
1

Towards Controllable Speech Synthesis in the Era
of Large Language Models: A Survey

Tianxin Xie∗, Yan Rong∗, Pengfei Zhang∗, Wenwu Wang, Li Liu

Abstract—Text-to-speech (TTS), also known as speech syn-
thesis, is a prominent research area that aims to generate
natural-sounding human speech from text. Recently, with the
increasing industrial demand, TTS technologies have evolved
beyond synthesizing human-like speech to enabling controllable
speech generation. This includes fine-grained control over various
attributes of synthesized speech such as emotion, prosody, timbre,
and duration. In addition, advancements in deep learning, such as
diffusion and large language models, have significantly enhanced
controllable TTS over the past several years. In this work, we
conduct a comprehensive survey of controllable TTS, covering
approaches ranging from basic control techniques to methods
utilizing natural language prompts, aiming to provide a clear
understanding of the current state of research. We examine the
general controllable TTS pipeline, challenges, model architec-
tures, and control strategies, offering a comprehensive and clear
taxonomy of existing methods. Additionally, we provide a detailed
summary of datasets and evaluation metrics and shed some light
on the applications and future directions of controllable TTS. To
the best of our knowledge, this survey paper provides the first
comprehensive review of emerging controllable TTS methods,
which can serve as a beneficial resource for both academic
researchers and industrial practitioners.

Index Terms—Text-to-speech, controllable TTS, speech synthe-
sis, TTS survey, large language models, diffusion models.

I. INTRODUCTION

Speech synthesis, also broadly known as text-to-speech
(TTS), is a long-time developed technique that aims to synthe-
size human-like voices from text [1], [2], and it has extensive
applications in our daily lives, such as health care [3], [4],
personal assistants [5], entertainment [6], [7], and robotics [8],
[9]. Recently, TTS has gained significant attention with the
rise of large language model (LLM)-powered chatbots, such
as ChatGPT [10] and LLaMA [11], due to its naturalness and
convenience for human-computer interaction. Meanwhile, the
ability to achieve fine-grained control over synthesized speech
attributes, such as emotion, prosody, timbre, and duration, has
become a hot research topic in both academia and industry,
driven by its vast potential for diverse applications.

Deep learning [12] has made great progress in the past
decade due to exponentially growing computational resources
like GPUs [13], leading to the explosion of numerous excit-
ing works on TTS [14]–[17]. These methods can synthesize
human speech with improved quality [14] and can achieve
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fine-grained control of the generated voice [18]–[22]. In
addition, some recent works synthesize speech given multi-
modal input, such as face images [23], [24], cartoons [7],
and videos [25]. Moreover, with the fast development of
open-source LLMs [11], [26]–[29], some researchers propose
to synthesize fine-grained controllable speech with natural
language description [30]–[32], offering a new way to gen-
erate custom speech voices. Meanwhile, powering LLMs with
speech synthesis has also been a hot topic in the last few
years [33]–[35]. In recent years, a wide range of TTS methods
has emerged, making it essential for researchers to gain
a comprehensive understanding of current research trends,
particularly in controllable TTS, and to identify promising
future directions in this rapidly evolving field. Consequently,
there is a pressing need for an up-to-date survey of TTS tech-
niques. While several existing surveys address parametric ap-
proaches [36]–[41] and deep learning-based approaches [42]–
[48], they largely overlook the controllability of TTS. Addi-
tionally, these surveys do not cover recent advancements, such
as natural language description-based TTS methods.

This paper provides a comprehensive and in-depth survey
of existing and emerging TTS technologies, with a particular
focus on controllable TTS methods. Fig. 1 demonstrates the
development of controllable TTS methods in recent years,
showing their backbones, feature representations, and con-
trol abilities. The remainder of this section begins with a
brief comparison between this survey and previous ones,
followed by an overview of the history of controllable TTS
technologies, ranging from early milestones to state-of-the-
art advancements. Finally, we introduce the taxonomy and
organization of this paper. We have posted a version of our
paper on arXiv.org (https://arxiv.org/abs/2412.06602).

A. Comparison with Existing Surveys

Several survey papers have reviewed TTS technologies,
spanning early approaches from previous decades [36], [37],
[40], [49] to more recent advancements [42], [43], [50].
However, to the best of our knowledge, this paper is the first
to focus specifically on controllable TTS. The key differences
between this survey and prior work are summarized as follows:

Different Scope. Klatt et al. [36] provided the first com-
prehensive survey on formant, concatenative, and articulatory
TTS methods, with a strong emphasis on text analysis. In the
early 2010s, Tabet et al. [49] and King et al. [40] explored rule-
based, concatenative, and Hidden Markov Models (HMM)-
based techniques. Later, the advent of deep learning catalyzed
the emergence of numerous neural model-based TTS methods.
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Prosody-Tacotron★
GST-Tacotron★
GMVAE-Tacotron★

ELLA-V★
HALL-E★

VoiceCraft★
VALL-E R★

Takin★
CoFi-Speech★
FireRedTTS★

Emo-DPO★
CosyVoice★
CLaM-TTS★
VoxInstruct★

ARDiT★
DiTTo-TTS☆

NanoVoice☆
VoiceGuider☆
DEX-TTS☆
E2-TTS☆
AST-LDM☆

VoiceLDM☆
SpeechFlow☆
PromptTTS++☆
PromptTTS 2☆

VAE-Tacotron★
DurIAN★

FastSpeech☆

FastSpeech 2☆
FastPitch☆
Parallel Tacotron☆

Flowtron ★
StyleTagging-TTS☆
SC-GlowTTS☆
Meta-StyleSpeech☆
DelightfulTTS☆
YourTTS☆

RNN
CNN
GAN
Transformer
Diffusion
LLM

MsEmoTTS★

Style-TTS☆

DiffGAN-TTS☆
Grad-StyleSpeech☆
NaturalSpeech 2☆ 

GenerSpeech☆
Cauliflow☆
CLONE☆
PromptTTS☆

DuIAN-E☆

TorToise★

SpearTTS★
VALL-E X★

SC VALL-E★
UniAUdio★ 

VALL-E★
Make-a-voice★

Salle★

MaskGCT☆

FlashSpeech☆
NaturalSpeech 3☆

InstructTTS☆ 
ControlSpeech☆
SimpleSpeech☆

SimpleSpeech 2☆

ArtSpeech☆

XTTS ★
StyleTTS-ZS☆

MegaTTS★
MegaTTS 2☆

★ Autoregressive
☆ Non-autoregressive

MELLE★
Seed-TTS★

Statistics of controllable TTS methods from 2018 to 2025.03 (incomplete)

Methods that use flow-matching to convert acoustic tokens into 
mel-spectrograms are marked as discrete methods in this figure.

#Entries listed by DBLP with the keyword “controllable text-to-speech” from 2019 to 2025.03

Fig. 1. A summary of representative controllable TTS methods in recent years and their model architectures, feature representations, and control abilities.
Additional network structures, such as VAE and flow-based models, are not included in this figure. For more details, refer to Tables IV and III.

Therefore, Ning et al. [43] and Tan et al. [42] have conducted
extensive surveys on neural acoustic models and vocoders,
while Zhang et al. [50] presented the first review of diffusion
model-based TTS techniques. However, these studies offer
limited discussion on the controllability of TTS systems. To
address this gap, we present the first comprehensive survey
of TTS methods through the lens of controllability, providing
an in-depth analysis of model architectures and strategies for
controlling synthesized speech.

Close to Current Demands. With the rapid development of
hardware (i.e., GPUs and TPUs) and artificial intelligence (AI)
techniques (i.e., transformers, LLMs, diffusion models) in the
last few years, the demand for controllable TTS is becoming
increasingly urgent due to its broad applications in industries
such as filmmaking, gaming, robotics, and personal assistants.
Despite this growing need, existing surveys pay little attention
to control methods in TTS technologies. To bridge this gap,
we propose a systematic analysis of current controllable TTS
methods and the associated challenges, offering a comprehen-
sive understanding of the research state in this field.

New Insights and Directions. This survey offers new
insights through a comprehensive analysis of model architec-
tures and control methods in controllable TTS systems. Addi-
tionally, it provides an in-depth discussion of the challenges
associated with various controllable TTS tasks. Furthermore,
we address the question: “Where are we on the path to fully
controllable TTS technologies?”, by examining the relation-
ship and gap between current TTS methods and industrial
requirements. Based on these analyses, we identify promising
directions for future research on TTS technologies.

Table I summarizes the existing surveys and our survey in
terms of main focus and publication year.

TABLE I
COMPARISON WITH REPRESENTATIVE TTS SURVEYS.

Survey Main Focus Year

Klatt et al. [36] Rule-based and concatenative TTS 1987
Tabet et al. [49] Rule-based, concatenative, and parametric TTS 2011
King et al. [40] Parametric TTS and performance measurement 2014
Tan et al. [42] Neural, efficient, and expressive TTS 2021

Zhang et al. [50] Diffusion-based TTS and speech enhancement 2023

Ours Controllable TTS, datasets, metrics, and challenges 2025

B. The History of Controllable TTS

Controllable TTS aims to control various aspects of synthe-
sized speech, such as pitch, energy, speed/duration, prosody,
timbre, emotion, gender, or high-level styles. This subsection
briefly reviews the history of controllable TTS, ranging from
early approaches to the state-of-the-art (SOTA) in recent years.

Early Approaches. Before the prevalence of deep neural
networks (DNNs), controllable TTS technologies were built
primarily on rule-based, concatenative, and statistical methods.
These approaches enable some degree of customization and
control, however, they were constrained by the limitations of
the underlying models and available computational resources.
1) Rule-based TTS systems [51]–[54], such as formant syn-
thesis, were among the earliest methods for speech generation.
These systems use manually crafted rules to simulate the
speech generation process by controlling acoustic parameters
such as pitch, duration, and formant frequencies, allowing
explicit manipulation of prosody and phonetic details through
rule adjustments. 2) Concatenative TTS [55]–[58], which dom-
inated the field in the late 1990s and early 2000s, synthesize
speech by concatenating pre-recorded speech segments, such
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as phonemes or diphones, stored in a large database [59].
These methods can modify the prosody by manipulating the
pitch, duration, and amplitude of speech segments during
concatenation. They also allow limited voice customization
by selecting speech units from different speakers. 3) Paramet-
ric methods, particularly HMM-based TTS [60]–[65], gained
prominence in the late 2000s. These systems model the rela-
tionships between linguistic features and acoustic parameters,
providing more flexibility in controlling prosody, pitch, speak-
ing rate, and timbre by adjusting statistical parameters. Some
HMM-based systems also supported speaker adaptation [66],
[67] and voice conversion [68], [69], enabling voice cloning
to some extent. However, emotion can be limitedly controlled
by some of these methods [60], [70]–[72]. In addition, they
required less storage compared to concatenative TTS and
allowed smoother transitions between speech units.

Neural Synthesis. Neural model-based TTS technologies
emerged with the advent of deep learning, significantly ad-
vancing the field by enabling more flexible, natural, and
expressive speech synthesis. Unlike traditional methods, neural
TTS leverages DNNs to model complex relationships between
input text and speech, facilitating nuanced control over various
speech characteristics. Early neural TTS systems, such as
WaveNet [73] and Tacotron [74], laid the groundwork for
controllability. 1) Controlling prosody features like rhythm
and intonation is vital for generating expressive and con-
textually appropriate speech. Neural TTS models achieve
prosody control through explicit conditioning or learned latent
representations [15], [75]–[78]. 2) Speaker control has also
gained significant improvement in neural TTS through speaker
embeddings or adaptation techniques [79]–[82]. 3) Besides,
emotionally controllable TTS [20], [22], [31], [32], [83] has
become a hot topic due to the strong modeling capability of
DNNs, enabling the synthesis of speech with specific emo-
tional tones, such as happiness, sadness, anger, or neutrality.
These systems go beyond producing intelligible and natural-
sounding speech, focusing on generating expressive output
that aligns with the intended emotional context. 4) Neural
TTS can also manipulate timbre (vocal quality) [14], [78],
[84]–[87] and style (speech mannerisms) [88]–[90], allowing
for creative and personalized applications. These techniques
lead to one of the most popular research topics, i.e., zero-
shot TTS (particularly voice cloning) [78], [82], [91], [92].
5) Fine-grained content and linguistic control also become
more powerful [93]–[96]. These methods can emphasize or
de-emphasize specific words or adjust the pronunciation of
phonemes through speech editing or generation techniques.

