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Abstract—LiDAR-based semantic segmentation plays a vital
role in autonomous driving by enabling detailed understating
of 3D environments. However, annotating LiDAR point clouds
is extremely costly and, requires assigning semantic labels to
millions of points with complex geometry structure. Active
Learning (AL) has emerged as a promising approach to reduce
labeling costs by querying only the most informative samples.
Yet, existing AL methods face critical challenges when applied
to large-scale 3D data: outdoor scenes contain an overwhelming
number of points and suffer from severe class imbalance, where
rare classes have far fewer points than dominant classes.

To address these issues, we propose SELECT, a voxel-
centric submodular approach tailored for active LiDAR semantic
segmentation. Our method targets both scalability problems and
class imbalance through three coordinated stages. First, we per-
form Voxel-Level Submodular Subset Selection, which efficiently
identifies representative voxels without pairwise comparisons,
ensuring scalability. Second, we estimate Voxel-Level Model
Uncertainty using Monte Carlo dropout, aggregating point-wise
uncertainties to identify informative voxels. Finally, we introduce
Submodular Maximization for Point-Level Class Balancing, which
selects a subset of points that enhances label diversity, explic-
itly mitigating class imbalance. Experiments on SemanticPOSS,
SemanticKITTI, and nuScenes benchmarks demonstrate that
SELECT achieves superior performance compared to prior active
learning approaches for 3D semantic segmentation.

Index Terms—LiDAR Semantic Segmentation, Active Learn-
ing, Submodular Optimization

I. INTRODUCTION

L IDAR-based semantic segmentation [85], [86] plays
a crucial role in real-world applications such as au-

tonomous driving, robotics, urban mapping, and augmented
reality [21]–[23], as it provides a detailed understanding of
the surrounding environment by providing a semantic label for
each point in a LiDAR scan. Compared to image-based seman-
tic segmentation, LiDAR-based scene understanding offers
unique advantages, including robustness to lighting variations
and precise 3D spatial information.

While LiDAR sensors can capture millions of points per
second, this high data density presents a major bottleneck:
the cost of obtaining point-level semantic annotations. In
contrast to 2D images—where annotators can assign labels via
bounding boxes or polygons [29], [65] with relative ease—3D
point cloud annotation is inherently more complex. Annotators
must interpret sparse and irregular point distributions from
multiple viewpoints, often without clear object boundaries
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Fig. 1: The proposed SELECT employs a unified submodular
approach that ensures the selection of points that are both infor-
mative and balanced in label distribution. Here, informativeness
refers to points that either belong to rare classes, where the
model exhibits low confidence, or are situated along object
boundaries, where semantic ambiguity is high. This stands in
contrast to state-of-the-art (SOTA) methods [84], which often
struggle to jointly capture these critical aspects for active
LiDAR semantic segmentation.

[15], [53]. For instance, annotating the SemanticKITTI dataset
required over 1,700 hours for just 43,000 scans [4]. This
makes exhaustive manual annotation not only labor-intensive
but also economically unsustainable, particularly for large-
scale autonomous driving datasets.

To address the high annotation cost, active learning (AL)
[2], [31] has become a widely adopted solution. By starting
with a small labeled set and iteratively selecting the most
informative samples for annotation, AL strategies aim to
maximize model performance within a fixed labeling budget.
The informativeness of a chosen sample can be assessed in
several ways, such as by calculating sampling uncertainty
using maximum Shannon entropy [58], [82] or by estimating
model changes. Other strategies focuses on selecting the
most representative samples to avoid redundancy, employing
methods like greedy coreset algorithms [60], [61], clustering-
based techniques [26], [27], [62], [74], and spatial structure
based algorithms [49], [97].

However, directly applying traditional active learning tech-
niques to LiDAR semantic segmentation faces three key
challenges: 1) Each scene contains hundreds of thousands
of points, making point-wise informativeness estimation com-
putationally expensive. 2) Accurately identifying informative
points is difficult, especially when the model’s predictions are
unreliable in sparse or ambiguous regions [84]. 3) Outdoor
LiDAR scenes are naturally imbalanced—frequent classes like
car may dominate, while rare classes like pedestrian or bicycle
are severely underrepresented [19], [28]. This imbalance leads
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to biased model training, where rare classes are prone to
misclassifications.

