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Abstract

Detecting anomalies in dynamic graphs is a vital
task, with numerous practical applications in areas
such as security, finance, and social media. Previ-
ous network embedding based methods have been
mostly focusing on learning good node representa-
tions, whereas largely ignoring the subgraph struc-
tural changes related to the target nodes in dynamic
graphs. In this paper, we propose StrGNN, an
end-to-end structural temporal Graph Neural Net-
work model for detecting anomalous edges in dy-
namic graphs. In particular, we first extract the h-
hop enclosing subgraph centered on the target edge
and propose the node labeling function to iden-
tify the role of each node in the subgraph. Then,
we leverage graph convolution operation and Sort-
pooling layer to extract the fixed-size feature from
each snapshot/timestamp. Based on the extracted
features, we utilize Gated recurrent units (GRUSs)
to capture the temporal information for anomaly
detection. [Extensive experiments on six bench-
mark datasets and a real enterprise security system
demonstrate the effectiveness of StrGNN.

1 Introduction

Recent studies of dynamic graphs/networks have witnessed
a growing interest. Such dynamic graphs model a variety
of systems including societies, ecosystems, the Internet, and
others. For example, in enterprise dynamic network [Luo
et al., 2018], the node represents a system entity (such as
process, file, and Internet sockets) and an edge indicates
the corresponding interaction between two system entities.
These dynamic networks, unlike static networks, are con-
stantly changing. Possible changes include graph structure
change or modification of node attributes.

A fundamental task on dynamic graph analysis is anomaly
detection—identifying objects, relationships, or subgraphs,
whose “behaviors” significantly deviate from underlying ma-
jority of the network [Aggarwal et al., 2011; Ranshous ef al.,
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2015]. In this work, we focus on the anomalous edge de-
tection in dynamic graphs. Detecting anomalous edges can
help understand the system status and diagnose system fault
[Ranshous et al., 2015; Akoglu et al., 2015]. For example,
in an enterprise dynamic network, some system entity pairs,
such as a user software and system-specific internet socket
ports (e.g., port number < 1024), never form an edge (interac-
tion/connection) in-between in normal system environments.
Once occurring, these suspicious interactions/activities may
indicate some serious cyber-attack happened and could sig-
nificantly damage the enterprise system [Cheng et al., 2016].

Recently, graph embedding has shown to be a powerful
tool in learning the low-dimensional representations in net-
works that can capture and preserve the graph structure. How-
ever, most existing graph embedding approaches are designed
for static graphs, and thus may not be suitable for a dynamic
environment in which the network representation has to be
constantly updated. Only a few advanced embedding-based
methods (such as NetWalk [Yu et al., 2018]) are suitable
for updating the representation dynamically as the network
evolves. However, these methods require the knowledge of
the nodes over the whole time span and thus can hardly
promise the performance on new nodes in the future. More
importantly, these methods neglect a notable characteristic of
the dynamic networks—the subgraph structural changes re-
lated to the target nodes. These structural temporal dynamics
are key to understanding system behavior. For example, in
Figure 1, the target edge at timestamp ¢ is marked as a dou-
ble red line, and the 1-hop subgraph centered on the target
edge is marked with gray. It can be seen from Figure 1 (A)
that the interactions between nodes of the subgraph (i.e., gray
nodes) become more frequent. Therefore, the target edge in
Figure 1 (A) is reasonable to be a normal edge. In contrast, in
Figure 1 (B), there is no interactions between the neighbors
of the subgraph from timestamp ¢ — 3 to ¢ — 1. Therefore, the
target edge at timestamp ¢ is more likely to be an anomalous
edge. Thus, it is critical to model and detect the structural
changes over time for the anomaly detection task.