Neural TTS technologies represent a significant leap in
the flexibility and quality of speech synthesis. From prosody
and emotion to speaker identity and style, these systems
empower diverse applications in fields such as entertainment,
accessibility, and human-computer interaction.

LLM-based Synthesis. Here, we pay special attention to
LLM-based synthesis methods due to their superior context
modeling capabilities compared to other neural TTS methods.
LLMs, such as generative pre-trained transformer (GPT) [97],
[98], T5 [99], and pathways language model (PaLM) [100],
have revolutionized various natural language processing (NLP)

tasks with their ability to generate coherent, context-aware
text. Recently, their utility has expanded into controllable
TTS technologies [17], [101]–[104]. For example, users can
synthesize the target speech by describing its characteristics,
such as: “A young girl says ‘I really like it, thank you!’ with
a happy voice”, making speech generation significantly more
intuitive and user-friendly. Specifically, an LLM can detect
emotional intent in sentences (e.g., “I’m thrilled” → happiness,
“This is unfortunate” → sadness). The detected emotion is
encoded as an auxiliary input to the TTS model, enabling the
modulation of acoustic features like prosody, pitch, and energy
to align with the expressed sentiment. By leveraging LLMs’
capabilities in understanding and generating rich contextual
information, these systems can achieve enhanced and fine-
grained control over various speech attributes, such as prosody,
emotion, style, and speaker characteristics [31], [105], [106].
Integrating LLMs into TTS represents a significant step for-
ward, enabling more dynamic and expressive speech synthesis.

C. Organization of This Survey

This survey first presents a comprehensive and systematic
review of controllable TTS technologies, with a particular
focus on model architectures, control strategies, and feature
representations. To establish a foundational understanding, this
survey begins with an introduction to the TTS pipeline in
Section II. While our focus remains on controllable TTS,
Section III examines seminal works in uncontrollable TTS
that have significantly influenced the field’s development.
Section IV provides a thorough investigation into controllable
TTS methods, analyzing both their model architectures and
control strategies. Section V presents a comprehensive review
of datasets and evaluation metrics. Section VI provides an
in-depth analysis of the challenges encountered in achieving
controllable TTS systems and identifies promising future re-
search directions. Section VII explores the broader impacts of
controllable TTS technologies, followed by the conclusion in
Section VIII.

II. TTS PIPELINE

In this section, we elaborate on the general pipeline that
supports controllable TTS technologies, including acoustic
models, speech vocoders, and feature representations. Fig. 2
depicts the general pipeline of controllable TTS, containing
various model architectures and feature representations, but
the control strategies will be discussed in Section IV. Readers
familiar with TTS pipelines may skip ahead to Section III.

A. Overview

A TTS pipeline generally contains three key components,
i.e., linguistic analyzer, acoustic model, and speech vocoder,
where a conditional input, e.g., prompts, can be processed
for controllable speech synthesis. Linguistic analyzer aims to
extract linguistic features, e.g., phoneme duration and position,
syllable stress, and utterance level, from the input text, which
is a necessary step in HMM-based methods [64], [65] and
a few neural model-based methods [110], [111], but is time-
consuming and error-prone. Acoustic model is a parametric
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Fig. 2. General pipeline of controllable TTS from the perspective of network structure. Linguistic analysis is necessary for parametric and a few neural
methods but is no longer needed for most modern neural methods. In this paper, we only review neural model-based controllable TTS methods and do not
investigate acoustic features (e.g., MFCC [107], LSP [108], F0 [109]) used in early TTS methods.

or neural model that predicts the acoustic features from the
input texts. Modern neural acoustic models like Tacotron [74]
and later works [15], [76], [112] directly take character [113]
or word embeddings [114] as the input, which is much more
efficient than previous methods. Speech vocoder is the last
component that converts the intermediate acoustic features into
a waveform that can be played back. This step bridges the gap
between the acoustic features and the actual sounds produced,
helping to generate high-quality, natural-sounding speech [73],
[115]. Besides, some end-to-end methods use a single model
to encode the input and decode the speech waveforms without
generating intermediate features like mel-spectrograms. Tan et
al. [42] have presented a comprehensive and detailed review
of acoustic models and vocoders. Therefore, the following
subsections will briefly introduce some representative acoustic
models and speech vocoders, followed by a discussion of
acoustic feature representations.

B. Acoustic Models

Acoustic modeling is a crucial step in TTS because it
ensures that the generated acoustic features capture the sub-
tleties of human speech. By accurately modeling acoustic
features, modern TTS systems can help generate high-quality
and expressive audio that sounds close to human speech.

Parametric Models. Early acoustic models rely on para-
metric approaches, where predefined rules and mathematical
functions are utilized to model speech generation. These
models often utilize HMMs to capture acoustic features from
linguistic input and generate acoustic features by parameter-
izing the vocal tract and its physiological properties such as
pitch and prosody [65], [71], [72], [116]–[118]. These methods
have relatively low computational costs and can produce a
range of voices by adjusting model parameters. However, the
speech quality of these methods is robotic and lacks natural
intonation, and the expressiveness is also limited [72], [118].

RNN-based Models. Recurrent Neural Networks (RNNs)
proved particularly effective in early neural TTS due to their

ability to model sequential data and long-range dependencies,
which helps in capturing the sequential nature of speech,
such as the duration and natural flow of phonemes. Typically,
these models have an encoder-decoder architecture, where an
encoder encodes input linguistic features, such as phonemes or
text, into a fixed-dimensional representation, and the decoder
sequentially decodes this representation into acoustic features
(e.g., mel-spectrogram frames) that capture the frequency and
amplitude of sound over time. Tacotron 2 [75] is one of
the pioneering TTS models that use RNNs with an attention
mechanism, which helps align the text sequence with the
generated acoustic features. It takes raw characters as input
and produces mel-spectrogram frames, which are subsequently
converted to waveforms. Another example is MelNet [119],
which leverages autoregressive modeling to generate high-
quality mel-spectrograms, demonstrating versatility in gen-
erating both speech and music, achieving high fidelity and
coherence across temporal scales.

CNN-based Models. Unlike RNNs, which process sequen-
tial data frame by frame, CNNs process the entire sequence
at once by applying filters across the input texts. This parallel
approach enables faster training and inference, making CNN-
based TTS particularly appealing for real-time and low-latency
applications [16], [73], [120], [121]. Furthermore, by stacking
multiple convolutional layers with varying kernel sizes or dila-
tion rates, CNNs can capture both short-range and long-range
dependencies, which are essential for natural-sounding speech
synthesis. Deep Voice [16] is one of the first prominent CNN-
based TTS methods, designed to generate mel-spectrograms
directly from phoneme or character input. ParaNet [122] also
utilizes a CNN model to achieve sequence-to-sequence mel-
spectrogram generation. It uses a non-autoregressive architec-
ture, which enables significantly faster inference by predicting
multiple time steps simultaneously.

Transformer-based Models. The transformer model [123]
uses self-attention layers to capture relationships within the
input sequence, making them well-suited for tasks requir-
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ing an understanding of global contexts, such as prosody
and rhythm in TTS. Transformer-based TTS models often
employ an encoder-decoder architecture, where the encoder
processes linguistic information (e.g., phonemes or text) and
captures contextual relationships, and the decoder generates
acoustic features (like mel-spectrograms) from these encoded
representations, later converted to waveforms by a vocoder.
TransformerTTS [124] is one of the first TTS models that
apply transformers to synthesize speech from text. It utilizes
a standard encoder-decoder transformer architecture and relies
on multi-head self-attention mechanisms to model long-term
dependencies, which helps maintain consistency and natural
flow in speech over long utterances. FastSpeech [15] is a non-
autoregressive model designed to overcome the limitations of
autoregressive transformers in TTS, achieving faster synthesis
than previous methods. It introduces a length regulator to align
text with output frames, enabling the control of phoneme du-
ration. FastSpeech 2 [76] extends FastSpeech by adding pitch,
duration, and energy predictors, resulting in more expressive
and natural-sounding speech.

LLM-based Models. LLMs [11], [26], [97], [125], known
for their large-scale pre-training on text data, have shown
remarkable capabilities in natural language understanding and
generation. LLM-based TTS models generally use a text
description to guide the mel-spectrogram generation, where the
acoustic model processes the input text to generate acoustic to-
kens that capture linguistic and contextual information, such as
tone, sentiment, and prosody. For example, PromptTTS [101]
uses a textual prompt encoded by BERT [125] to guide the
acoustic model on the timbre, tone, emotion, and prosody
desired in the speech output. PromptTTS first generates mel-
spectrograms with token embeddings and then converts them
to audio using a vocoder. InstructTTS [105] generates ex-
pressive and controllable speech using natural language style
prompts. It leverages discrete latent representations of speech
and integrates natural language descriptions to guide the
synthesis process, which bridges the gap between TTS systems
and natural language interfaces, enabling fine-grained style
control through intuitive prompts.

Other Acoustic Models. In TTS, generative adversar-
ial networks (GANs) [126]–[128], variational autoencoders
(VAEs) [18], [129], and diffusion models [112], [130] can also
be used as acoustic models. Flow-based methods [131], [132]
are also popular in acoustic feature generation. Recently pro-
posed flow-based controllable TTS methods will be discussed
in Section IV. Refer to the survey paper from Tan et al. [42]
for more details.

The choice of an acoustic model depends on the specific
requirements and is a trade-off between synthesis quality,
computational efficiency, and flexibility. For real-time applica-
tions, CNN-based or lightweight transformer-based models are
preferable, while for high-fidelity, expressive speech synthesis,
transformer-based and LLM-based models are better suited.

C. Speech Vocoders

Vocoders are essential for converting acoustic features, such
as mel-spectrograms, into intelligible audio waveforms and are

vital in determining the naturalness and quality of synthesized
speech. We broadly categorize existing vocoders according
to their model architectures, i.e., RNN-, CNN-, GAN-, and
diffusion-based vocoders.

RNN-based Vocoders. Unlike traditional vocoders [133],
[134] that depend on manually designed signal processing
pipelines, RNN-based vocoders [135]–[138] leverage the tem-
poral modeling capabilities of RNNs to directly learn the
complex patterns in speech signals, enabling the synthesis
of natural-sounding waveforms with improved prosody and
temporal coherence. For instance, WaveRNN [136] gener-
ates speech waveforms sample-by-sample using a single-
layer recurrent neural network, typically with Gated Recur-
rent Units (GRU). It improves upon earlier neural vocoders
like WaveNet [73] by significantly reducing the computa-
tional requirements without sacrificing audio quality. MB-
WaveRNN [138] extends WaveRNN by incorporating a multi-
band decomposition strategy, where the speech waveform is di-
vided into multiple sub-bands, with each sub-band synthesized
at a lower sampling rate. These sub-bands are then combined
to reconstruct the full-band waveform, thereby accelerating the
synthesis process while preserving audio quality.

CNN-based Vocoders. By leveraging the parallelism of
convolutional operations, CNN-based vocoders [73], [139],
[140] can achieve higher speech quality and more efficient
synthesis compared to parametric vocoders [133], [134], mak-
ing them ideal for applications that demand real-time and
natural speech synthesis. However, they often require ex-
tensive training data and careful hyperparameter tuning to
achieve optimal performance. WaveNet [73] is a probabilistic
autoregressive model that generates waveforms sample by
sample, conditioned on all preceding samples and auxiliary
inputs, such as linguistic features and mel-spectrograms. It
employs stacks of dilated causal convolutions, enabling long-
range dependence modeling in speech signals without relying
on recurrent connections. Parallel WaveNet [139] addresses
WaveNet’s inference speed limitations while maintaining com-
parable synthesis quality. It introduces a non-autoregressive
mechanism based on a teacher-student framework, where the
original WaveNet (teacher) distills knowledge into a student
model. The student generates samples in parallel, enabling
real-time synthesis without waveform quality degradation.

GAN-based Vocoders. GANs have been widely adopted
in vocoders for high-quality speech generation [115], [141]–
[144], leveraging adversarial losses to improve realism. GAN-
based vocoders typically consist of a generator that pro-
duces waveforms conditioned on acoustic features, such as
mel-spectrograms, and a discriminator that distinguishes be-
tween real and synthesized waveforms. Models like Parallel
WaveGAN [143] and HiFi-GAN [115] have demonstrated
the effectiveness of GANs in vocoding by introducing tai-
lored loss functions, such as multi-scale and multi-resolution
spectrogram losses, to ensure naturalness in both time and
frequency domains. These models can efficiently handle the
complex, non-linear relationships inherent in speech signals,
resulting in high-quality synthesis. A key advantage of GAN-
based vocoders is their parallel inference capability, enabling
real-time synthesis with lower computational costs compared
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to autoregressive models. However, training GANs can be
challenging due to instability and mode collapse caused by
imbalanced adversarial dynamics, vanishing gradients, and the
generator overfitting to limited patterns [145], [146]. Despite
these challenges, GAN-based vocoders continue to advance the
SOTA in neural vocoding, offering a compelling combination
of speed and audio quality.

