
CHAPTER 11

Model ensembles

T
WO HEADS ARE BETTER THAN ONE – a well-known proverb suggesting that two minds

working together can often achieve better results. If we read ‘features’ for ‘heads’ then

this is certainly true in machine learning, as we have seen in the preceding chapters.

But we can often further improve things by combining not just features but whole mod-

els, as will be demonstrated in this chapter. Combinations of models are generally

known as model ensembles. They are among the most powerful techniques in machine

learning, often outperforming other methods. This comes at the cost of increased al-

gorithmic and model complexity.

The topic of model combination has a rich and diverse history, to which we can

only partly do justice in this short chapter. The main motivations came from compu-

tational learning theory on the one hand, and statistics on the other. It is a well-known

statistical intuition that averaging measurements can lead to a more stable and reliable

estimate because we reduce the influence of random fluctuations in single measure-

ments. So if we were to build an ensemble of slightly different models from the same

training data, we might be able to similarly reduce the influence of random fluctu-

ations in single models. The key question here is how to achieve diversity between

these different models. As we shall see, this can often be achieved by training models

on random subsets of the data, and even by constructing them from random subsets

of the available features.

330

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.1 Bagging and random forests 331

The motivation from computational learning theory went along the following lines.

As we have seen in Section 4.4, learnability of hypothesis languages is studied in the

context of a learning model, which determines what we mean by learnability. PAC-

learnability requires that a hypothesis be approximately correct most of the time. An

alternative learning model called weak learnability requires only that a hypothesis is

learned that is slightly better than chance. While it appears obvious that PAC-learnability

is stricter than weak learnability, it turns out that the two learning models are in fact

equivalent: a hypothesis language is PAC-learnable if and only if it is weakly learnable.

This was proved constructively by means of an iterative algorithm that repeatedly con-

structs a hypothesis aimed at correcting the mistakes of the previous hypothesis, thus

‘boosting’ it. The final model combined the hypotheses learned in each iteration, and

therefore establishes an ensemble.

In essence, ensemble methods in machine learning have the following two things

in common:

� they construct multiple, diverse predictive models from adapted versions of the

training data (most often reweighted or resampled);

� they combine the predictions of these models in some way, often by simple av-

eraging or voting (possibly weighted).

It should, however, also be stressed that these commonalities span a very large and

diverse space, and that we should correspondingly expect some methods to be practi-

cally very different even though superficially similar. For example, it makes a big differ-

ence whether the way in which training data is adapted for the next iteration takes the

predictions of the previous models into account or not. We will explore this space by

means of the two best-known ensemble methods: bagging in Section 11.1 and boosting

in Section 11.2. A short discussion of these and related ensemble methods then follows

in Section 11.3, before we conclude the chapter in the usual way with a summary and

pointers for further reading.

11.1 Bagging and random forests

Bagging, short for ‘bootstrap aggregating’, is a simple but highly effective ensemble

method that creates diverse models on different random samples of the original data

set. These samples are taken uniformly with replacement and are known as bootstrap

samples. Because samples are taken with replacement the bootstrap sample will in

general contain duplicates, and hence some of the original data points will be missing

even if the bootstrap sample is of the same size as the original data set. This is ex-

actly what we want, as differences between the bootstrap samples will create diversity

among the models in the ensemble. To get an idea of how different bootstrap samples

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

332 11. Model ensembles

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 11.1. (left) An ensemble of five basic linear classifiers built from bootstrap samples with

bagging. The decision rule is majority vote, leading to a piecewise linear decision boundary.

(right) If we turn the votes into probabilities, we see the ensemble is effectively a grouping

model: each instance space segment obtains a slightly different probability.

might be, we can calculate the probability that a particular data point is not selected

for a bootstrap sample of size n as (1−1/n)n , which for n = 5 is about one-third and has

limit 1/e = 0.368 for n →∞. This means that each bootstrap sample is likely to leave

out about a third of the data points.