To address the aforementioned issues, we propose
StrGNN, a structural graph neural network to identify
anomalous edges in dynamic graphs. StrGNN is designed to
detect unusual subgraph structures centered on the target edge
in a given time window while considering the temporal de-
pendency. StrGNN consists of three sub-models: ESG (En-



T-

" {3 % oz;;go O%Egj Oﬁo}f%@

T
Q
o-'“d

Figure 1: An example of structural changes in dynamic graphs.

closing Subgraph Generation), GSFE (Graph Structural Fea-
ture Extraction), and TDN (Temporal Detection Network).
First, ESG extracts a h-hop enclosing subgraph centered on
the target edge from each graph snapshot. Subgraphs ex-
tracted based on different edges can result in the same topol-
ogy structure. Thus, a node labeling function is proposed
to indicate the role of each node in the subgraph. Then,
GSFE module leverages Graph Convolution Neural Network
and pooling technologies to extract fixed-size feature from
each subgraph. Based on the extracted features, TDN em-
ploys the Gated recurrent units (GRUs) to capture the tem-
poral dependency for anomaly detection. Different from the
previous embedding based methods, the whole process of
StrGNN can be trained end-to-end, i.e., StrGNN takes the
test edges along with the original dynamic graphs as input
and directly outputs the category (i.e., anomaly or normal)
for each test edge. Moreover, our proposed StrGNN frame-
work focuses on mining the structural temporal patterns in
a given time window. Therefore, node embedding is not re-
quired to learn and StrGNN is not sensitive to the edge and
vertex changes (such as new nodes) in the dynamic graphs.
We conduct extensive experiments on six benchmark datasets
to evaluate the performance of StrGNN. The results demon-
strate the effectiveness of our proposed algorithm. We also
apply StrGNN to a real enterprise security system for intru-
sion detection. By using StrGNN, we can reduce false pos-
itives of the state-of-the-art methods by at least 50%, while
keeping zero false negatives.

2 Related Work

In this section, we briefly introduce previous work on embed-
ding based anomaly detection in graphs.

2.1 Anomaly Detection on Static Graphs

Inspired by word embedding methods [Mikolov et al., 2013]
in natural language processing tasks, recent advances such as
DeepWalk [Perozzi et al., 2014], LINE [Tang er al., 2015],
and Node2Vec [Grover and Leskovec, 2016] have been pro-
posed to learn node embedding via the skip-gram tech-
nology. The DeepWalk generates random walks for each
vertex with a given length and picks the next step uni-
formly from the neighbors. Different from DeepWalk, the

LINE [Tang er al., 2015] preserves not only the first-order
(observed tie strength) relations but also the second-order
proximities (shared neighborhood structures of the vertices).
Node2Vec [Grover and Leskovec, 2016] uses two differ-
ent sampling strategies (breadth-first sampling and depth-first
sampling) for vertices that result in different feature represen-
tations. Through the network embedding technology, both
anomalous node and edge detection tasks can be performed
with traditional anomaly detection methods.

2.2 Anomaly Detection on Dynamic Graphs

Dynamic graphs are more complex due to the variation of
the graph structure. That is, the vertices and edges are
changing along the time dimension. To capture the de-
pendency between different graphs along the time dimen-
sion, recently few network embedding based methods have
been proposed [Zhou et al., 2018]. Dyngem [Goyal er al.,
2018] employs the auto-encoder method to learn the embed-
ding for each graph, and a constraint loss function is em-
ployed to minimize the difference between all graphs. Dyn-
graph2vec [Goyal er al., 2019] uses the Recurrent Neural
Network to capture the temporal information and learn the
embedding using auto-encoder technology. Recently, Net-
Walk [Yu et al., 2018], one of the state-of-the-art methods for
anomaly detection in dynamic networks, is proposed to learn
the embedding while considering the temporal dependency
and detect the anomaly using the density-based method. The
NetWalk generates several random walks for each vertex and
learns a unified embedding for each node using auto-encoder
technology. The embedding representation is updated along
the time dimension.

3 Method

In this section, we introduce our method in detail. We start
with the overall framework of our proposed Structural Tem-
poral Graph Neural Networks for anomaly detection in dy-
namic graphs. The details of each component in our proposed
method are introduced afterwards.

3.1 Overall Framework

Compared with the anomaly detection in a static graph, dy-
namic graphs are more complex and challenging in two per-
spectives: (1) The anomalous edges cannot be determined by
the graph from a single timestamp. The detection procedure
must take the previous graphs into consideration; (2) Both the
vertex and edge sets are changing over time. To tackle these
challenges, we propose StrGNN, a structural temporal Graph
Neural Network framework. The key idea of our proposed
method is to capture structural changes centered on the tar-
get edge in a given time window and determine the category
(i.e., anomaly or normal) of the target edge based on the struc-
tural changes. Our proposed StrGNN framework consists of
three key components: ESG (Enclosing Subgraph Genera-
tion), GSFE (Graph Structural Feature Extraction), and TDN
(Temporal Detection Network), as illustrated in Figure 2.