Diffusion-based Vocoders. Inspired by diffusion proba-
bilistic models [147] that have shown success in visual genera-
tion tasks, diffusion-based vocoders [112], [148]–[151] present
an alternative approach to natural-sounding speech synthesis.
The core mechanism of diffusion-based vocoders involves two
stages: a forward process and a reverse process. In the forward
process, clean speech waveforms are progressively corrupted
by adding noise in a controlled manner, creating a sequence of
intermediate noisy representations. During training, the model
learns to reverse this process, progressively denoising the cor-
rupted signal to reconstruct the original waveform. Diffusion-
based vocoders, such as WaveGrad [150] and DiffWave [149],
have demonstrated remarkable performance in generating
high-fidelity waveforms while maintaining temporal coherence
and natural prosody. They offer advantages over previous
vocoders, including robustness to over-smoothing [152] and
the ability to model complex data distributions. However, their
iterative sampling process can be computationally intensive,
posing challenges for real-time applications.

Other Vocoders. There are also many other types of
vocoders, such as flow-based [153]–[157] and VAE-based
vocoders [122], [158], [159]. These methods provide unique
strengths for speech synthesis, such as efficiency and greater
flexibility in modeling complex speech variations. Readers can
refer to the survey paper from Tan et al. [42] for more details.

The choice of vocoder depends on various factors. While
high-quality models like GAN-based and diffusion-based
vocoders excel in naturalness, they may not be suitable for
real-time scenarios. On the other hand, models like Parallel
WaveNet [139] balance quality and efficiency for practical use
cases. The best choice will ultimately depend on the specific
use case, available resources, and the importance of factors
such as model size, training data, and inference speed.

D. Fully End-to-end TTS models

Fully end-to-end TTS methods [76], [159]–[162] directly
generate speech waveforms from textual input, simplifying
the “acoustic model → vocoder” pipeline and achieving ef-
ficient speech generation. Char2Wav [160] is an early neural
TTS system that directly synthesizes speech waveforms from
character-level text input. It integrates two components and
jointly trains them: a recurrent sequence-to-sequence model
with attention, which predicts acoustic features (e.g., mel-
spectrograms) from text, and a SampleRNN-based neural
vocoder [135] that generates waveforms from these features.
Similarly, FastSpeech 2s [76] directly synthesizes speech
waveforms from texts by extending FastSpeech 2 [76] with
a waveform decoder, achieving high-quality and low-latency
synthesis. VITS [159] is another fully end-to-end TTS frame-
work. It integrates a VAE with normalizing flows [163] and

adversarial training, enabling the model to learn latent repre-
sentations that capture the intricate variations in speech, such
as prosody and style. VITS combines non-autoregressive syn-
thesis with stochastic latent variable modeling, achieving real-
time waveform generation without compromising naturalness.
There are more end-to-end TTS models such as Tacotron [74],
ClariNet [161], and EATS [162], readers can refer to another
survey [42] for more details. End-to-end controllable methods
that emerged in recent years will be discussed in Section IV.

E. Acoustic Feature Representations

In TTS, the choice of acoustic feature representations
impacts the model’s flexibility, quality, expressiveness, and
controllability. This subsection investigates continuous repre-
sentations and discrete tokens as shown in Fig. 2, along with
their pros and cons for TTS applications.

Continuous Representations. Continuous representations
(e.g., mel-spectrograms and VAE features) of intermediate
acoustic features use a continuous feature space to model
speech signals. These representations often involve acous-
tic features that capture frequency, pitch, and other char-
acteristics without discretizing the signal. The advantages
of continuous features are: 1) Continuous representations
retain fine-grained detail, enabling expressive and natural-
sounding speech synthesis. 2) Since continuous features in-
herently capture variations in tone, pitch, and emphasis, they
are well-suited for prosody control and emotional TTS. 3)
Continuous representations are robust to information loss and
can avoid quantization artifacts, allowing reconstruction of
smooth audio. GAN-based [115], [143], [144] and diffusion-
based methods [148], [149] often utilize continuous feature
representations, i.e., mel-spectrograms. However, continuous
representations are typically computationally demanding and
require large-scale models and training datasets, especially in
high-resolution audio synthesis.

Discrete Tokens. In discrete token-based TTS, the interme-
diate acoustic features (e.g., quantized units or phoneme-like
tokens) are discrete values, similar to words or phonemes in
languages. These are often produced using quantization tech-
niques or learned token embeddings, such as HuBERT [166]
and SoundStream [170]. The advantages of discrete tokens are:
1) Discrete tokens can encode phonemes or sub-word units,
making them concise and computationally efficient to handle.
2) Discrete tokens often allow TTS systems to require fewer
samples to learn and generalize, as compared with continuous
representations, since the representations are compact and
simplified. 3) Using discrete tokens simplifies cross-modal
TTS applications like voice cloning or text prompt-based TTS,
as they map well to text-like representations such as LLM
tokens. LLM-based [78], [103], [105], [106] and zero-shot
TTS methods [17], [78], [87] often adopt discrete tokens
as their acoustic features. However, discrete representation
learning may result in information loss or lack the nuanced
details that can be captured in continuous representations.

Speech Quantization vs. Tokenization. It is worth noting
that quantization and tokenization serve distinct purposes in
speech processing. Quantization is primarily used for high-
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TABLE II
POPULAR OPEN-SOURCE SPEECH QUANTIZATION AND TOKENIZATION METHODS.

Method Modeling Code Year

VQ-Wav2Vec [164] SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#vq-wav2vec 2019
Wav2Vec 2.0 [165] SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec 2019

HuBERT [166] SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/hubert 2021
Whisper Encoder [167] SSCP https://github.com/openai/whisper 2022

Data2vec [168] SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec 2022
W2v-BERT 2.0 [169] SSCP https://huggingface.co/facebook/w2v-bert-2.0 2023

SoundStream [170] RVQ-GAN https://github.com/wesbz/SoundStream 2021
Encodec [171] RVQ-GAN https://github.com/facebookresearch/encodec 2022

HiFi-Codec [172] RVQ-GAN https://github.com/yangdongchao/AcademiCodec 2023
SpeechTokenizer [173] RVQ-GAN https://github.com/ZhangXInFD/SpeechTokenizer 2023

Descript Audio Codec [174] RVQ-GAN https://github.com/descriptinc/descript-audio-codec 2023
Mimi Codec [175] RVQ-GAN https://github.com/kyutai-labs/moshi 2024

WavTokenizer [176] VQ-GAN https://github.com/jishengpeng/WavTokenizer 2024

SSCP: Self-supervised context (token) prediction, RVQ: Residual vector quantization [170].

fidelity compression, reducing the precision of numerical rep-
resentations (e.g., from 32-bit floating point to 8-bit integers)
while preserving model performance. In speech synthesis,
quantization is often used in waveform generation (e.g., codec-
based approaches like EnCodec [171]) and neural vocoders to
compress audio signals without significant loss of perceptual
quality. Tokenization, on the other hand, is a discretization
process that segments continuous data into meaningful units.
In speech tasks, tokenization extracts semantically relevant
representations such as phonemes, characters, or learned
speech units (e.g., HuBERT [166] and Wav2Vec 2.0 [165]).
This makes tokenization particularly suitable for speech-to-
text (ASR), TTS, and multimodal NLP tasks, where align-
ing speech with textual information is crucial. Tokenization
also facilitates training language models on speech data by
enabling linguistic or learned unit-based processing rather than
raw audio waveform modeling. Table II summarizes popular
open-source speech quantization and tokenization methods.
Tables IV and III summarize the types of acoustic features
of representative methods.

III. UNCONTROLLABLE TTS

The development of uncontrollable text-to-speech (UC-
TTS) systems represents a significant shift from traditional,
linguistics-based synthesis to modern, data-driven deep learn-
ing techniques. This shift highlights the integration of both
local and global information to produce speech with human-
like quality and naturalness. This section briefly investigates
UC-TTS methods, emphasizing the role of local and global
information in enhancing speech fidelity and expressiveness.

In the context of UC-TTS, the term “uncontrollable” refers
to the absence of explicit control mechanisms for speech fea-
tures such as emotion, timbre, and speaking style. Despite this,
the goal is to achieve natural, fluid speech while mitigating
issues like mispronunciations and omissions.

A. Early Approaches: Statistical Models

Early TTS systems relied on statistical models such as
HMMs [64], [65] and early neural network-based parametric
methods [110], [111]. These models operated at the frame

level, using acoustic models and vocoders for text-to-speech
conversion. Notable contributions from Tokuda et al. [177]
employed HMMs for statistical parametric synthesis, focusing
on local features like phonemes, accents, and prosody to
improve speech naturalness.

While robust, these statistical methods were limited by
their reliance on pre-segmented data, leading to oversimplified
assumptions about speech dynamics. Local linguistic features
were well-modeled, but the global phonetic context was often
overlooked, resulting in speech that sounded monotone and
lacked emotional depth, as noted by Zen et al. [41].

B. Sequence-to-Sequence Models

The emergence of sequence-to-sequence models represents
a significant breakthrough by removing the need for explicit
linguistic features, thereby enabling the capture of the nuances
of human speech. Models such as Tacotron [74] and Tacotron
2 [75] utilize RNNs with attention mechanisms to effectively
model the complex, nonlinear nature of speech sequences.
These innovations enable the tuning of speech parameters,
enhancing prosody and rhythm by modeling entire utterances
instead of isolated phonetic units.

Building on these advancements, Deep Voice 3 [121] in-
troduces a fully convolutional sequence-to-sequence architec-
ture that significantly accelerates training speed compared to
RNN-based models. This approach achieves training times an
order of magnitude faster, enabling scalability to handle large
datasets. Additionally, the position-augmented attention mech-
anism in Deep Voice 3 enhances the naturalness of synthesized
speech, achieving competitive mean opinion scores, especially
when paired with advanced neural vocoders like WaveNet.
This development not only improves training efficiency but
also enhances the scalability and naturalness of TTS systems.

C. Transformer-based Models

Transformer-based architectures advanced the field by en-
abling computational parallelization and effectively capturing
long-range dependencies. Models like Transformer TTS over-
came RNN challenges, such as gradient vanishing, by using
efficient training paradigms [124]. Self-attention mechanisms

https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#vq-wav2vec
https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
https://github.com/openai/whisper
https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
https://huggingface.co/facebook/w2v-bert-2.0
https://github.com/wesbz/SoundStream
https://github.com/facebookresearch/encodec
https://github.com/yangdongchao/AcademiCodec
https://github.com/ZhangXInFD/SpeechTokenizer
https://github.com/descriptinc/descript-audio-codec
https://github.com/kyutai-labs/moshi
https://github.com/jishengpeng/WavTokenizer
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allowed simultaneous modeling of local phonetic details and
global prosodic contexts, resulting in more sophisticated and
human-like speech synthesis.

Although transformers improved contextual information in-
corporation, challenges remained in preserving local phonetic
precision. To address these, techniques such as relative posi-
tion encodings and localized attention were integrated [123].

D. Integrating Flow and Diffusion Models
Recent advancements have shifted toward integrating global

information within end-to-end architectures to enhance speech
naturalness and coherence. Flow-based models like Glow-TTS
[132] and Flow-TTS [131] exemplify this by employing invert-
ible transformations that maintain the balance between local
precision and global coherence. These architectures enable
the synthesis of high-fidelity speech by modeling complex
dependencies across the entire utterance, thus improving the
overall fluidity and naturalness of the generated speech.

Moreover, the introduction of diffusion models in TTS,
such as WaveGrad 2 [178], highlights the shift toward models
that can iteratively refine speech output. These models use
score-matching and diffusion processes to generate speech
directly from phoneme sequences, effectively capturing both
local nuances and overarching global patterns. The iterative
nature of these models allows for adjustments that enhance the
quality of the synthesized audio, accommodating variations in
speech without explicit control over specific attributes.

The integration of adversarial training and VAEs further
exemplifies the evolution toward incorporating global infor-
mation. Systems like VITS [159] leverage these techniques to
enhance expressiveness and naturalness by learning complex
mappings between text and speech. This approach allows the
model to manage variations in prosody and rhythm that are
inherently derived from the textual input, aligning with the
objectives of UC-TTS to produce diverse and natural speech.