Algorithm 11.1 gives the basic bagging algorithm, which returns the ensemble as

a set of models. We can choose to combine the predictions from the different mod-

els by voting – the class predicted by the majority of models wins – or by averaging,

which is more appropriate if the base classifiers output scores or probabilities. An il-

lustration is given in Figure 11.1. I trained five basic linear classifiers on bootstrap

samples from 20 positive and 20 negative examples. We can clearly see the diversity of

the five linear classifiers, which is helped by the fact that the data set is quite small. The

Algorithm 11.1: Bagging(D,T,A) – train an ensemble of models from bootstrap

samples.

Input : data set D ; ensemble size T ; learning algorithm A .

Output : ensemble of models whose predictions are to be combined by voting

or averaging.

1 for t = 1 to T do

2 build a bootstrap sample Dt from D by sampling |D| data points with

replacement;

3 run A on Dt to produce a model Mt ;

4 end

5 return {Mt |1≤ t ≤ T }

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.1 Bagging and random forests 333

figure demonstrates the difference between combining predictions through voting (Fig-

ure 11.1 (left)) and creating a probabilistic classifier by averaging (Figure 11.1 (right)).

With voting we see that bagging creates a piecewise linear decision boundary, some-

thing that is impossible with a single linear classifier. If we transform the votes from

each model into probability estimates, we see that the different decision boundaries

partition the instance space into segments that can potentially each receive a different

score.

Bagging is particularly useful in combination with tree models, which are quite sen-

sitive to variations in the training data. When applied to tree models, bagging is often

combined with another idea: to build each tree from a different random subset of the

features, a process also referred to as subspace sampling. This encourages the diversity

in the ensemble even more, and has the additional advantage that the training time of

each tree is reduced. The resulting ensemble method is called random forests, and the

algorithm is given in Algorithm 11.2.

Since a decision tree is a grouping model whose leaves partition the instance space,

so is a random forest: its corresponding instance space partition is essentially the

intersection of the partitions of the individual trees in the ensemble. While the ran-

dom forest partition is therefore finer than most tree partitions, it can in principle be

mapped back to a single tree model (because intersection corresponds to combining

the branches of two different trees). This is different from bagging linear classifiers,

where the ensemble has a decision boundary that can’t be learned by a single base

classifier. One could say, therefore, that the random forest algorithm implements an

alternative training algorithm for tree models.

Algorithm 11.2: RandomForest(D,T,d) – train an ensemble of tree models from

bootstrap samples and random subspaces.

Input : data set D ; ensemble size T ; subspace dimension d .

Output : ensemble of tree models whose predictions are to be combined by

voting or averaging.

1 for t = 1 to T do

2 build a bootstrap sample Dt from D by sampling |D| data points with

replacement;

3 select d features at random and reduce dimensionality of Dt accordingly;

4 train a tree model Mt on Dt without pruning;

5 end

6 return {Mt |1≤ t ≤ T }

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

334 11. Model ensembles

11.2 Boosting

Boosting is an ensemble technique that is superficially similar to bagging, but uses a

more sophisticated technique than bootstrap sampling to create diverse training sets.

The basic idea is simple and appealing. Suppose we train a linear classifier on a data

set and find that its training error rate is ε. We want to add another classifier to the

ensemble that does better on the misclassifications of the first classifier. One way to

do that is to duplicate the misclassified instances: if our base model is the basic linear

classifier, this will shift the class means towards the duplicated instances. A better way

to achieve the same thing is to give the misclassified instances a higher weight, and to

modify the classifier to take these weights into account (e.g., the basic linear classifier

can calculate the class means as a weighted average).

But how much should the weights change? The idea is that half of the total weight is

assigned to the misclassified examples, and the other half to the rest. Since we started

with uniform weights that sum to 1, the current weight assigned to the misclassified ex-

amples is exactly the error rate ε, so we multiply their weights by 1/2ε. Assuming ε< 0.5

this is an increase in weight as desired. The weights of the correctly classified examples

get multiplied by 1/2(1− ε), so the adjusted weights again sum to 1. In the next round

we do exactly the same, except we take the non-uniform weights into account when

evaluating the error rate.

Example 11.1 (Weight updates in boosting). Suppose a linear classifier

achieves performance as in the contingency table on the left. The error

rate is ε = (9+16)/100 = 0.25. The weight update for the misclassified examples

is a factor 1/2ε= 2 and for the correctly classified examples 1/2(1−ε)= 2/3.