3.2 ESG: Enclosing Subgraph Generation

For the first module, Enclosing Subgraph Generation, our
goal is to generate enclosing subgraph structure related to
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Figure 2: Illustration of our proposed StrGNN framework.

the target edge so as to detect the anomalies more effi-
ciently. Directly employing the whole graph for analysis can
be highly computational expensive, especially considering
the real-world networks with thousands or even millions of
nodes and edges. Recent work [Xu et al., 2018] also proved
that in Graph Neural Networks, each node is most influenced
by its neighbors.

Definition 1. (Enclosing subgraph in static graphs) For
a static network G = (V, E), given a target edge e with
source node x and destination node y, the h—hop enclos-
ing subgraph Ggwy centered on edge e can be obtained by
{i|ld(i,z) < hVd(i,y) < h}, where d(i,z) is the shortest
path distance between node ¢ and node x.

Definition 2. (Enclosing subgraph in dynamic graphs) For
a temporal network {G (i) = {V (4), E(i)} }}_,_,, with win-
dow size w, given a target edge e’ with source node ! and
destination node y*, the h—hop enclosing subgraph G”
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centered on edge ¢! is a collection of all subgraph centered
on e’ in the temporal network {G(i), [t —w < i < t}.

For a target edge ef, we extract the enclosing subgraph
in dynamic graphs based on Definition 2. However, the ex-
tracted subgraph only contains topological information. Sub-
graphs extracted based on different edges can result in the
same topological structure. To distinguish the role of each
node in the subgraph, in this work, we propose to annotate
the nodes in the subgraph with different labels. A good node
labeling function should convey the following information:
1) which edge is the target edge in the current subgraph, and
2) the contribution of each node in identifying the category of
each edge. More specifically, given the edge e! and the cor-
responding source and destination node z¢ and !, our node
labeling function for the enclosing subgraph G(i):’;“yt is de-
fined as follows:

fli,ze, ) = 1+ min(d(i,2"), d(i, y")) €))
+(dsum/2)[(dsum/2) + (dsum%z) - 1])

where d(i,x") is the shortest path distance between node i
and node z', and dgy, = d(i,2%) + d(i,9'). In addition,
the two center nodes are labeled with 1. If a node 7 satisfies
d(i,z') = oo or d(i,y*) = oo, it will be labeled as 0. The
label will be converted into a one-hot vector as the attribute
X for each node. By employing the node labeling function,
we can generate the label for each node, which can represent
structure information for the given subgraph. The category of
the target edge e? at timestamp ¢ can be predicted by analyz-
ing the labeled subgraph in the given time window.

3.3 GSFE: Graph Structural Feature Extraction

To analyze the structure of each enclosing subgraph from the
given time period, the Graph Convolution Neural Network
(GCN) [Kipf and Welling, 2016] can be employed to project
the subgraph into an embedding space. In GCN, the graph
convolution layer was proposed to learn the embedding of
each node in the graph and aggregate the embedding from its
neighbors. The layer-wise forward operation of graph convo-
lution layer can be described as follows:

G(X,A) = o(D7YV2ADV2XW), 2)

where A = A + I is the summation of the adjacency matrix
and identity matrix, o(-) denotes an activation function, such
as the ReLU(-) = max(0,-), and W is the trainable weight
matrix. By employing the graph convolution layer, each node
can aggregate the embedding from its neighbors. By stacking
the graph convolution layer in the neural network, each node
can obtain more information from other nodes. For example,
each node can obtain information from its 2-hop neighbors
by stacking two graph convolution layers.

GCN can generate node embedding for detecting anoma-
lous edges in a single graph. However, in our dynamic graph
setting, the anomalies should be determined in the context of
{G(@)" |t —w < i < t}. The number of nodes in differ-
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ent enclosing subgraphs is commonly different, thus results



in different sizes of the feature vector in different subgraphs.
Therefore, it is challenging to analyze the dynamic graphs
using Graph Neural Networks due to the various sizes of the
input.