A recent voxel-centric active learning method, Annotator
[84], was introduced to address the scalability issue in LiDAR-
based semantic segmentation. Instead of selecting individual
points, Annotator partitions each LiDAR scan into voxels and
evaluates each voxel’s informativeness using a metric called
the Voxel Confusion Degree (VCD). This metric quantifies
the diversity of predicted labels within a voxel, under the
assumption that higher class confusion indicates greater infor-
mativeness. Voxels with the highest VCD scores are selected
for annotation. By operating at the voxel level, Annotator
is more computationally efficient than traditional point-based
method [88] or regional-based method [49], and better suited
to the sparse nature of outdoor LiDAR scenes.

However, while Annotator improves scalability and infor-
mativeness, it still suffers from two major limitations. First, it
lacks an effective mechanism to estimate model uncertainty,
which is crucial for selecting truly uncertain and informative
regions. Second, it does not account for class imbalance,
leading to over-selection of frequent classes and neglect of rare
but critical ones. These gaps reduce the method’s effectiveness
in complex outdoor environments where both uncertainty and
class diversity are central challenges.

In this paper, we introduce SELECT, a unified submodular
framework for voxel-centric active LiDAR semantic segmen-
tation (see Fig. 1). SELECT is specifically designed to address
the aforementioned limitations through three tightly integrated
stages: 1) Voxel-Level Submodular Subset Selection: To re-
duce computational cost, SELECT employs a submodular
function to efficiently select a subset of semantically informa-
tive voxels, without the need for costly pairwise comparisons.
This design ensures scalability to large-scale and sparsely
distributed LiDAR datasets. 2) Voxel-Level Model Uncertainty
Estimation: To enhance the selection of uncertain regions, SE-
LECT uses Monte Carlo dropout [66] to measure uncertainty
across point-wise label distributions within each voxel. This
approach enables more reliable identification of ambiguous
regions. 3) Submodular Maximization for Point-Level Class
Balancing: To address class imbalance, SELECT incorporates
a submodular diversity objective to prioritize the selection of
points that improve label distribution balance across rare and
frequent classes.

Together, these components form a robust and scalable
framework that jointly optimizes for informativeness, un-
certainty, and label diversity. Compared to the state-of-the-
art active learning methods for LiDAR semantic segmenta-
tion, SELECT achieves consistent performance gains across
multiple benchmarks: +8.17% mIoU on SemanticPOSS [20],
+5.06% on SemanticKITTI [4], and +5.05% on nuScenes [1].

Our main contributions are summarized as follows:
• We identify the core limitations of current active learning

approaches for LiDAR semantic segmentation—namely,
poor scalability, weak uncertainty modeling, and an in-
ability to address class imbalance.

• We propose SELECT, a scalable and uncertainty-aware
submodular approach that ensures selected samples are
both informative and balanced in class distribution.

• We conduct extensive experiments on three public out-
door LiDAR semantic segmentation benchmarks, demon-
strating that SELECT significantly outperforms state-of-
the-art methods in terms of segmentation accuracy under
limited annotation budgets.