Predicted ⊕ Predicted �
Actual ⊕ 24 16 40

Actual � 9 51 60

33 67 100

⊕ �
⊕ 16 32 48

� 18 34 52

34 66 100

Taking these updated weights into account leads to the contingency table

on the right, which has a (weighted) error rate of 0.5.

We need one more ingredient in our boosting algorithm and that is a confidence

factorα for each model in the ensemble, which we will use to form an ensemble predic-

tion that is a weighted average of each individual model. Clearly we want α to increase

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.2 Boosting 335

with decreasing ε: a common choice is

αt = 1

2
ln

1−εt

εt
= ln

√
1−εt

εt
(11.1)

which we will justify in a moment. The basic boosting algorithm is given in Algorithm

11.3. Figure 11.2 (left) illustrates how a boosted ensemble of five basic linear classi-

fiers can achieve zero training error. It is clear that the resulting decision boundary

is much more complex than could be achieved by a single basic linear classifier. In

contrast, a bagged ensemble of basic linear classifiers has learned five very similar de-

cision boundaries, the reason being that on this data set the bootstrap samples are all

very similar.

I will now justify the particular choice for αt in Equation 11.1. First, I will show

that the two weight updates for the misclassified instances and the correctly classified

instances can be written as reciprocal terms δt and 1/δt normalised by some term Zt :

1

2εt
= δt

Zt

1

2(1−εt)
= 1/δt

Zt

The second expression gives δt = 2(1− εt)/Zt ; substituting this back into the first ex-

pression yields

Zt = 2
√

εt (1−εt) δt =
√

1−εt

εt
= exp(αt) (11.2)

Algorithm 11.3: Boosting(D,T,A) – train an ensemble of binary classifiers from

reweighted training sets.

Input : data set D ; ensemble size T ; learning algorithm A .

Output : weighted ensemble of models.

1 w1i ←1/|D| for all xi ∈D ; // start with uniform weights

2 for t = 1 to T do

3 run A on D with weights wti to produce a model Mt ;

4 calculate weighted error εt ;

5 if εt ≥ 1/2 then

6 set T ← t −1 and break

7 end

8 αt ← 1
2 ln 1−εt

εt
; // confidence for this model

9 w(t+1)i ←wti
2εt

for misclassified instances xi ∈D ; // increase weight

10 w(t+1) j ← wt j

2(1−εt) for correctly classified instances x j ∈D ; // decrease weight

11 end

12 return M(x)=∑T
t=1αt Mt (x)

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

336 11. Model ensembles

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 11.2. (left) An ensemble of five boosted basic linear classifiers with majority vote. The

linear classifiers were learned from blue to red; none of them achieves zero training error, but

the ensemble does. (right) Applying bagging results in a much more homogeneous ensemble,

indicating that there is little diversity in the bootstrap samples.

So the weight update for misclassified instances is exp(αt)/Zt and for correctly classi-

fied instances exp(−αt)/Zt . Using the fact that yi Mt (xi) = +1 for instances correctly

classified by model Mt and −1 otherwise, we can write the weight update as

w(t+1)i =wti
exp
(−αt yi Mt (xi)

)
Zt

which is the expression commonly found in the literature.

Let us now step back and pretend that we haven’t yet decided what αt should be in

each round. Since the weight updates are multiplicative, we have

w(T+1)i =w1i

T∏
t=1

exp
(−αt yi Mt (xi)

)
Zt

= 1

|D|
exp
(−yi M(xi)

)
∏T

t=1 Zt

where M(xi)=∑T
t=1αt Mt (xi) is the model represented by the boosted ensemble. The

weights always add up to 1 over the instance space, and so

T∏
t=1

Zt = 1

|D|
|D|∑
i=1

exp
(−yi M(xi)

)

Notice that exp
(−yi M(xi)

)
is always positive and at least 1 if −yi M(xi) is positive,

which happens if xi is misclassified by the ensemble (i.e., sign(M(xi)
= yi). So the

right-hand side of this expression is at least equal to the training error of the boosted

ensemble, and
∏T

t=1 Zt is an upper bound on that training error. A simple heuristic

would therefore be to greedily minimise

Zt =
|D|∑
i=1

wti exp
(−αt yi Mt (xi)

)
(11.3)

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.2 Boosting 337

in each boosting round. Now, the sum of the weights of instances incorrectly classified

by Mt is εt , and so

Zt = εt exp(αt)+ (1−εt)exp(−αt)

Taking the derivative with respect to αt , setting it to zero and solving for αt yields αt as

given in Equation 11.1 and Zt as given in Equation 11.2.