To tackle this problem, we leverage the graph pooling tech-
nology to extract the fixed-size feature for each enclosing
subgraph. Any graph pooling method can be employed in our
proposed StrGNN framework to extract the fixed-size feature
for further analysis. In this work, we employ the Sortpooling
layer proposed by [Zhang et al., 2018], which can sort the
nodes in the enclosing subgraph based on their importance
and select the feature from the top K nodes.

Given the node embedding H,; corresponding to graph
G(i)h the importance score for each node in the Sortpool-

ing l;}t/g/rt is defined as follows:

S(H;, A) = o(D™Y2AD™ Y2 H,WH), 3)

where A is the adjacency matrix of graph G (i)ghyt, and W1
is the projection matrix with output channel 1. Each node
can obtain the importance score by using Equation 3. All
nodes in the enclosing subgraph will be sorted in order of the
importance score. And only the top K nodes will be selected
for further analysis. For the subgraphs that contain less than
K nodes, the zero-padding will be employed to guarantee that

each subgraph contains the same fixed-size feature.

3.4 TDN: Temporal Detection Network

The Graph Structural Feature Extraction module can generate
low-dimensional features for anomaly detection. However,
it does not consider the temporal information, which is of
great importance for determining the category (i.e., anomaly
or normal) of an edge in the dynamic setting.

Given the extracted structural feature {H;}!_, ., H; €
RExd where K is the number of selected nodes in each

graph, and d is the dimension of feature for each node, in this
work, we employ the Gated recurrent units (GRUs) [Chung
et al., 2014], which can alleviate the vanishing and exploding
gradient problems [Goodfellow er al., 2016], to capture the
temporal information as:

2 = o(W.Hy+ U1 +b.) )
re = o(WpH, +Ushy—y +b,) )
hy = tanh(WyH; + Un(riohe_q) +by)  (6)
ht = ziohi1+(1—2)0 h;, @)

where o represents the element-wise product operation, W,
U, and b are parameters. The GRU network takes the feature
at each timestamp as input, and feeds the output of current
timestamp into the next timestamp. Therefore, the temporal
information can be modeled by the GRU network. The output
of last timestamp h; is employed to analyze the category of
the target edge e’. The anomalous edge detection problem
can be formulated as follows:

L=—(y"log(g(hy)) + (1 —y")log(1 — g(ht))),  (8)

where g(-) is a fully connected network, and y* is the category
of edge €.

For the anomaly detection task, in many real-world cases,
the dataset does not contain any anomalous samples or only
contain a small number of anomalous samples.

One straightforward way of generating negative samples is
to draw samples from a “context-independent” noise distribu-
tion (such as Random sampling or injected sampling [Akoglu
et al., 2015]), where a negative sample is independently and
does not depend on the observed samples. However, due to
the large anomalous edge space, this noise distribution would
be very different from the data distribution, which would
lead to poor model learning. Thus, in this work, we propose
“context-dependent” negative sampling strategy.

The intuition behind our strategy is to generate negative
samples from “context-dependent” noise distribution. Here,
the “context-dependent” noise distribution for the sampled

data E’ is defined as: Pg: ~ P(E) (N%\E\) where P(E)

denotes the observed data distribution, |E| is the number of
edges in the graph, and NN is the number of nodes in the graph.
Specifically, we first randomly sample a normal vertex pair
e = {xq,xp} in the graph. Then, we replace one of the
nodes, say x, with a randomly sampled node 2’ in the graph
and form a new negative sample ¢/ = {z/,x}. If €’ is not
belongs to the normal graph, we retain the sample, otherwise,
we delete it.

The proposed StrGNN framework is quite flexible and
easy to be customized. Any network that can capture the tem-
poral information can be used in our proposed framework,
such as Convolution Neural Network (CNN) and Vanilla Re-
current Neural Network (RNN).

4 Experiments

In this section, we evaluate StrGNN on six benchmark
datasets and a real enterprise network.