II. RELATED WORK

Despite the rapid progress in fully supervised approaches in
recent years [5], [12], [14], [14], [32], [51], [52], label-efficient
3D semantic segmentation remains a relatively nascent field
[56]. Researchers’ efforts in this area generally fall into three
main categories: weakly supervised learning, unsupervised and
self-supervised learning, and active learning.
Weakly Supervised Learning. In contrast to fully supervised
learning, which requires exhaustive per-point annotations,
weakly supervised learning aims to leverage limited annota-
tions—such as sub-scene-level labels [34], [57], sparse point-
level annotations, or bounding-box-level annotations [48]—to
generate segmentation maps while significantly reducing anno-
tation costs [3], [48]. While these methods are able to reduce
the number of labeled points needed during training, some still
require substantial annotations to achieve results comparable
to fully supervised approaches. Additionally, the sub-scene-
level annotation process remains challenging [15] due to the
complex and unclear surface structures inherent in point cloud
scans [53].
Unsupervised and Self-supervised Learning. In 3D
point cloud semantic segmentation, unsupervised and self-
supervised learning methods aim to reduce reliance on exten-
sive manual annotations by automatically learning meaningful
representations from unlabeled data [59]. These approaches
can be broadly categorized based on their use of auxiliary
modalities: image- or text-based methods [9], [11] and point-
cloud-based methods [6]–[8], [24]. Although these methods
have advanced the field by reducing dependence on labeled
data, challenges remain. This cross-modal dependency of-
ten introduces additional issues, such as complex alignment
problems between the 2D and 3D domains and increased
computational complexity due to the fusion of multi-modal
features [10].
Active Learning. With an abundance of unlabeled outdoor
point cloud data, active learning has emerged as the de facto
strategy for reducing annotation costs [2], [31], [33], by
selecting samples for annotation by an oracle based on their
uncertainty or representativeness, while maintaining model
performance. There is a vast body of literature on active
learning, encompassing methods based on CoreSet selection
[60], [61], adversarial learning [30], and clustering techniques
[26], [27]. Data sampling strategies from the unlabeled pool
often rely on uncertainty measures [35]–[39], selecting sam-
ples based on the maximum Shannon entropy of the posterior
probability, decision tree heuristics [40], variance of the train-
ing error [55], or the largest gradient magnitudes [54].
Active Learning for 3D Semantic Segmentation. Active
learning has been extensively studied and applied to tasks
such as image classification [89]–[91], 2D/3D object detection
[50], [64], [72], [99], [100], and 2D semantic segmentation
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[101], [102]. Recently, with growing interest in applying active
learning to 3D semantic segmentation, uncertainty [98] and
diversity [92], [97] have emerged as common strategies for
point-cloud selection. In [98], the authors estimate inter-frame
inconsistency to capture the inherent uncertainty present in
LiDAR sequences. [88] divides the point cloud space into
multiple components and sample a few points from each com-
ponent, for labeling. Annotator [84] employs a computational
geometry approach and suggests selecting informative point
clouds from a voxel-centric perspective, turning out to be
highly effective in learning with a limited budget.
Submodular Functions. Submodular functions and their op-
timization have been found to be widely used in data subset
selection [73], [77], [78], [103], active learning [75], [76],
[105], continual learning [79], and video summarization [67],
[104]. The appealing properties of submodular functions aid in
modeling both diversity and relevance when selecting classes
or data subsets, while also preserving key features within each
set. Submodularity ensures that as elements are added to a
subset, the marginal gain diminishes, inherently encouraging
a diverse and balanced selection. This, in turn, facilitates the
maximization of overall relevance.

III. BACKGROUND

3D LiDAR Semantic Segmentation. LiDAR-based 3D se-
mantic segmentation [85], [86] assigns semantic labels to
individual points in a point cloud, delineating distinct ob-
jects and structures within the scene. We denote Pi ={
Vj = {(Pk, ck)}

Nj

k=1

}Ni

j=1
as the i-th LiDAR scan which is

also known as a point cloud in training dataset. Ni is the
number of voxels in a given point cloud Pi and Nj is the
number of points in the voxel Vj belonging to point cloud
Pi. Let Pk represent a single point in a particular point
cloud as Pk = (xk, yk, zk, rk), where xk, yk, zk are the
3D Cartesian coordinates of the point and rk denotes the
reflectance rate generated by the LiDAR sensors. ck is the
corresponding ground truth semantic label of the point Pk.
In 3D LiDAR semantic segmentation, a segmentation model
Sϕ, parameterized by ϕ, processes the raw point cloud data
Pi through a series of sparse convolutional blocks to extract
and refine features fk, for each point. The final classifier layer
then classifies each point’s corresponding features fk into the
semantic label ck, where ck belongs to the set {1, 2, 3 . . . , C},
with C representing the total number of semantic classes.