Notice that Equation 11.3 demonstrates that the loss function minimised by boost-

ing is �exponential loss exp
(−y ŝ(x)

)
which we already encountered in Figure 2.6 on

p.63. Notice, furthermore, that minimising Zt means minimising 2
�
εt (1−εt) accord-

ing to Equation 11.2. You may recognise this as the �
�

Gini impurity measure we

investigated in Chapter 5. There, we saw that this splitting criterion is insensitive to

changes in the class distribution (see Figure 5.7 on p.146). Here, it arises essentially

because of the way weight updates are implemented in the boosting algorithm.

Boosted rule learning

An interesting variant of boosting arises when our base models are partial classifiers

that sometimes abstain from making a prediction. For example, suppose that our base

classifiers are conjunctive rules whose head is fixed to predicting the positive class. An

individual rule therefore either predicts the positive class for those instances it cov-

ers, or otherwise abstains from making a prediction. We can use boosting to learn an

ensemble of such rules that takes a weighted vote among its members.

We need to make some small adjustments to the boosting equations, as follows.

Notice that εt is the weighted error of the t-th base classifier. Since our rules always

predict positive for covered instances, these errors only concern covered negatives,

which we will indicate by ε�t . Similarly, we indicate the weighted sum of covered pos-

itives as ε⊕t , which will play the role of 1− εt . However, with abstaining rules there is

a third component, indicated as ε0
t , which is the weighted sum of instances which the

rule doesn’t cover (ε0
t +ε⊕t +ε�t = 1). We then have

Zt = ε0
t +ε�t exp(αt)+ε⊕t exp(−αt)

The value of αt which maximises this is

αt = 1

2
ln

ε⊕t
ε�t
= ln

√
ε⊕t
ε�t

(11.4)

which gives

Zt = ε0
t +2
√

ε⊕t ε
�
t = 1−ε⊕t −ε�t +2

√
ε⊕t ε

�
t = 1−

(√
ε⊕t −
√

ε�t
)2

This means that in each boosting round we construct a rule that maximises
∣∣∣√ε⊕t −

√
ε�t
∣∣∣,

and set its confidence factor to αt as in Equation 11.4. In order to obtain a prediction

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

338 11. Model ensembles

from the ensemble, we add up the confidence factors of all rules covering it. Note that

these confidence factors are negative if ε⊕t < ε�t , which indicates that the rule correlates

with the negative class; this is not a problem as such, but can be avoided by changing

the objective function for individual rules to
√

ε⊕t −
√

ε�t .

The weight updates after each iteration of boosting are the same as previously, ex-

cept that the weights of examples not covered by the rule do not change. Boosted rule

learning is therefore similar to the �weighted covering (Algorithm 6.5 on p.182) algo-

rithm for subgroup discovery. The difference is that there we wanted to promote rule

overlap without reference to the class and hence decrease the weight of all covered

examples, whereas here we decrease the weight of covered positives and increase the

weight of covered negatives.

11.3 Mapping the ensemble landscape

Now that we have looked at two often-used ensemble methods in somewhat more de-

tail, we consider how their differences in performance might be explained, before turn-

ing attention to some of the many other ensemble methods in the literature.

Bias, variance and margins

Ensemble methods are a good vehicle to further understand the�bias–variance dilemma

we discussed in the context of regression in Section 3.2. Broadly speaking, there are

three reasons why a model may misclassify a test instance. First, it may simply be un-

avoidable in the given feature space if instances from different classes are described by

the same feature vectors. In a probabilistic context this happens when the per-class

distributions P (X |Y) overlap, so that the same instance has non-zero likelihoods for

several classes. In such a situation, the best we can hope to do is to approximate the

target concept.

