4

10
6

10
8

B
a

n
d

w
id

th
 (

b
y
te

s
/s

)

10
6

10
8

10
10

Eager and Rendezvous protocols

I Eager protocol: if the message is short, it is sent immediately and
buffered on the receiver’s side. On the receiver, the message is
copied to the receive buffer when the receive is posted.

I Rendezvous protocol: if the message is long, a short message is
first sent to the receiver to indicate that a send has been posted.
The receiver sends the address of the receive buffer. The sender
then sends the actual message.

I Kink in timing graph is due to the switchover from eager to
rendezvous protocols.

MPI process pinning

I When using multiple MPI processes per node, it may be desirable
to pin the processes to a socket, or to a set of cores

I Each MPI process may use multiple threads (within a socket or set
of cores)

I Define a domain to be a non-overlapping set of logical cores

I A MPI process can be pinned to a domain; the threads in a
process run on the logical cores of the domain (use
KMP_AFFINITY to pin threads)

I Pinning can be accomplished with environment variables (also with
the mpirun command, etc.)

I Set I_MPI_DEBUG=4 to see how processes are pinned

MPI process pinning with environment variables

I_MPI_PIN_DOMAIN can take the following values:

I core
I socket
I numa
I node
I cache1
I cache2
I cache3
I numerical value, which is the size of the domain
I omp which sets the domain size to OMP_NUM_THREADS

MPI process pinning with environment variables

I_MPI_PIN_ORDER can take the following values:

I scatter
I compact
I spread
I bunch

Reference: https://software.intel.com/en-us/node/528819

Exercise 7 - Due Wed., Oct. 19, 10 pm

I Write a code to measure the maximum bandwidth between 2p
processes on the coprocessor, for different message lengths, and
for different values of p, e.g., 1, 2, 4, 8, 16, 30. (Use
communication between pairs of processes.)

I At what value of p does the aggregate bandwidth for long
messages no longer improve?

I For this value of p, plot the average time for sending a single
message as a function of message length. Use lengths 1 byte, 2
bytes, 4 bytes, etc., up to 16 MB. Also plot the bandwidth (GB/s).
Use log-log axes for both plots.