Voxel-centric Active Learning for LiDAR Semantic Seg-
mentation. Following [84], in the initial stage, for each point
cloud Pi, a small number of voxels are randomly selected
for labeling. The segmentation model Sϕ undergoes warm-up
training on the labeled voxels. Let the labeled voxels in the
point cloud Pi be denoted as Di

L, and the remaining unlabeled
voxels as Di

U . During active learning, for each query iteration
q ∈ {1, 2, . . . , Q}, the given active learning method selects
Nq unlabeled voxels Di

q ⊂ Di
U from each point cloud. The

points within these selected voxels are then sent to human

annotators for labeling. The newly labeled voxels are merged
with the existing labeled set:

Di
L = Di

L ∪Di
q. (1)

The active learning process continues until either the Q-th
query round is reached or the total number of labeled points
across all selected voxels exceeds the predefined annotation
budget Nbudget.

Using voxels as the selection unit not only improves selec-
tion efficiency but also reduces annotation difficulty. Instead
of requiring annotators to manually distinguish between over-
lapping objects with fuzzy edges or complex surfaces across
large portions of the full point cloud scene, they only need to
label localized regions corresponding to the selected voxels,
greatly simplifying the task.
Voxel-Level Selection vs. Point-Level Budget. While voxel-
centric active learning improves selection efficiency, the num-
ber of points per voxel can vary considerably due to the sparse
and irregular nature of LiDAR data. As a result, selecting the
same number of voxels with different methods may result in
drastically different labeling costs. To ensure fair comparison
and consistent annotation effort, we define the annotation
budget Nbudget based on the total number of labeled points,
not voxels.

Voxelization. Similar to [84], the voxelization process initiates
with a raw point cloud Pi as input. For k-th point’s coor-
dinates Gk in a given voxel, the voxelized coordinates G′

k

are determined by dividing the raw coordinates (xk, yk, zk)
by the voxel size λ and rounding down the results to the
nearest integers using G′

k = int
(⌊

(xk,yk,zk)
λ

⌋)
. Subsequently,

each point is hashed based on its voxelized coordinates to
filter out redundant points with closely situated coordinates.
To better capture a comprehensive view while minimizing
computational complexity and mitigating the effects of noise
and sparsity, we opt for a voxel size λ of 0.25 during the
selection phase and λ of 0.05 during training. The influence
of voxel size on our proposed method will be further explored
in the ablation study section.

Submodular Functions. A submodular function f is a scalar
function that is defined over a ground set of elements E,
forming a discrete space, that has decreasing marginal returns
i.e., the following property is satisfied ∀ S ⊆ T ⊆ E,

f(T ∪ {x})− f(T ) ≤ f(S ∪ {x})− f(S) (2)

∀ x ∈ E\T . If f(S) < f(T) for S⊆T, f is considered to be
strictly monotone. [71] provides detailed proof demonstrating
that Shannon entropy [82], a goto criterion of sample selection
in active learning, is submodular. To select representative data
subsets, f is maximized as maxA∈K f(S), where K is a
constrained set on E as K⊆2E. With submodular functions
naturally modeling notions of diversity and representativeness,
they are optimized efficiently by simple solutions involving
greedy algorithms [68].

IV. PROPOSED METHOD

To address the challenges of active 3D LiDAR semantic
segmentation, our proposed SELECT employs a three-stage
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Fig. 2: Left: The active learning pipeline for LiDAR semantic segmentation. Right: The proposed SELECT, which consists
of three key stages — efficiently selecting points that are both informative and well-balanced in label distribution for training
the LiDAR semantic segmentation model.

hierarchical framework that incrementally filters out uninfor-
mative voxels (Figure 2). In each active learning round, given
a point cloud, SELECT follows these three key stages:

• Stage 1: Voxel-Level Submodular Subset Selection
(VLSSS) selects a representative subset of voxels to
minimizing redundancy and ensure scalability;

• Stage 2: Voxel-Level Model Uncertainty Estimation
(VLMUE) identifies uncertain voxels based on voxel-
level model predictions, targeting regions where addi-
tional labels are likely to reduce model error;

• Stage 3: Submodular Maximization for Point-Level
Class Balancing (SMPCB) promotes label diversity by
selecting voxels that contribute to a balanced class repre-
sentation, addressing the class imbalance issue prevalent
in outdoor scenes.