The second reason for classification errors is that the model lacks expressivity to

exactly represent the target concept. For example, if the data is not linearly separable

then even the best linear classifier will make mistakes. This is the bias of a classifier,

and it is inversely related to its expressivity. Although there is no generally agreed way

to measure expressivity or bias of a classifier1 it is intuitively clear that, say, a hyperbolic

decision boundary has lower bias than a linear one. It is also clear that tree models have

the lowest possible bias, as their leaves can be made arbitrarily small to cover singleton

instances.

It may seem that low-bias models are generally preferable. However, a practical rule

of thumb in machine learning is that low-bias models tend to have high variance, and

1While squared loss nicely decomposes into squared bias and variance as shown in Equation 3.2 on p.93,

loss functions used in classification such as 0–1 loss can be decomposed in several ways.

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.3 Mapping the ensemble landscape 339

vice versa. Variance is the third source of classification errors. A model has high vari-

ance if its decision boundary is highly dependent on the training data. For example,

the nearest-neighbour classifier’s instance space segments are determined by a single

training point, so if I move a training point in a segment bordering on the decision

boundary, that boundary will change. Tree models have high variance for a different

reason: if I change the training data sufficiently for another feature to be selected at the

root of the tree, then the rest of the tree is likely to be different as well. An example of a

low-variance model is the basic linear classifier, because it averages over all the points

in a class.

Now look back at Figure 11.1 on p.332. The bagged ensemble of basic linear clas-

sifiers has learned a piecewise linear decision boundary that exceeds the expressivity

of a single linear classifier. This illustrates that bagging, like any ensemble method,

is capable of reducing the bias of a high-bias base model such as a linear classifier.

However, if we compare this with boosting in Figure 11.2 on p.336, we see that the re-

duction in bias resulting from bagging is much smaller than that of boosting. In fact,

bagging is predominantly a variance-reduction technique, while boosting is primarily

a bias-reduction technique. This explains why bagging is often used in combination

with high-variance models such as tree models (�random forests in Algorithm 11.2),

whereas boosting is typically used with high-bias models such as linear classifiers or

univariate decision trees (also called decision stumps).

Another way to understand boosting is in terms of margins. Intuitively, the margin

is the signed distance from the decision boundary, with the sign indicating whether we

are on the correct or the wrong side. It has been observed in experiments that boost-

ing is effective in increasing the margins of examples, even if they are already on the

correct side of the decision boundary. The effect is that boosting may continue to im-

prove performance on the test set even after the training error has been reduced to

zero. Given that boosting was originally conceived in a PAC-learning framework, which

is not specifically aimed at increasing margins, this was a surprising result.

Other ensemble methods

There are many other ensemble methods beyond bagging and boosting. The main

variation lies in the way predictions of the base models are combined. Notice that

this could itself be defined as a learning problem: given the predictions of some base

classifiers as features, learn a meta-model that best combines their predictions. For ex-

ample, in boosting we could learn the weights αt rather than deriving them from each

base model’s error rate. Learning a linear meta-model is known as stacking. Several

variations on this theme exist: e.g., decision trees have been used as the meta-model.

It is also possible to combine different base models into a heterogeneous ensemble:

in this way the base model diversity derives from the fact that base models are trained

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

340 11. Model ensembles

by different learning algorithms, and so they can all use the same training set. Some

of these base models might employ different settings of a parameter: for example, the

ensemble might include several support vector machines with different values of the

complexity parameter which regulates the extent to which margin errors are tolerated.

Generally speaking, then, model ensembles consist of a set of base models and

a meta-model that is trained to decide how base model predictions should be com-

bined. Implicitly, training a meta-model involves an assessment of the quality of each

base model: for instanceif the meta-model is linear as in stacking, a weight close to

zero means that the corresponding base classifier does not contribute much to the en-

semble. It is even conceivable that a base classifier obtains a negative weight, meaning

that in the context of the other base models its predictions are best inverted. We could

go one step further and try to predict how well a base model is expected to perform,

even before we train it! By formulating this as a learning problem at the meta-level, we

arrive at the field of meta-learning.