The evolution from HMMs to advanced architectures in UC-
TTS exemplifies progress toward synthesizing speech that is
both expressive and precise. The interplay of local and global
information is crucial for enhancing speech quality and cus-
tomizability. Future UC-TTS research aims to produce high-
fidelity, customizable speech by harmonizing deep contextual
insights with precise local adjustments, meeting diverse user
needs and communication contexts.

IV. CONTROLLABLE TTS
In this section, we first review recent TTS work from

the perspective of model architecture, followed by a detailed
discussion of control strategies in controllable TTS, which is
the core part of this survey. Current model architectures can
be broadly classified into two main categories: The first is the
non-autoregressive (NAR) generative models, which are based
on HMMs, neural networks, VAEs, diffusion models, flow
matching, and other NAR techniques. The second category
relies on autoregressive (AR) codec language models, which
typically quantize speech into discrete tokens and use decoder-
only models to autoregressively generate these tokens. We
summarize the NAR-based and AR-based controllable TTS
methods in Table III and Table IV, respectively.

A. Non-Autoregressive Architectures

In non-autoregressive TTS models, the model generates
the entire output sequence y = (y1, y2, . . . , yT ) at once,
conditioned on the input sequence x = (x1, x2, . . . , xT ). The
probability distribution for generating the sequence is:

P (y|x) = P (y|x, θ), (1)

Where P (y|x) is the likelihood of the output sequence y
given the input x, and θ represents the parameters of the
model (e.g., weights). Since the output sequence is predicted
simultaneously, the model learns to capture dependencies in a
way that does not rely on previously generated outputs.

Transformer-based Approaches. Advancements in con-
trollable TTS technology highlight the integration of deep
learning with audio processing, driven by Transformer-based
architectures. Ren et al. [15] introduced FastSpeech, a feed-
forward non-autoregressive Transformer model that signifi-
cantly enhances TTS efficiency by reducing inference time
and improving the stability issues found in autoregressive
models like Tacotron 2. This model provides precise control
over prosodic features through duration prediction, effectively
tackling the one-to-many mapping challenge. FastSpeech 2
[180] builds on this by integrating pitch and energy control,
eliminating the need for the complex teacher-student distilla-
tion process, thus enhancing training efficiency and improving
voice quality. Parallel Tacotron [84] further advances TTS by
employing a variational autoencoder-based residual encoder,
capturing intricate prosodic nuances. This approach, combined
with iterative spectrogram loss, significantly enhances the
naturalness and quality of synthesized speech. Additionally,
FastPitch [77] incorporates direct pitch prediction into its
architecture, enabling fully parallelized synthesis and precise
pitch manipulation. This capability enhances expressiveness
and retains the efficiency benefits established by FastSpeech.
These innovations significantly contribute to the development
of more interactive and natural AI-driven communication
systems, underscoring the potential of integrating AI with
human-centric disciplines to craft a future where technology
and humanity coexist harmoniously.

VAE-based Approaches. Recent advancements in control-
lable TTS systems are largely driven by the integration of
VAE architectures, which enhance the flexibility and precision
of speech modulation. Zhang et al. [18] pioneered the use of
VAEs in end-to-end speech synthesis, creating disentangled
latent representations that allow effective style control and
transfer, especially in prosody and emotion management, out-
performing the Global Style Token (GST) model [19] in style
transfer tasks. Building on this, Hsu et al. [129] developed a
hierarchical generative model with a conditional VAE frame-
work and a Gaussian mixture model, enabling precise control
over complex speech attributes such as environment and style,
thus improving expressive speech synthesis through refined
noise and speaker characteristic management. Liu et al. [188]
further advanced the field with the CLONE model, a single-
stage TTS system that resolves the one-to-many mapping
issue and enhances high-frequency information reconstruction.
By employing a conditional VAE with normalizing flows
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TABLE III
A SUMMARY OF EXISTING NON-AUTOREGRESSIVE CONTROLLABLE NEURAL-BASED METHODS.

Method Zero-shot
TTS

Controlability Model Architectures Acoustic
Feature

Release
TimePit. Ene. Spe. Pro. Tim. Emo. Env. Des. Acoustic Model Vocoder

FastSpeech [15] ✓ ✓ Transformer WaveGlow [179] MelS 2019.05
FastSpeech 2 [180] ✓ ✓ ✓ ✓ Transformer Parallel WaveGAN [143] MelS 2020.06

FastPitch [77] ✓ ✓ Transformer WaveGlow MelS 2020.06
Parallel Tacotron [181] ✓ Transformer + CNN WaveRNN [136] MelS 2020.10

StyleTagging-TTS [182] ✓ ✓ ✓ Transformer + CNN HiFi-GAN [115] MelS 2021.04
SC-GlowTTS [183] ✓ ✓ Transformer + Flow HiFi-GAN MelS 2021.06

Meta-StyleSpeech [184] ✓ ✓ Transformer MelGAN [144] MelS 2021.06
DelightfulTTS [185] ✓ ✓ ✓ Transformer + CNN HiFiNet [185] MelS 2021.11

YourTTS [82] ✓ ✓ Transformer + Flow HiFi-GAN LinS 2021.12
StyleTTS [88] ✓ ✓ CNN + RNN HiFi-GAN MelS 2022.05

GenerSpeech [90] ✓ ✓ Transformer + Flow HiFi-GAN MelS 2022.05
Cauliflow [186] ✓ ✓ BERT + Flow UP WaveNet [187] MelS 2022.06
CLONE [188] ✓ ✓ ✓ Transformer + CNN WaveNet [73] MelS + LinS 2022.07

PromptTTS [101] ✓ ✓ ✓ ✓ ✓ ✓ BERT + Transformer HiFi-GAN MelS 2022.11
Grad-StyleSpeech [189] ✓ ✓ Score-based Diffusion HiFi-GAN MelS 2022.11

NaturalSpeech 2 [86] ✓ ✓ Diffusion RVQ-based Codec [86] Latent Feature 2023.04
PromptStyle [190] ✓ ✓ ✓ ✓ ✓ ✓ VITS + Flow HiFi-GAN MelS 2023.05
StyleTTS 2 [89] ✓ ✓ ✓ ✓ Flow-based Diffusion + GAN HifiGAN / iSTFTNet [191] MelS 2023.06
VoiceBox [192] ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.06

MegaTTS 2 [193] ✓ ✓ ✓ ✓ Decoder-only Transformer + GAN HiFi-GAN MelS 2023.07
PromptTTS 2 [102] ✓ ✓ ✓ ✓ ✓ Diffusion RVQ-based Codec Latent Feature 2023.09

VoiceLDM [194] ✓ ✓ ✓ ✓ ✓ ✓ Diffusion HiFi-GAN MelS 2023.09
DurIAN-E [195] ✓ ✓ ✓ CNN + RNN HiFi-GAN MelS 2023.09

PromptTTS++ [104] ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion BigVGAN [196] MelS 2023.09
SpeechFlow [197] ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.10

P-Flow [198] ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.10
E3 TTS [199] ✓ ✓ Diffusion Not required Waveform 2023.11

HierSpeech++ [200] ✓ ✓ Transformer + VAE + Flow BigVGAN MelS 2023.11
Audiobox [201] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Flow EnCodec [171] MelS 2023.12

FlashSpeech [202] ✓ ✓ Latent Consistency Model EnCodec Token 2024.04
NaturalSpeech 3 [87] ✓ ✓ ✓ ✓ Transformer + Diffusion FACodec [87] Token 2024.04

InstructTTS [105] ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion HiFi-GAN Token 2024.05
ControlSpeech [106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion FACodec Token 2024.06

AST-LDM [203] ✓ ✓ ✓ Diffusion + VAE HiFi-GAN MelS 2024.06
SimpleSpeech [204] ✓ ✓ Transformer + Diffusion SQ Codec [204] Token 2024.06
DiTTo-TTS [205] ✓ ✓ ✓ DiT + VAE BigVGAN MelS 2024.06

E2 TTS [206] ✓ ✓ Transformer + Flow BigVGAN MelS 2024.06
MobileSpeech [207] ✓ ✓ Transformer Vocos [208] Token 2024.06

DEX-TTS [209] ✓ ✓ Diffusion HiFi-GAN MelS 2024.06
ArtSpeech [210] ✓ ✓ RNN + CNN HiFI-GAN MelS + Energy + F0 2024.07

CCSP [211] ✓ ✓ Diffusion RVQ-based Codec [211] Token 2024.07
SimpleSpeech 2 [212] ✓ ✓ ✓ Flow-based DiT SQ Codec Token 2024.08

E1 TTS [213] ✓ ✓ DiT + Flow BigVGAN Token + MelS 2024.09
StyleTTS-ZS [214] ✓ ✓ Flow-based Diffusion + GAN Mel-based Decoder [214] MelS 2024.09

NansyTTS [215] ✓ ✓ ✓ ✓ ✓ ✓ Transformer NANSY++ [215] MelS 2024.09
NanoVoice [216] ✓ ✓ Diffusion BigVGAN MelS 2024.09

MS2KU-VTTS [217] ✓ ✓ Transformer BigVGAN MelS 2024.10
MaskGCT [78] ✓ ✓ ✓ Transformer + Flow Vocos Token 2024.10

EmoSphere++ [218] ✓ ✓ ✓ ✓ Transformer + Flow BigVGAN MelS 2024.11
EmoDubber [219] ✓ ✓ ✓ ✓ Transformer + Flow Flow-based Vocoder [219] MelS 2024.12

HED [220] ✓ ✓ Flow-based Diffusion Vocos MelS 2024.12
DiffStyleTTS [221] ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion HiFi-GAN MelS 2025.01
DrawSpeech [222] ✓ ✓ Diffusion HiFi-GAN MelS 2025.01

ProEmo [223] ✓ ✓ ✓ ✓ Transformer HiFi-GAN MelS 2025.01

Abbreviations: Pit(ch), Ene(rgy), Spe(ed), Pro(sody), Tim(bre), Emo(tion), Env(ironment), Des(cription). MelS: Mel Spectrogram. LinS: Linear Spectrogram.

and a dual-path adversarial training mechanism with multi-
band discriminators, CLONE achieves nuanced control over
prosody and energy, demonstrating superior performance in
both speech quality and prosody control compared to state-
of-the-art models. These collective innovations highlight the
adaptability of VAEs in managing complex speech generation
tasks, marking significant progress toward more dynamic and
versatile TTS technologies, with ongoing research promising
even greater advancements.

Diffusion-based Approaches. The core concept of
diffusion-based models is to generate target data by progres-
sively removing noise. During the forward diffusion phase,
noise is incrementally added to the original data to form a
noise distribution. In the generation phase, a reverse denoising
process is employed to gradually recover high-quality speech
from the noise. Grad-StyleSpeech [189] introduces a hierarchi-

cal transformer encoder to create a representative noise prior
distribution for speaker-adaptive settings using score-based
diffusion models. NaturalSpeech 2 [86] uses a neural audio
codec with residual vector quantizers to obtain quantized latent
vectors, which are then generated using a diffusion model
conditioned on text input. NaturalSpeech 3 [87] decomposes
speech into distinct subspaces that represent different attributes
and generates each subspace independently. DEX-TTS [209]
improves DiT-based diffusion networks by applying overlap-
ping patching and convolution-frequency patch embedding
strategies. E3 TTS [199] models the temporal structure of
the waveform through the diffusion process, eliminating the
need for any intermediate representations, such as spectrogram
features or alignment information.

Applying diffusion models to TTS requires a complex
pipeline due to the need for precise temporal alignment
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between text and speech and the high fidelity required for
audio data. This includes domain-specific modeling, such as
phoneme and duration [86]. To address the issue of reduced
naturalness caused by the addition of duration models, DiTTo-
TTS [205] leverages the off-the-shelf pre-trained text and
speech encoders without relying on speech domain-specific
modeling by incorporating cross-attention mechanisms with
the prediction of the total length of speech representations.
Similarly, SimpleSpeech [204] proposes a speech codec model
(SQ-Codec) based on scalar quantization and uses the sen-
tence duration to control the generated speech length. Besides
TTS, some text-to-audio models can also perform TTS and
are worth referring to, such as AudioLDM [224], Audi-
oLDM2 [225], Make-An-Audio [226], and CosyAudio [227].