4.1 Datasets

We conduct experiments on six public datasets from differ-
ent domains. The UCI Messages dataset [Opsahl and Pan-
zarasa, 2009] is collected from an online community plat-
form of students at the University of California, Irvine. Each
node in the constructed graph represents a user in the plat-
form. And the edge indicates that there is a message interac-
tion between two users. The Digg dataset [De Choudhury et
al., 2009] is collected from a news website digg.com. Each
node represents a user of the website, and each edge repre-
sents a reply between two users. The Email dataset is a dump
of emails of Democratic National Committee. Each node cor-
responds to a person. And the edge indicates an email com-
munication between two persons. The Topology [Zhang et
al., 2005] dataset is the network connections between au-
tonomous systems of the Internet. Nodes are autonomous
systems, and edges are connections between autonomous sys-
tems. The Bitcoin-alpha and Bitcoin-otc [Kumar et al., 2016;
Kumar et al., 2018] datasets are collected from two Bitcoin
platform named Alpha and OTC, respectively. Nodes repre-
sent users from the platform. If one user rates another user on
the platform, there is an edge between them.
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Figure 3: The embeddings generated by StrGNN. Red dots are anomalies and blue ones are normal samples.

Table 1: AUC results with different hops of enclosing subgraph on
UCI Messages.

1% 5% 10%
1-hop enclosing subgraph  0.8179  0.8252  0.7959
2-hop enclosing subgraph  0.8216  0.8274  0.7987
3-hop enclosing subgraph  0.8227  0.8294  0.8005

4.2 Baselines

We compare StrGNN with four network embedding based
baselines.

DeepWalk [Perozzi ef al., 2014]: DeepWalk generates the
random walks with given length starting from a node and
learns the embedding using Skip-gram.

Node2Vec [Grover and Leskovec, 2016]: Node2Vec com-
bines breadth-first traversal and depth-first traversal in the
random walks generation procedure. The embedding is
learned using Skip-gram technology.

Spectral Clustering [von Luxburg, 2007]: To preserve the
local connection relationship, the spectral embedding gener-
ates the node embedding by maximizing the similarity be-
tween nodes in the neighborhood.

NetWalk [Yu et al., 2018]: NetWalk generates several ran-
dom walks for each vertex and learns a unified embedding for
each node using auto-encoder technology. The embedding
representation will be updated along the time dimension.

framework, using an extended temporal GCN with an
attention-based GRU.

For the first three baselines, after representation learning,
the same K-means clustering based method [Yu et al., 2018]
(as in NetWalk) is used for anomaly detection.

4.3 Experiment Setup

The parameters of StrGNN can be tuned by 5-fold cross-
validation on a rolling basis. Here, by default, we set the
window size w to 5 and the number of hops h in enclosing
subgraph to 1. We evaluate the influence of each parameter.
The AUC results of StrGNN with different / on UCI Mes-
sages are shown in Table 1. StrGNN with 2-hop or 3-hop
subgraph achieves similar performance as 1-hop but requiring
way more computational cost. The parameter w (with w > 5)
shares similar influence as h on the performance of StrGNN.
We employ a Graph Neural Network with three graph convo-
lution layers to extract graph features. The size of the output
feature map is set to 32 for all three layers. The outputs of all
three layers are concatenated as the embedding feature. The
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Figure 4: Stability over the training percentage of StrGNN on UCI
Messages with 10% anomalies.

selected rate in the Sortpooling layer is set to 0.6. In terms
of the temporal neural network, the hidden size of GRU is set
to 256. We employ Adam method [Kingma and Ba, 2014]
to train the network. The learning rate of Adam is set to
le — 4. We employ batch training in the experiments and
the batch size is set to 32 for our proposed StrGNN method.
StrGNN is end-to-end trained for 50 epochs. We use the first
50% edges as the training dataset, and the rest as the test
dataset. Since the anomalous edges do not exist in the six
benchmark datasets, we follow the approach used in [Yu et
al., 2018] to inject 1%, 5%, 10% anomalous edges in the test
dataset to evaluate the performance of each model. The met-
ric used to compare the performance of different methods is
AUC (the area under the ROC curve). The higher AUC value
indicates the high quality of the method.

4.4 Results on Benchmark Datasets

We first compare StrGNN with the baseline methods on six
benchmark datasets. The experimental results in Table 2
show that StrGNN outperforms all four baseline methods on
all the benchmark datasets. And even if 10% anomalies are
injected, the performance of StrGNN is still acceptable. This
outstanding effect proves that StrGNN can exploit the struc-
tural and temporal features effectively and the learned repre-
sentation of the dynamic graph structure is well suited for the
anomaly detection task.

To further demonstrate the

effectiveness of our



Table 2: AUC comparison on benchmark datasets.