Meta-learning

Meta-learning first involves training a variety of models on a large collection of data

sets. The aim is then to construct a model that can help us answer questions such as

the following:

� In which situations is a decision tree likely to outperform a support vector ma-

chine?

� When can a linear classifier be expected to perform poorly?

� Can the data be used to give suggestions for setting particular parameters?

The key question in meta-learning is how to design the features on which the meta-

model is built. These features should combine data set characteristics and relevant

aspects of the trained model. Data set characteristics should go much further than

simply listing the number and kind of features and the number of instances, as it is

unlikely that anything can be predicted about a model’s performance from just that

information. For example, we can try to assess the noise level of a data set by measur-

ing the size of a trained decision tree before and after pruning. Training simple models

such as decision stumps on a data set and measuring their performance also gives use-

ful information.

In Background 1.1 on p.20 we referred to the no free lunch theorem, which states

that no learning algorithm can outperform any other learning algorithm over the set

of all possible learning problems. As a corollary, we have that meta-learning over all

possible learning problems is futile: if it wasn’t, we could build a single hybrid model

that uses a meta-model to tell us which base model would achieve better than random

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

11.4 Model ensembles: Summary and further reading 341

performance on a particular data set. It follows that we can only hope to achieve useful

meta-learning over non-uniform distributions of learning problems.

11.4 Model ensembles: Summary and further reading

In this short chapter we have discussed some of the fundamental ideas underlying en-

semble methods. What all ensemble methods have in common is that they construct

several base models from adapted versions of the training data, on top of which some

technique is employed to combine the predictions or scores from the base models into

a single prediction of the ensemble. We focused on bagging and boosting as two of the

most commonly used ensemble methods. A good introduction to model ensembles is

given by Brown (2010). The standard reference on classifier combination is Kuncheva

(2004) and a more recent overview is given by Zhou (2012).

� In Section 11.1 we discussed bagging and random forests. Bagging trains di-

verse models from samples of the training data, and was introduced by Breiman

(1996a). Random forests, usually attributed to Breiman (2001), combine bagged

decision trees with random subspaces; similar ideas were developed by Ho (1995)

and Amit and Geman (1997). These techniques are particularly useful to reduce

the variance of low-bias models such as tree models.

� Boosting was discussed in Section 11.2. The key idea is to train diverse models by

increasing the weight of previously misclassified examples. This helps to reduce

the bias of otherwise stable learners such as linear classifiers or decision stumps.

An accessible overview is given by Schapire (2003). Kearns and Valiant (1989,

1994) posed the question whether a weak learning algorithm that performs just

slightly better than random guessing can be boosted into an arbitrarily accu-

rate strong learning algorithm. Schapire (1990) introduced a theoretical form

of boosting to show the equivalence of weak and strong learnability. The Ad-

aBoost algorithm on which Algorithm 11.3 is based was introduced by Freund

and Schapire (1997). Schapire and Singer (1999) give multi-class and multi-label

extensions of AdaBoost. A ranking version of AdaBoost was proposed by Freund

et al. (2003). The boosted rule learning approach that can handle classifiers that

may abstain was inspired by Slipper (Cohen and Singer, 1999), a boosted version

of Ripper (Cohen, 1995).

� In Section 11.3 we discussed bagging and boosting in terms of bias and vari-

ance. Schapire, Freund, Bartlett and Lee (1998) provide a detailed theoretical

and experimental analysis of boosting in terms of improving the margin distri-

bution. I also mentioned some other ensemble methods that train a meta-model

for combining the base models. Stacking employs a linear meta-model and was

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

342 11. Model ensembles

introduced by Wolpert (1992) for classification and extended by Breiman (1996b)

for regression. Meta-decision trees were introduced by Todorovski and Dzeroski

(2003).

� We also briefly discussed meta-learning as a technique for learning about the

performance of learning algorithms. The field originated from an early empirical

study documented by Michie et al. (1994). Recent references are Brazdil et al.

(2009, 2010). Unpruned and unpruned decision trees were used to obtain data

set characteristics by Peng et al. (2002). The idea of training simple models to

obtain further data characteristics is known as landmarking (Pfahringer et al.,

2000).

�

https://doi.org/10.1017/CBO9780511973000.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.013