Flow-based Approaches. Flow-based methods leverage
invertible flow transformations [163], [228] to learn mappings
from target speech features to simple distributions [179],
typically standard Gaussian distributions. Due to their invert-
ibility, this mechanism can directly sample from the simple
distribution and generate high-fidelity speech in the reverse
direction. Audiobox [201] and P-flow [198] employ non-
autoregressive flow-matching models [228] for efficient and
stable speech synthesis. VoiceBox [192] also employs flow-
matching to generate speech, effectively casting the TTS task
into a speech infilling task. SpeechFlow [197] is trained on
60k hours of untranscribed speech with flow matching and
mask conditions and can be fine-tuned with task-specific data
to match or surpass existing expert models. This highlights the
potential of generative models as foundation models for speech
applications. HierSpeech++ [200] proposes a hierarchical vari-
ational inference method. FlashSpeech [202] is built on a latent
consistency model and applies a novel adversarial consistency
training approach that can train from scratch without the need
for a pre-trained diffusion model as the teacher, achieving
speech generation in one or two steps.

Recently, E2 TTS [206] converts text input into a character
sequence with filler tokens and trains a mel spectrogram
generator based on an audio infilling task, achieving human-
level naturalness. Inspired by E2 TTS, F5-TTS [229] refines
the text representation with ConvNext v2 [230], facilitating
easier alignment with speech. E1 TTS [213] further distills
a diffusion-based TTS model into a one-step generator with
distribution matching distillation [231], [232], reducing the
number of network evaluations in sampling from diffusion
models. SimpleSpeech 2 [212] introduces a flow-based scalar
transformer diffusion model. The work also provides a theoret-
ical analysis, showing that the inclusion of a small number of
noisy labels in a large-scale dataset is equivalent to introducing
classifier-free guidance during model optimization.

Other NAR Approaches. Other works leverage GAN-
based or masked generative model-based methods for TTS
generation. StyleTTS 2 [89] employs large pre-trained speech
language models (SLMs) such as Wav2Vec 2.0 [165], Hu-
BERT [166], and WavLM [233] as discriminators in combi-
nation with a novel differentiable duration modeling approach.
This setup uses SLM representations to enhance the natu-
ralness of the synthesized speech. MaskGCT [78] proposes
masked generative transformers without requiring text-speech

alignment supervision and phone-level duration prediction.
The model employs a two-stage system trained using a mask-
and-predict learning paradigm.

B. Autoregressive Architectures

For an autoregressive model in TTS, the probability of the
speech frame sequence y = (y1, y2, . . . , yT ) given the input
sequence x = (x1, x2, . . . , xT ) can be modeled as:

P (y|x) =
T∏

t=1

P (yt|y<t,x), (2)

where yt is the predicted output frame at time step t, y<t =
(y1, . . . , yt−1) are the previous frames, and x is the input
feature sequence. Each frame yt is predicted conditioned on
all previous frames and the input sequence x. Autoregressive
models are powerful in TTS modeling but tend to be slower in
generation time compared to non-autoregressive models, mak-
ing them suitable for applications where quality is prioritized
over real-time performance.

HMM-based Approaches. In the realm of controllable
TTS, advancements in HMM architectures have significantly
enhanced the manipulation of speech elements such as emotion
and prosody. Yamagishi et al. [70] pioneered this field by
introducing style-dependent and style-mixed modeling, which
allowed precise emulation of human-like emotional nuances
and versatile synthesis across various styles by incorporating
style as a contextual variable. Building on this foundation, Qin
et al. [268] developed the “average emotion model,” which
utilized maximum likelihood linear regression-based adapta-
tion to modulate emotions like happiness and sadness even
with limited data, thus advancing the emotional intelligence
of synthetic speech systems.

Furthering expressive variability, Nose et al. [117] integrated
subjective style intensities and a multiple-regression global
variance model into HMMs, addressing over-smoothing and
enabling nuanced emotional expressions. Lorenzo-Trueba et
al. [72] expanded on these capabilities with CSMAPLR [72]
adaptation, introducing “emotion transplantation” to transfer
emotional states between speakers while preserving voice
distinctiveness, enhancing personalized human-computer inter-
action. These innovations in HMM architectures have broad-
ened the expressiveness and individuality in synthetic speech,
augmenting technological interfaces and paving the way for
future developments in adaptive, lifelike speech generation.

RNN-based Approaches. Controllable TTS technology has
seen significant advancements through innovations in neural
network architectures, particularly RNN-based architectures,
enabling natural-sounding speech generation with adjustable
emotion, prosody, and pitch. Prosody-Tacotron [234] is an
extension of the original Tacotron model, designed to improve
the prosody (rhythm, intonation, stress patterns) of synthesized
speech. It builds on the Tacotron framework by introducing
additional mechanisms to explicitly control prosodic features,
which is a key challenge in TTS systems. Wang et al. [19]
introduced global style tokens, using an unsupervised approach
to encapsulate diverse speech styles into fixed tokens, thus en-
abling versatile style transfer within the Tacotron framework.
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TABLE IV
A SUMMARY OF EXISTING AUTOREGRESSIVE CONTROLLABLE NEURAL-BASED METHODS.

Method Zero-shot
TTS

Controlability Model Architectures Acoustic
Feature

Release
TimePit. Ene. Spe. Pro. Tim. Emo. Env. Des. Acoustic Model Vocoder

Prosody-Tacotron [234] ✓ ✓ RNN WaveNet MelS 2018.03
GST-Tacotron [235] ✓ ✓ CNN + RNN Griffin-Lim LinS 2018.03

GMVAE-Tacotron [129] ✓ ✓ ✓ ✓ VAE WaveRNN MelS 2018.12
VAE-Tacotron [18] ✓ ✓ ✓ CNN + RNN WaveNet MelS 2019.02

DurIAN [138] ✓ ✓ ✓ CNN + RNN Multi-band WaveRNN [138] MelS 2019.09
Flowtron [236] ✓ ✓ ✓ CNN + RNN WaveGlow MelS 2020.07

MsEmoTTS [83] ✓ ✓ ✓ CNN + RNN WaveRNN MelS 2022.01
VALL-E [85] ✓ ✓ Decoder-only Transformer EnCodec Token 2023.01

SpearTTS [237] ✓ ✓ Decoder-only Transformer SoundStream [170] Token 2023.02
VALL-E X [238] ✓ ✓ Decoder-only Transformer EnCodec Token 2023.03

Make-A-Voice [239] ✓ ✓ Encoder-decoder Transformer Unit-based Vocoder [239] Token 2023.05
TorToise [240] ✓ Decoder-only Transformer + Diffusion UnivNet [241] MelS 2023.05
MegaTTS [91] ✓ ✓ Decoder-only Transformer + GAN HiFi-GAN MelS 2023.06

SC VALL-E [242] ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.07
Salle [243] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.08

UniAudio [244] ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.10
ELLA-V [245] ✓ ✓ Decoder-only Transformer EnCodec Token 2024.01
Base TTS [246] ✓ ✓ Decoder-only Transformer HiFi-GAN+BigVGAN Token 2024.02

CLaM-TTS [247] ✓ ✓ Encoder-decoder Transformer BigVGAN Token + MelS 2024.04
RALL-E [248] ✓ ✓ Decoder-only Transformer SoundStream Token 2024.05
ARDiT [249] ✓ ✓ ✓ Decoder-only DiT BigVGAN MelS 2024.06

VALL-E R [250] ✓ ✓ Decoder-only Transformer Vocos Token 2024.06
VALL-E 2 [251] ✓ ✓ Decoder-only Transformer Vocos Token 2024.06
Seed-TTS [252] ✓ ✓ ✓ Decoder-only Transformer + DiT Unknown Latent Feature 2024.06
VoiceCraft [93] ✓ ✓ Decoder-only Transformer HiFi-GAN Token 2024.06

XTTS [253] ✓ ✓ Decoder-only Transformer HiFi-GAN-based Vocoder [253] Token + MelS 2024.06
CosyVoice [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer + Flow HiFi-GAN Token 2024.07
MELLE [254] ✓ ✓ Decoder-only Transformer HiFi-GAN MelS 2024.07

VoxInstruct [103] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer Vocos Token 2024.08
Emo-DPO [31] ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.09

FireRedTTS [255] ✓ ✓ ✓ Decoder-only Transformer + Flow BigVGAN Token + MelS 2024.09
CoFi-Speech [256] ✓ ✓ Decoder-only Transformer BigVGAN Token + MelS 2024.09

Takin [257] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer + Flow HiFi-GAN Token + MelS 2024.09
HALL-E [258] ✓ ✓ Decoder-only Transformer EnCodec Token 2024.10

FishSpeech [259] ✓ ✓ Decoder-only Transformer Firefly-GAN [259] Token 2024.11
SLAM-Omni [260] ✓ ✓ ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.12

IST-LM [261] ✓ ✓ ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.12
KALL-E [262] ✓ ✓ ✓ ✓ Decoder-only Transformer WaveVAE [262] Latent Feature 2024.12

IDEA-TTS [263] ✓ ✓ ✓ Transformer Flow-based Vocoder [263] LinS + MelS 2024.12
FleSpeech [264] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Flow-based DiT WaveGAN [141] Latent Feature 2025.01
Step-Audio [265] ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer Flow-based Vocoder [265] Token 2025.02

Vevo [266] ✓ ✓ ✓ ✓ Decoder-only Transformer BigVGAN Token + MelS 2025.02
Spark-TTS [267] ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer BiCodec [267] Token 2025.03

Abbreviations: Pit(ch), Ene(rgy), Spe(ed), Pro(sody), Tim(bre), Emo(tion), Env(ironment), Des(cription). MelS: Mel Spectrogram. LinS: Linear Spectrogram.

Similarly, Stanton et al. [235] introduce Text-Predicted Global
Style Tokens (TP-GST), enhancing Tacotron speech synthesis
to predict expressive speaking styles directly from text without
auxiliary inputs. Experiments show TP-GST generates more
prosodic variation and achieves higher listener preference
than baselines. Skerry-Ryan et al. [234] further advanced
this by incorporating prosodic embeddings, providing control
over timing and intonation, and significantly improving the
replication of emotions in synthetic speech.

Building on these innovations, emotion-controllable models
developed by Li et al. [21] focus on calibrating emotional
nuances using emotion embedding networks and style loss
alignment, allowing detailed modulation of emotional strength.
Hierarchical models like MsEmoTTS [83] refine this approach
by segmenting synthesis into global, utterance-level, and local
emotional strengths, offering enhanced emotional expressive-
ness and intuitive control. These advancements have expanded
the scope to produce nuanced TTS outputs, enabling precise
control over emotion, prosody, and pitch, with applications
ranging from virtual assistants to interactive narratives. As re-
searchers continue to explore the potential of neural networks
in TTS, the technology promises even richer, more engaging
digital experiences, moving towards speech synthesis that is

indistinguishable from natural human interaction.
LLM-based Approaches. Inspired by the success of LLMs

in natural language processing (NLP), recent studies have
explored leveraging in-context learning for zero-shot TTS. As
shown in Fig. 3, LLM-based approaches often take the target
text or instructions and an optional reference speech clip as
input, and utilize autoregressive modeling to generate speech
tokens or features, which are then converted into the final
waveform by a decoder.

VALL-E [85] is a pioneering work in this area, formu-
lating TTS as a conditional language modeling problem. It
utilizes EnCodec [269] to discretize waveforms into tokens as
intermediate representations and employs a two-stage model-
ing pipeline: an autoregressive model first generates coarse
audio tokens, followed by a non-autoregressive model that
iteratively predicts additional codebook codes for refinement.
This hierarchical modeling of semantic and acoustic tokens
has set the foundation for many subsequent LLM-based TTS
approaches [237], [239], [242], [257].

Building on VALL-E, various improvements have been
proposed. VALL-E X [238] extends VALL-E to multilingual
scenarios, supporting zero-shot cross-lingual speech synthe-
sis and speech-to-speech translation. ELLA-V [245] intro-
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Reference SpeechText / Instruction

Text Encoder Speech Encoder

<SBOS>

<SEOS>

<TBOS>

<SEOS>

Decoder-only Transformer

Speech Decoder

Waveform

A man happily says:
"Thank you!"

Fig. 3. The typical architecture of LLM-based TTS methods. Orange and blue
squares are text and speech tokens, respectively. Pink and yellow squares are
< BOS > and < EOS > tokens for text and speech sequences.

duces a sequence order rearrangement step, enhancing local
alignment between phoneme and acoustic modalities. RALL-
E [248] incorporates prosody tokens as chain-of-thought
prompting [270] to stabilize the generation of speech tokens.
VALL-E R [250] improves phoneme-to-acoustic alignment
and adopts codec-merging to boost decoding efficiency and
reduce computational overhead. VALL-E 2 [251] introduces
repetition-aware sampling and grouped code modeling for
greater stability and faster inference. HALL-E [258] adopts
a hierarchical post-training framework, effectively managing
the trade-off between reducing the frame rate and producing
high-quality speech.