Stage 1: Voxel-Level Submodular Subset Selection. De-
spite their sparsity, outdoor LiDAR point clouds contain a
massive number of points distributed across a large spatial
range, typically resulting in over 10,000 voxel grid cells per
scan. However, only a small subset of these voxels—such
as those along object boundaries or covering rare seman-
tic regions—contribute meaningfully to model improvement.
The vast majority are either uninformative (e.g., background,
ground) or redundant (e.g., repeated structure).

Traditional clustering-based selection techniques like K-
means or Gaussian Mixture Models (GMM) are computation-
ally infeasible in this context. They require either construct-
ing and storing pairwise distance matrices (quadratic in the
number of voxels) or iteratively optimizing probabilistic as-
signments via the EM algorithm, which becomes prohibitively

expensive for large-scale outdoor scenes. More details are
provided in the Ablation Study section.

To address this scalability bottleneck, we propose a feature-
based submodular subset selection strategy that efficiently
selects a set of voxels with high diversity and semantic rep-
resentativeness—without any pairwise computation. Submod-
ular functions exhibit a natural diminishing returns property,
enabling fast greedy selection while preserving coverage and
diversity of the selected voxels.

Specifically, for each unlabeled point cloud Pi, we extract a
point-level feature vector fk for each point using the backbone
network, just before the final classifier layer. We then compute
a voxel-level representation fVj by averaging the features of
all points within voxel Vj :

fVj
=

1

Nj

Nj∑
k=1

fk (3)

To measure the informativeness of each voxel, we define
a variance-based submodular score function σ(fVj

), which
captures the dissimilarity between the point-level features and
favors voxels with distinct semantic patterns:

σ(fVj ) =
1

D

D∑
d=1

(fVj ,d − µj)
2, µj =

1

D

D∑
d=1

fVj ,d (4)

We denote D as the feature dimension. The score σ(fVj
)

is then plugged into a concave gain function g(x) = log(1 +
x) to define our final sub-modular objective in the following
equation:
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(a) Distribution of point
labels within the voxels of

SemanticPOSS

(b) Distribution of point
labels within the voxels of

SemanticKITTI
Fig. 3: We summarize the statistics of commonly used datasets
for the LiDAR semantic segmentation task, including Seman-
ticPOSS [20] and SemanticKITTI [4]. We observe that most
points within the same voxel share the same semantic label.
Therefore, a reasonable assumption for the voxel-level label is
to assign it based on the majority predicted label among the
points contained within the voxel.

max
Di

S⊂Di
U ,|Di

S |=Λ1

∑
Vj∈Di

S

g(σ(fVj )) (5)

where Di
U denotes the remaining unlabeled voxels, Di

S

represents the voxels selected in stage 1, and Λ1 indicates their
total number. This formulation encourages selection of vox-
els that contribute non-redundant, semantically rich features.
The greedy selection procedure avoids computing similarity
matrices or clustering centroids and instead iteratively adds
the voxel with the highest marginal gain, which allows the
method to scale linearly with the number of candidate voxels.
Compared to scene-level or region-based methods that often
require auxiliary networks or per-point uncertainty evaluations,
our feature-based submodular selection offers a simple yet
scalable mechanism to select a subset of representative voxels.

Stage 2: Voxel-Level Model Uncertainty Estimation. After
reducing the voxel candidate pool to Λ1 informative candidates
as in the Stage 1, the next challenge is to prioritize those voxels
where the model remains most uncertain. This allows SELECT
to focus its annotation budget on samples where the model
either lacks confidence or struggles to disambiguate different
semantic classes, both of which are critical for improving
model performance.