UCI Digg Email

Methods % 5% 10% | 1% 5%  10% | 1% 5%  10%

Node2Vec 0.7371 0.7433 0.6960 | 0.7364 0.7081 0.6508 | 0.7391 0.7284 0.7103
Spectral Clustering | 0.6324 0.6104 0.5794 | 0.5949 0.5823 0.5591 | 0.8096 0.7857 0.7759
DeepWalk 0.7514 0.7391 0.6979 | 0.7080 0.6881 0.6396 | 0.7481 0.7303 0.7197
NetWalk 0.7758 0.7647 0.7226 | 0.7563 0.7176 0.6837 | 0.8105 0.8371 0.8305
StrGNN 0.8179 0.8252 0.7959 | 0.8162 0.8254 0.8272 | 0.8775 0.9103 0.9080

Bitcoin-Alpha Bitcoin-otc Topology

Methods 1% 5% 10% 1% 5% 10% 1% 5% 10%

Node2Vec 0.6910 0.6802 0.6785 | 0.6951 0.6883 0.6745 | 0.6821 0.6752 0.6668
Spectral Clustering | 0.7401  0.7275 0.7167 | 0.7624 0.7376 0.7047 | 0.6685 0.6563 0.6498
DeepWalk 0.6985 0.6874 0.6793 | 0.7423 0.7356 0.7287 | 0.6844 0.6793 0.6682
NetWalk 0.8385 0.8357 0.8350 | 0.7785 0.7694 0.7534 | 0.8018 0.8066 0.8058
StrGNN 0.8574 0.8667 0.8627 | 0.9012 0.8775 0.8836 | 0.8553 0.8352 0.8271

StrGNN method, we visualize the output embeddings
from the GRU network of StrGNN. The embeddings are
projected into two-dimensional space using the PCA method.
The visualization results in Figure 3 show that the anomalies
can be easily detected using the embeddings generated by
our proposed method.

In the experiments, we also evaluate our proposed model
using training data with different ratios. The AUC results on
UCI Messages are shown in Figure 4. It can be seen from the
results that the AUC increases with the percentage of training
data ranging from 50% to 75%, and then the performance
stays relatively stable.

4.5 Intrusion Detection Application

To evaluate the effectiveness of StrGNN on practical appli-
cations with real anomalies, we apply it to detect malware
attacks in the enterprise environment. We collect a 4-week
period of data from a real enterprise network composed of
109 hosts (87 Windows hosts and 22 Linux hosts). In total,
there are about ten thousand normal network event records
and 82 attack records by executing 9 different types of attacks
including ATP attacks, Trojan attacks, and Puishing Email at-
tacks at different periods. Based on the network event data,
we construct an accumulated graph per day with nodes rep-
resenting hosts and edges representing the network connec-
tion relationships. Based on the constructed graphs, we apply
StrGNN and the baseline methods to detect the attacks.

The AUC results are shown in Table 3. We can see that
StrGNN achieves an increase of 9% — 28% in AUC over
the four baseline methods. Based on the experimental re-
sults, we also find that with the optimal hyperparameter set-
ting, StrGNN can capture all 82 true alerts, while the base-
line methods can only capture 72 true alerts at most. Mean-
while, StrGNN only generates 164 false positives while the
baseline methods generate at least 335 false positives. The
results demonstrate the effectiveness of StrGNN in solving
real-world anomaly detection tasks.

Table 3: Results on intrusion detection.

Method AUC
Node2Vec 0.71
DeepWalk 0.76
Spectral Clustering  0.75
Netwalk 0.90
StrGNN 0.99

5 Conclusion

In this paper, we investigated an important and challenging
problem of anomaly detection in dynamic graphs. Differ-
ent from network embedding based methods that focus on
learning good node representations, we proposed StrGNN, a
structural temporal Graph Neural Network to detect anoma-
lous edges by mining the unusual temporal subgraph struc-
tures. StrGNN can be trained end-to-end and it is not sen-
sitive to the percentage of anomalies. We evaluated the pro-
posed framework using extensive experiments on six bench-
mark datasets. The experimental results convince us of the
effectiveness of our approach. We also applied StrGNN to
a real enterprise security system for intrusion detection. Our
method achieved superior detection performance with zero
false negatives.
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