Beyond the foundational improvements introduced by
VALL-E and its extensions, further advancements have fo-
cused on enhancing speech alignment, quality, and robust-
ness. SpearTTS [237] and Make-a-Voice [239] use seman-
tic tokens to bridge the gap between text and acoustic
features. FireRedTTS [255] further optimizes the tokenizer
architecture to enhance speech quality. CoFi-Speech [256]
generates speech in a coarse-to-fine manner via a multi-scale
speech coding and generation approach, producing natural and
intelligible speech. Similarly, BASE TTS [246] introduces
discrete speech representations based on the WavLM [233]
self-supervised model, focusing on phonemic and prosodic
information. SeedTTS [252] also proposes a self-distillation
method for speech decomposition and a reinforcement learning
approach to enhance the robustness, speaker similarity, and
controllability of generated speech.

Although models using discrete tokens as intermediate rep-
resentations have achieved notable success in zero-shot TTS,
they still face fidelity issues compared to continuous repre-
sentations like Mel spectrograms [249], [254]. MELLE [254]
optimizes the training objectives and sampling strategy, mark-
ing the first exploration of using continuous-valued tokens

TABLE V
A SUMMARY OF CONTROL STRATEGIES FOR TTS.

Control Strategy Control Signal

Style Tagging Discrete labels, continuous values,
latent variables, speech audio

Speech Reference Prompt Speech audio
Natural Language Descriptions User input text, speech audio

Instruction-Guided Control User input text, speech audio

instead of discrete-valued tokens within the paradigm of
autoregressive speech synthesis models. Similar to MELLE,
ARDiT [249] encodes audio as a vector sequence in continu-
ous space and autoregressively generates these sequences by
a decoder-only transformer.

Additionally, some autoregressive methods enable speech
editing through natural language instructions. VoiceCraft [93]
introduces a decoder-only Transformer-based neural codec lan-
guage model that utilizes causal masking and delayed stacking
for token rearrangement. This approach allows for bidirec-
tional context-aware speech editing and zero-shot TTS. Voice-
Craft achieves precise control through text-guided modifica-
tions, such as insertion, deletion, and substitution, producing
edits that are nearly indistinguishable from unmodified record-
ings in terms of naturalness. InstructSpeech [271] employs a
multi-task LLM trained on triplet data (instruction, input, and
output speech) with task embeddings and hierarchical adapters.
It enables fine-grained control over both semantic attributes
(content editing) and acoustic properties (emotion, speed)
using natural language instructions. By leveraging multi-step
reasoning, InstructSpeech facilitates free-form editing and
efficiently adapts to new tasks.

C. Control Strategies

The control strategies in existing controllable TTS can be
broadly classified into four categories: style tagging using
discrete labels or continuous control signals, reference speech
prompt for customizing a new speaker’s voice with just a few
seconds of voice input, controlling speech style using natural
language descriptions, and instruction-guided speech attributes
control. We illustrate taxonomies of controllable TTS from the
perspective of control strategies in Fig. 4.

Style Tagging. This paradigm enables controllable speech
synthesis by adjusting key attributes such as pitch, energy,
speech rate, and emotion. These attributes can be controlled
using either categorical labels or continuous values. In this
context, “tagging” refers to the process of assigning a control
signal to a specific speech attribute. Some approaches utilize
discrete labels to control synthesized speech. For instance,
StyleTagging-TTS [182] employs short phrases or words to
represent utterance styles. It learns the relationship between
linguistic embeddings and style embeddings using a pre-
trained language model. Emo-DPO [31] enables precise emo-
tion control (e.g., “angry,” “happy”) via Direct Preference
Optimization (DPO) [276] with LLM. By training on paired
emotion-text data, it leverages contrastive learning to distin-
guish subtle prosodic differences between emotions. Users can
specify an emotion label to shape the expressive quality of
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Control
Strategies
(§ IV-C)

Style Tagging StyleTagging-TTS [182], Emo-DPO [31], Spark-TTS [267], DiffStyleTTS [221],
DrawSpeech [222], Cauliflow [186], DurIAN-E [195], DiTTo-TTS [205]

Speech Reference
Prompt

MetaStyleSpeech [184], StyleTTS [88], GenerSpeech [90], SC VALL-E [242],
ArtSpeech [210], CCSP [211], DEX-TTS [209], StyleTTS-ZS [214], NaturalSpeech 3 [87],

MegaTTS 2 [193], ControlSpeech [106], VoiceCraft [93], Vevo [266], Spark-TTS [267]

Natural Language
Descriptions

PromptTTS [101], InstructTTS [105], PromptStyle [190], Salle [243], Nan-
syTTS [215], PromptTTS++ [104], PromptSpeaker [272], PromptTTS 2 [102],

ControlSpeech [106], Audiobox [201], Takin [257], VoiceLDM [194], AST-
LDM [203], FleSpeech [264], MS2KU-VTTS [217], Parler-TTS [273], ProEmo [223]

Instruction-
Guided Control

VoxInstruct [103], AudioGPT [274], SpeechGPT [34], FunAudi-
oLLM [275], CosyVoice [17], InstructSpeech [271], Step-Audio [265]

Fig. 4. A taxonomy of controllable TTS from the perspective of control strategies.

the generated speech. Spark-TTS [267] offers both coarse-
grained control (e.g., gender, speaking style) and fine-grained
adjustments (e.g., precise pitch values, speaking rate). Users
can modify specially designed tokens through prompts to
achieve customized speech synthesis with optional reference
speech as input.

Other methods enable control by adjusting continuous input
signals. DiffStyleTTS [221] models prosody hierarchically, in-
corporating coarse-grained implicit style conditions (extracted
via GST [19]) and fine-grained explicit features. Users can
adjust guiding scale factors to control pitch, energy, duration,
and prosodic styles. DrawSpeech [222] provides an intuitive
way to manipulate pitch and energy. Users can sketch rough
prosody contours (e.g., rising or falling patterns), which the
system refines into detailed contours through a sketch-to-
contour predictor. A diffusion model then generates expressive
speech that aligns with the user’s sketched prosody, offering
precise control over vocal emphasis and intonation.

In addition, some approaches regulate speech attributes
by modifying latent features rather than direct input sig-
nals. Cauliflow [186] controls speech rate and pausing by
conditioning its flow-based duration model on user-defined
parameters (rs for speed, rp for pause frequency) that adjust
deviations from dataset averages during synthesis. DurIAN-
E [195] allows users to manipulate expressive styles. It em-
ploys variance predictors for prosodic attributes and incorpo-
rates Style-Adaptive Instance Normalization (SAIN) layers,
which dynamically adjust mel-spectrogram statistics based
on predefined style embeddings. DiTTo-TTS [205], a dif-
fusion transformer-based TTS model, removes dependencies
on domain-specific features such as phonemes and durations
while maintaining high performance. It controls speech rate
by modifying the latent length predicted by a length predictor.

These methods show great potential in controlling speech
attributes by adjusting input signals or latent variables. How-
ever, these methods are limited in expressive diversity, as they
can only model a small set of pre-defined attributes.

Reference Speech Prompt. This paradigm aims to cus-
tomize a new speaker’s voice with just a few seconds of voice
prompt. The architecture can be abstracted into two main
components: a speaker encoder that processes the reference
speech and outputs a speaker embedding, and a conditional

TTS decoder that takes both text and speaker embedding as
input to generate speech that matches the style of the reference
prompt. MetaStyleSpeech [184] and StyleTTS [88] use adap-
tive normalization as a style conditioning method, enabling
robust zero-shot performance. GenerSpeech [90] introduces a
multilevel style adapter to improve zero-shot style transfer for
out-of-domain custom voices. SC VALL-E [242] facilitates
control over synthesized speech’s emotions, speaking styles,
and various acoustic features by incorporating style tokens and
scale factors. ArtSpeech [210] revisits the sound production
system by integrating articulatory representations into the
TTS framework, improving the physical interpretability of
articulation movements.

To enhance the learning of contextual information and
address the challenge of limited voice data from the target
speaker, CCSP [211] proposes a contrastive context-speech
pretraining (CCSP) framework that learns cross-modal repre-
sentations, combining both contextual text and speech expres-
sions. DEX-TTS [209] separates styles into time-invariant and
time-variant components, enabling the extraction of diverse
styles from expressive reference speech. StyleTTS-ZS [214]
leverages distilled time-varying style diffusion to capture di-
verse speaker identities and prosodies.

Some works also decouple timbre and style information
from the reference speech, allowing more flexible control over
the speaking style [87], [106], [193]. MegaTTS 2 [193] intro-
duces an acoustic autoencoder that separately encodes prosody
and timbre into the latent space, enabling the transfer of vari-
ous speaking styles to the desired timbre. ControlSpeech [106]
uses bidirectional attention and mask-based parallel decoding
to capture codec representations in a discrete decoupling codec
space, allowing independent control of timbre, style, and
content in a zero-shot manner.

Natural Language Descriptions. Recent studies explore
controlling speech style using natural language descriptions
that include attributes such as pitch, gender, and emotion,
making the process more user-friendly and interpretable. In
this paradigm, several speech datasets with natural language
descriptions [101], [106], [243] and associated prompt gen-
eration pipelines [102], [243], [273] have been proposed.
Detailed information about these datasets will be discussed
in Section V. PromptTTS [101] uses manually annotated text



14

prompts to describe five speech attributes, including gender,
pitch, speaking speed, volume, and emotion. InstructTTS [105]
introduces a three-stage training procedure to capture semantic
information from natural language style prompts and adds
further annotation to the NLSpeech dataset’s speech styles.
PromptStyle [190] constructs a shared space for stylistic and
semantic representations through a two-stage training process.
TextrolSpeech [243] proposes an efficient prompt program-
ming methodology and a multi-stage discrete style token-
guided control framework, demonstrating strong in-context
capabilities. NansyTTS [215] combines a TTS trained on the
target language with a description control model trained on
another language, which shares the same timbre and style
representations to enable cross-lingual controllability.

Considering that not all details about voice variability
can be described in the text prompt, PromptTTS++ [104]
and PromptSpeaker [272] try to construct text prompts with
more details. PromptTTS 2 [102] designs a variation network
to capture voice variability not conveyed by text prompts.
ControlSpeech [106] proposes the Style Mixture Semantic
Density (SMSD) module, incorporating a noise perturbation
mechanism to tackle the many-to-many problem in style
control and enhance style diversity.

Other works also focus on improving controllability in
additional aspects, such as the surrounding environment. Au-
diobox [201] introduces both description-based and example-
based prompting, integrating speech and sound generation
paradigms to independently control transcript, vocal, and other
audio styles during speech generation. VoiceLDM [194] and
AST-LDM [203] extend AudioLDM [224] to incorporate
environmental context in TTS by adding a content prompt
as a conditional input. Building on VoiceLDM, MS2KU-
VTTS [217] further expands the dimensions of environmental
perception, enhancing the generation of immersive speech.

Instruction-Guided Control. The description-based TTS
methods discussed above require splitting inputs into content
and description prompts, which limits fine-grained control over
speech and does not align with other AIGC models. VoxIn-
struct [103] proposes a new paradigm that extends traditional
text-to-speech tasks into a general human instruction-to-speech
task. Here, human instructions are freely written in natural lan-
guage, encompassing both the spoken content and descriptive
information about the speech. To enable automatic extraction
of the synthesized speech content from raw text instructions,
VoxInstruct uses speech semantic tokens as an intermediate
representation, bridging the gap in current research by al-
lowing the simultaneous use of both text description prompts
and speech prompts for speech generation. CosyVoice [17]
introduces supervised semantic tokens derived from ASR
models via vector quantization, enabling precise text-speech
alignment. It employs an LLM for token generation and flow
matching for synthesis. Controllability is enhanced through
instruction fine-tuning, allowing adjustments in speaker iden-
tity, emotion, speaking rate, pitch, and paralinguistic elements
(e.g., laughter, breath sounds) via textual instruction.

Some speech LLMs can also synthesize speech content,
but offer less controllability. These speech LLMs are agents
that take user instructions and call expert TTS models to

synthesize speech content. AudioGPT [274] is a multimodal
LLM designed to process and generate audio data. It extends
the capabilities of general-purpose LLMs by incorporating
audio/speech understanding, synthesis (FastSpeech2 [76]), and
style conversion [90] modules. SpeechGPT [34] integrates
speech and text via discrete representations. It employs a three-
stage training strategy for cross-modal alignment. For speech
synthesis control, it uses HiFi-GAN with speaker embed-
dings and chain-of-modality instructions, enabling instruction-
guided speech generation, e.g., one can input “Please read
the sentence: Today is a beautiful day.” FunAudioLLM [275]
is an LLM enhancing voice interaction between humans and
LLMs via SenseVoice [275] (multilingual speech recogni-
tion) and CosyVoice [17] (controllable speech synthesis).
StepAudio [265] introduces a unified 130B speech-text model
integrating understanding/generation, with a generative data
engine enabling affordable voice cloning and a controllable
TTS system (Step-Audio-TTS-3B [265]). Its speech synthesis
achieves dynamic control through instruction-driven adjust-
ments of dialects, emotions (anger/joy/sadness), singing styles,
RAP vocals, and speaking rates.

V. DATASETS AND EVALUATION METRICS

A. Datasets

Fully controllable text-to-speech (TTS) systems require
large-scale datasets that exhibit extensive diversity and include
fine-grained annotations. Such datasets provide essential infor-
mation that enables TTS models to generate highly expressive
speech with precise control over various speech attributes.

In this subsection, we classify speech datasets into three
categories based on the type of annotations they provide: (1)
tag-based datasets, which include structured attribute labels
such as age and gender; (2) description-based datasets, which
contain detailed textual descriptions of speech characteristics;
and (3) dialogue datasets, which capture natural conversational
speech. Below, we provide an overview of these datasets and
discuss their importance in advancing TTS research.

Tag-based Datasets. Tag-based datasets consist of speech
recordings annotated with predefined attribute tags that charac-
terize various aspects of the speech signal [277]–[280], [282],
[284]–[288], [290]. These attributes include pitch, energy,
speed, age, gender, emotion, emphasis, accent, and topic,
among others. Such datasets serve as a critical resource for
developing TTS models with enhanced expressiveness and
fine-grained control over speech generation. By incorporating
attribute labels, models can be trained to adjust specific
characteristics dynamically, enabling more personalized and
context-aware speech synthesis.

Description-based Datasets. Description-based datasets go
beyond structured labels by pairing speech samples with
detailed textual descriptions that characterize various speech
attributes, such as intonation, prosody, speaking style, and
emotional nuances [101], [106], [243], [273], [291]. Unlike
tag-based datasets, which provide predefined categorical la-
bels, description-based datasets enable models to interpret
nuanced, free-form textual prompts and generate speech that
aligns with complex, context-dependent specifications. This
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TABLE VI
A SUMMARY OF PUBLICLY AVAILABLE SPEECH DATASETS FOR CONTROLLABLE TTS.

Dataset Hours
(at least)

#Speakers
(at least)

Labels
Lang Release

TimePit. Ene. Spe. Age Gen. Emo. Emp. Acc. Top. Des. Dia.

IEMOCAP [277] 12 10 ✓ ✓ ✓ ✓ ✓ en 2008
RECOLA [278] 3.8 46 ✓ fr 2013
RAVDESS [279] / 24 ✓ ✓ en 2018

CMU-MOSEI [280] 65 1,000 ✓ en 2018
Taskmaster-1 [281] / / ✓ en 2019
AISHELL-3 [282] 85 218 ✓ ✓ ✓ zh 2020

Common Voice [283] 2,500 50,000 ✓ ✓ ✓ multi 2020
ESD [284] 29 10 ✓ en,zh 2021

GigaSpeech [285] 10,000 / ✓ en 2021
WenetSpeech [286] 10,000 / ✓ zh 2021
PromptSpeech [101] / / ✓ ✓ ✓ ✓ ✓ en 2022

MagicData-RAMC [287] 180 663 ✓ ✓ zh 2022
DailyTalk [288] 20 2 ✓ ✓ ✓ en 2023

TextrolSpeech [243] 330 1,324 ✓ ✓ ✓ ✓ ✓ ✓ en 2023
CLESC [289] <1 / ✓ ✓ ✓ ✓ en 2024

VccmDataset [106] 330 1,324 ✓ ✓ ✓ ✓ ✓ ✓ en 2024
MSceneSpeech [290] 13 13 ✓ zh 2024

Parler-TTS [273] 50,000 / ✓ ✓ ✓ ✓ ✓ ✓ en 2024
SpeechCraft [291] 2,391 3,200 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ en,zh 2024

Abbreviations: Pit(ch), Ene(rgy)=volume, Spe(ed), Gen(der), Emo(tion), Emp(hasis), Acc(ent), Top(ic), Des(cription), Dia(logue).

category of datasets plays a crucial role in training TTS
systems that can respond to natural language descriptions,
making them highly suitable for applications requiring fine-
grained expressiveness, such as storytelling, audiobooks, and
personalized voice assistants.

Dialogue Datasets. Dialogue datasets [281], [287], [288]
capture multi-turn conversational speech between two or more
speakers, focusing on the natural flow of human interaction,
including turn-taking, contextual dependencies, and prosodic
variations. These datasets are particularly valuable for training
conversational TTS models that can generate dynamic and
contextually appropriate speech for chatbots and interactive
applications. By incorporating dialogue-specific characteristics
such as speaker intent, pauses, and conversational nuances,
models trained on these datasets can produce more natural
and engaging interactions for real-world scenarios.

By leveraging these different categories of speech datasets,
researchers can develop more advanced and flexible TTS mod-
els capable of generating speech that is not only intelligible
but also expressive, context-sensitive, and highly controllable.
We summarize publicly available datasets in Table VI.

B. Evaluation

The performance of controllable TTS often requires objec-
tive and subjective evaluation. We introduce common evalua-
tion metrics in this subsection.

Objective Evaluation Metrics. Objective metrics offer
automated and reproducible evaluations. Mel Cepstral Dis-
tortion (MCD) [292] measures the spectral distance between
synthesized and reference speech, reflecting how closely the
generated audio matches the target in terms of acoustic
features. A lower MCD value indicates a higher similarity
between synthesized and reference speech, meaning better
speech synthesis quality. Typically, an MCD value below 4

TABLE VII
COMMON OBJECTIVE AND SUBJECTIVE EVALUATION METRICS.

Metric Type Eval Target GT Required

MCD [292]↓ Objective Acoustic similarity ✓
FDSD [293]↓ Objective Acoustic similarity ✓
WER [294]↓ Objective Intelligibility ✓

Cosine [295], [296]↓ Objective Speaker similarity ✓
PESQ [297]↑ Objective Perceptual quality ✓
SNR [298]↑ Objective Perceptual quality ✓

MOS [299]↑ Subjective Preference
CMOS [300]↑ Subjective Preference

AB Test Subjective Preference
ABX Test Subjective Perceptual similarity ✓

GT: Ground truth, ↓: Lower is better, ↑: Higher is better.

suggests good quality, while values above 6 may indicate
significant distortion. The MCD is computed as follows:

MCD =
10

ln 10
·

√√√√2

D∑
d=1

(c
(syn)
d − c

(ref)
d )2, (3)

where c
(syn)
d represents the d-th Mel Cepstral Coefficient

(MCC) of the synthesized speech, c(ref)d represents the d-th
MCC of the reference speech, D is the number of MCC, and
10

ln 10 ≈ 4.342 is a constant factor that converts the logarithm
to a decibel scale.

Fréchet DeepSpeech Distance (FDSD) [293] is another
metric designed to evaluate the quality and naturalness of
synthesized speech. It is inspired by the Fréchet Inception
Distance (FID) [301] used in image generation but adapted
to speech by leveraging a deep speech recognition model.
FDSD measures the statistical distance between the distri-
butions of real (reference) and synthesized speech in the
feature space of a pretrained speech recognition model, such
as Deep Speech [302]. By comparing the mean and covariance
of the extracted feature representations, FDSD provides a
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perceptually relevant assessment of speech synthesis quality.
A lower FDSD means the synthesized speech is more similar
to real speech. FDSD can be computed as:

FDSD = ||µs − µr||2 + Tr(Σs +Σr − 2(ΣsΣr)
1/2), (4)

where µs and Σs are the mean and covariance of the embed-
dings from the synthesized speech, µr and Σr are the mean
and covariance of the embeddings from the real (reference)
speech, ||µs−µr||2 represents the squared Euclidean distance
between the means, Tr(·) denotes the trace of a matrix, and
(ΣsΣr)

1/2 is the geometric mean of the covariance matrices.
For intelligibility, the Word Error Rate (WER) [294] is used.

It measures the difference between the recognized transcript
and the reference transcript by computing the number of errors
made in the transcription process. WER is computed as:

WER =
S +D + I

N
, (5)

where S is the number of substitutions (wrong word in place
of the correct word), D is the number of deletions (missed
words), I is the number of insertions (extra words added), and
N is the total number of words in the reference transcript.

Cosine similarity (on speaker embeddings) measures simi-
larity between speaker embeddings of synthesized and refer-
ence speech. It can be used to evaluate zero-shot TTS (voice
cloning) methods, where higher values indicate better speaker
similarity. Given two speaker embeddings, e1 and e2, their
cosine similarity is defined as:

CosSim(e1, e2) =
e1 · e2

∥e1∥∥e2∥
, (6)

where speaker embeddings can be extracted from a pre-trained
speaker embedding model (e.g., ECAPA-TDNN [295] and x-
vectors [296]).

Perceptual Evaluation of Speech Quality (PESQ) [297] is
another objective metric designed to evaluate speech quality by
comparing degraded audio with a clean reference. It is widely
used in telecommunications and speech synthesis. PESQ mod-
els human auditory perception, producing a score in the range
[−0.5,−4.5] that reflects intelligibility and distortion under
various conditions, including noise or compression. PESQ
involves complex perceptual modeling, its core components
can be summarized as:

PESQ = a0 + a1 ·Dframe + a2 ·Dtime, (7)

where Dframe is the frame-by-frame perceptual distortion,
Dtime is the time-domain distortion, and a0, a1, a2 are re-
gression coefficients. One can refer to [297] for details.

Signal-to-Noise Ratio (SNR) measures the ratio of signal
power to noise power. A higher SNR indicates a cleaner
signal with less noise, while a lower SNR suggests that noise
is dominating the signal. However, in TTS, noise can come
from different sources, such as artifacts from vocoders, neural
network distortions, or background noise in dataset recordings.
A direct computation of SNR in TTS requires a reference clean
speech signal (x[n]), a synthesized (or noisy) speech signal
(y[n]), and extracting the noise component (e[n] = y[n]−x[n])

from the synthesized signal. The SNR for TTS systems can
be computed as:

SNR = 10 log10

(
Psignal

Pnoise

)
, (8)

where Psignal =
1
N

∑N
n=1 x[n]

2 and Pnoise =
1
N

∑N
n=1 e[n]

2.
Subjective Evaluation Metrics. The Mean Opinion Score

(MOS) [299] is the most commonly used subjective metric.
In MOS evaluations, listeners rate various aspects, such as
naturalness, expressiveness, quality, intelligibility, et al., of
synthesized speech on a scale from 1 to 5, where higher
scores indicate better quality. MOS captures human perception
effectively but is expensive for large-scale evaluations.

Comparison Mean Opinion Score (CMOS) [300] further
evaluates relative quality differences between two TTS audio
samples. Participants listen to paired samples and rate their
preference on a scale (e.g., -3 to +3, where negative values
favor the first sample). CMOS is used to measure subtle
improvements in TTS systems, complementing absolute MOS
ratings. MOS and CMOS scores are computed as the average
scores across all listeners:

MOS/CMOS =
1

N

N∑
i=1

si, (9)

where si is the score given by the i-th listener, and N is the
number of listeners.

AB and ABX tests are also popular in evaluating TTS
methods. An AB test involves presenting two versions of a
synthesized speech (from different TTS models) to human
listeners and asking them to choose which they prefer. The
goal is to assess which model produces better-sounding speech
based on certain criteria, such as naturalness, intelligibility,
or clarity. In an ABX test, listeners compare two synthesized
speech samples to a reference speech sample and determine
which one is closer in terms of timbre, prosody, emotion,
and other relevant features. ABX tests are widely used in
evaluating zero-shot TTS methods. The AB/ABX test score
for a model m is:

ScoreAB/ScoreABX =
Nm

N
, (10)

where Nm represents the number of listeners who prefer the
speech synthesized by model m, and N denotes the total
number of listeners.

Table VII summarizes widely used metrics for TTS.

VI. CHALLENGES AND FUTURE DIRECTIONS

In this section, we elaborate on current challenges for fully
controllable TTS and discuss promising future directions.

A. Challenges

Controllable TTS aims to synthesize speech while allowing
precise control over speech characteristics such as pitch, dura-
tion, energy, prosody, speaking style, and emotion. While sig-
nificant progress has been made, achieving truly controllable
TTS remains a complex task due to the multifaceted nature
of human speech and the technical challenges in modeling
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and synthesizing it. In this section, we delve into the primary
challenges and analyze their underlying reasons.

Controllability. A critical challenge in controllable TTS is
determining what aspects of speech should be controlled and
how to control speech characteristics at a specific granularity.
Different applications require varying levels of control granu-
larity. For instance, audiobook narration may need sentence-
level control of emotion, while conversational AI like Chat-
GPT may require word or phoneme-level control over prosody.
Moreover, the emotion, prosody, and other characteristics
of human speech are often intricately intertwined and can
manifest across varying levels of granularity. Additionally,
achieving fine-grained control requires high-resolution anno-
tations and sophisticated models capable of handling subtle
variations without compromising synthesis quality.

Although some LLM-based TTS methods such as VoxIn-
struct [103] can control various aspects of speech through
attribute descriptions, determining the appropriate level of
granularity for control and devising methods to achieve precise
control at a specific granularity or to enable multiscale and
fine-grained control remains a significant challenge.

Feature Disentanglement and Representation. Achieving
fully controllable TTS needs good feature disentanglement.
Accurately extracting meaningful and disentangled speech
features like pitch contours, energy patterns, emotion variation,
and prosodic elements from training data is difficult. The
reason is that speech features are interdependent and context-
sensitive, making it hard to isolate specific attributes for
control. For example, altering pitch often affects prosody,
emotion, and naturalness to some extent. To tackle this, several
methods [303]–[305] utilize pre-trained models for different
speech recognition tasks (e.g., pitch, energy, and duration
prediction, gender classification, age estimation, and speaker
verification) to supervise feature extraction. For example,
NaturalSpeech3 [14] factorizes speech into separate feature
subspaces to capture different speech attributes.

However, these methods are limited to coarse or high-
level feature disentanglement, leaving a significant gap in fully
disentangled control. On the other hand, selecting suitable rep-
resentations (e.g., continuous variables like mel-spectrograms
or latent embeddings like tokens) for controllable attributes is
non-trivial because representations must be both interpretable
for humans and expressive enough for TTS models. For
example, transformer-based models are good at processing
discrete tokens, while GAN and diffusion-based models excel
in modeling continuous representations.

Scarcity of Datasets. High-quality, diverse, and appropri-
ately annotated datasets are essential for training controllable
TTS systems. However, such datasets are scarce and costly
to construct. In addition, training data must encompass a
wide range of styles, emotions, accents, and prosodic vari-
ations to enable versatile control because limited diversity in
datasets can restrict the model’s ability to generalize across
unseen styles or emotions. Although there are some large-
scale datasets, such as LibriTTS [306], Gigaspeech [285],
and TextrolSpeech [243], their diversity is still not enough
for fully controllable TTS due to the lack of corpora for
diverse content and scenarios such as comedies, thrillers,

and cartoons. Constructing these large-scale datasets with rich
diversity is expensive and time-consuming.

Another obstacle is that creating datasets with fine-grained,
attribute-specific annotations is labor-intensive and costly. In
addition, manual annotation of speech attributes requires ex-
pert knowledge and is prone to inconsistencies and errors,
particularly for subjective attributes like emotion. Currently,
most datasets provide only coarse labels, such as gender,
age, or a limited range of emotions. While some datasets,
such as SpeechCraft [291] and Parler-TTS [273], include
natural language descriptions of speech attributes, no existing
dataset offers fine-grained variations and annotations within
the speech of the same speakers. Publicly available datasets
for controllable TTS are summarized in Table VI.

Generalization Ability. The ability of a TTS system to
generalize effectively is crucial for producing natural, high-
quality speech across a wide range of conditions, such as
unseen speakers, languages, and topics. However, achieving
robust generalization remains a significant challenge for mod-
ern TTS methods due to various factors. Zero-shot control-
lable TTS [78], [92] aims to synthesize speech for unseen
speakers with various speech customizations, such as emotion,
using minimal reference audio, which can offer flexibility for
personalized voice generation. However, it faces significant
challenges, including capturing unique speaker characteristics
from limited data, accurately reproducing prosody and style,
and disentangling speaker identity from other attributes such
as emotion and background noise.

Multilingual & low-resource generalization [253], [307] in
TTS refers to the ability to synthesize natural and intelligible
speech across multiple languages, including those not seen
during training. This capability is essential for applications
like cross-lingual communication, multilingual virtual assis-
tants, and speech synthesis for low-resource languages [308].
Multilingual generalization still faces many challenges, such as
linguistic diversity, mismatch, and the scarcity of data. Cross-
lingual speaker generalization is another hurdle, as preserving
speaker identity across languages can lead to artifacts.

Domain adaptation [309] in TTS refers to tailoring a pre-
trained TTS model to generate speech for a specific domain
or context, such as medical terminology and debate. One chal-
lenge is that many specialized domains lack sufficient high-
quality annotated data for fine-tuning. In addition, adapting
prosody, intonation, and speaking style to match domain-
specific requirements such as comic dialogue is complex.
Failing to capture domain-specific nuances can make speech
sound unnatural or inconsistent with the target context.

Efficiency. Efficiency in controllable TTS systems is a
critical requirement for practical applications, as these models
aim to offer fine-grained control over various speech attributes
such as prosody, emotion, style, and speaker identity. However,
achieving such control often comes at the cost of increased
computational complexity, larger model sizes, and longer
inference times, creating significant challenges.

High latency is a major issue, as existing controllable
TTS models [78], [101]–[103] often necessitate autoregressive
processes to synthesize speech. The inference time for these
models can range from several seconds to tens of seconds for a
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Fig. 5. A summary of current challenges for fully controllable TTS.
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short audio clip (e.g., 5 to 10 seconds), and they do not support
streaming synthesis. This can be particularly problematic for
real-time applications like live broadcasting or interactive
systems. Additionally, balancing granularity and efficiency
presents a challenge. Finer controls require higher-resolution
data and more precise modeling, which increases resource
demands and results in inefficient training and inference.

Another major obstacle lies in the trade-off between model
complexity and performance. SOTA controllable TTS systems
often rely on LLMs with billions of parameters, which provide
superior naturalness and expressiveness but demand signifi-
cant computational resources. Simplifying these architectures
can lead to quality degradation, including artifacts, unnatural
prosody, or limited expressiveness. Therefore, designing light-
weight controllable TTS models is significantly tricky.

B. Future Directions

In this survey, we conduct a comprehensive investigation
and analysis of existing TTS methods, particularly on con-
trollable TTS technologies. While these methods show great
potential in applications, numerous limitations and challenges
still need to be addressed. Hence, we are still in the early stage
of controllable speech synthesis. Based on our observations,
we outline several promising future directions as follows:

Instruction-Guided Fine-grained Speech Synthesis. Us-
ing natural language description to synthesize human speech
with fine-grained control over various speech attributes is
currently underexplored. Most of the existing works can

only control a fixed number of attributes of the synthesized
speech. Although a few works show great control of emotion,
timbres, pitch, gender, and styles, e.g., VoxInstruct [103]
and CosyVoice [17], they can frequently synthesize unwanted
speech clips inconsistent with user instructions. Users often
need to synthesize multiple times to get satisfactory speech.

Instruction-Guided Fine-grained Speech Editing. Speech
or audio editing has been studied for a long time. How-
ever, existing methods usually train conditional models and
adjust a fixed number of conditional inputs to modify the
attributes of synthesized speech, thus lacking fine-grained
manipulations [94], [95]. Therefore, how to learn disentangled
speech representations for speech attributes while supporting
instruction-guided editing is worthy of investigation.

Expressive Multi-modal Speech Synthesis. Synthesizing
speech from multi-modal data such as texts, images, and
videos is an appealing research topic due to its various applica-
tions in the industry, such as storytelling, filming, and gaming.
Although there are several related works on this task [6], [24],
[310], [311], they are still limited in extracting the required
information from multimodal data. Particularly, synthesizing
engaging speech and expressive voiceover for complex visual
content sees great opportunities in the future.

Natural and Emotional Conversational TTS. Conversa-
tional TTS has been studied for several decades, but remained
as cascaded systems for a long time, limiting its ability to
generate natural and expressive speech. These systems are not
context-aware, making the synthesized speech sound robotic.
With the advent of LLMs, existing TTS technologies are
directly introduced to synthesize speech using discrete speech
tokens [33], [34]. However, context-aware conversational TTS
with rich emotion and naturalness has not been well studied.

Zero-shot Long Speech Synthesis with Emotion Consis-
tency. Zero-shot TTS is capable of voice cloning and speech
style imitation without fine-tuning, making it practical in real
scenarios [17], [78], [229]. However, synthesizing long speech
with rich emotion and style variation in a zero-shot setting
remains challenging due to the limited information in short
reference audio clips. Addressing this issue will make a big
step towards personalized zero-shot TTS.

Instruction-Guided Efficient TTS. Synthesizing speech
with user instructions usually involves training language
model-based codecs and bridge nets between different modal-
ities, leading to much more computation overhead than pre-
vious TTS methods. The inference time is also relatively
long, e.g., existing instruction-guided methods usually take
tens of seconds to synthesize a short speech of less than
10 seconds [17], [104]. Therefore, efficient text and speech
modeling is critical for instruction-guided TTS systems.

VII. IMPACTS OF CONTROLLABLE TTS

A. Applications

Controllable TTS enables fine-grained manipulation of
speech attributes like pitch, emotion, and style, making it
valuable across industries. For example, in virtual assistants
and customer support, controllable TTS ensures context-aware
responses, such as a calm tone for technical help or an
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enthusiastic pitch for promotions. In entertainment, it enhances
voiceovers, audiobooks, and gaming characters by adjusting
tone and delivery to match emotions and personalities. Educa-
tion benefits from adaptive TTS, like slow, clear articulation
for language learning or engaging narration for children.

For assistive technologies, controllable TTS empowers indi-
viduals with speech impairments to express emotions naturally.
In content localization, it adapts speech to cultural preferences,
ensuring a seamless experience for global audiences. Addi-
tionally, in human-computer interaction, it enables adaptive
dialogue systems that adjust speech based on user mood
or environment. By offering flexibility and expressiveness,
controllable TTS enhances accessibility, personalization, and
engagement across diverse applications.

B. Security Issues
One major security issue brought by controllable TTS is

deepfakes. A deepfake is a type of synthetic media in which
a person in an existing image, video, or audio recording is re-
placed with someone else’s likeness or voice. This technology
uses deep learning, particularly GANs [312], to create highly
realistic but fabricated content. While deepfakes are most
commonly associated with video manipulation, such as face
swapping [313], they can also be applied to audio, enabling
the creation of synthetic speech that mimics a specific person’s
voice, which is well known as voice cloning. Voice cloning,
especially few-shot [314] and zero-shot TTS [78], [85], poses
a significant threat to systems that rely on voice authentication,
such as banking, customer service, and other identity verifica-
tion processes, allowing attackers to impersonate individuals to
gain unauthorized access to sensitive information or accounts.

Another issue is adversarial attacks [315]. Attackers can
manipulate pitch, prosody, and phoneme duration to fool
automatic speech recognition and speaker verification. It also
poses risks in data poisoning [316], where adversarially
modified samples degrade model performance. On the other
hand, controllable TTS can strengthen adversarial defenses by
generating diverse speech variations for adversarial training
and counter-adversarial augmentation [317].

To address these concerns, it’s essential to establish ro-
bust security protocols, consent-based regulations, and public
awareness around voice cloning. Furthermore, advancements
in detecting voice clones are equally important to help distin-
guish genuine voices from synthesized ones, protecting both
individuals and organizations from potential misuse.

VIII. CONCLUSION

In this survey, we have first elaborated on the general
pipeline for controllable TTS, followed by a glimpse of
uncontrollable TTS methods from the perspective of local
and global speech modeling. Then, we have comprehensively
reviewed existing controllable methods from the perspectives
of model architectures and control strategies. Popular datasets
and commonly used evaluation metrics for controllable TTS
were also summarized in this paper. Besides, the current
challenges were deeply analyzed, and the promising future
directions were also pointed out. To the best of our knowledge,
this is the first comprehensive survey for controllable TTS.
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