One remaining challenge is that semantic segmentation
models operate at the point level, not at the voxel level.
Therefore, we need to first devise a method to aggregate point-
wise predictions into a voxel-level uncertainty score. To this
end, we leverage a key observation about voxelized LiDAR
data: In outdoor LiDAR scenes, points within the same voxel
often share the same semantic label (Fig. 3). This is due to
the sparsity of LiDAR data and the physical coherence of
structures (e.g., all points in a small voxel along a vehicle
surface typically belong to the “car” class).

Fig. 4: Label distribution of LiDAR data points is highly
imbalanced, as shown in the SemanticPOSS [20] dataset.

Given this, we hypothesize that the model’s uncertainty at
the voxel level can be accurately estimated by evaluating how
consistently it predicts the same label across the points inside
that voxel. If the predicted labels vary widely across points
in a voxel, or if the predicted probability for the dominant
class is low, it signals either: (1) The model is uncertain, or
(2) The voxel likely contains points from multiple semantic
classes, such as object boundaries or rare regions — both are
useful for model learning.

To estimate uncertainty, we use Monte Carlo dropout (MC-
dropout) during inference to generate multiple predictions per
point. For each point Pk, we collect the averaged logit Z̄k

and use it to determine the hypothetical or predicted label
c̄k = argmax(Z̄k). For a voxel Vj , we assign a hypothetical
voxel label c̄Vj

by taking the majority label of the hypothetical
point labels within the voxel:

c̄Vj
= argmax

c∈C

 Nj∑
k=1

1(c̄k = c)

 (6)

We compute the voxel-level uncertainty score SVj
as the

average logit of the majority class across all points within
the voxel:

SVj
=

1

Nj

Nj∑
k=1

Z̄k[c̄Vj
] (7)

A lower value of SVj
implies that the model has low

confidence in its majority-class prediction, indicating either
intra-voxel label ambiguity or high epistemic uncertainty. We
therefore rank all Λ1 voxels using SVj

and select the Λ2 voxels
with the lowest scores for further consideration in the third
stage.

This uncertainty-aware selection ensures that SELECT does
not waste annotations on regions where the model is already
confident. Instead, it targets hard regions (ambiguous struc-
tures, underrepresented classes, or object boundaries) where
supervision is likely to be more impactful.
Stage 3: Submodular Maximization for Point-Level Class
Balancing. After identifying uncertain voxels in Stage 2,
a critical challenge remains: ensuring that the final set of
selected voxels does not disproportionately represent frequent
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classes. Outdoor LiDAR datasets exhibit significant class
imbalance, with common classes (e.g., road, car) dominating
the point distribution, while rare classes (e.g., pedestrian,
bicyclist) are heavily underrepresented (Fig. 4). As observed
in our experiments, existing active learning methods, such
as Annotator [84], often query more samples from frequent
classes, resulting in an imbalanced label distribution that can
degrade performance on rare classes. To address the issue
of class imbalance in 3D scenes, where certain classes have
significantly more points than others, we aim to select a subset
of Λ3 voxels from the Λ2 voxels identified in Stage 2, ensuring
a more balanced representation of all classes.

We begin by calculating the current class distribution among
the selected voxels. Let NDL

represent the total number of
points in the selected voxels, and N c

DL
denote the number of

points belonging to class c. For a given voxel Vj , NVj
is the

total number of points it contains, and N c
Vj

is the number of
points in Vj predicted to be of class c. To evaluate the impact
of adding voxel Vj on class balance, we compute the relative
proportion Λj,c for each class c:

Λj,c =
N c

DL
+N c

Vj

NDL
+NVj

(8)

Next, we apply the softmax function to normalize these
proportions, yielding Aj,c, which represents the normalized
probability of points belonging to each class c if voxel Vj is
selected:

Aj,c =
eΛj,c∑C
c=1 e

Λj,c

(9)

We then calculate the entropy H(Vj) of this distribution:

H(Vj) = −
C∑

c=1

Aj,c logAj,c (10)

Higher entropy values indicate a more balanced class distri-
bution. Using a greedy algorithm, we iteratively select voxels
from Λ2 that maximize H(Vj), until Λ3 voxels are chosen.
This process ensures that the selected subset contributes to a
balanced representation of all classes, enhancing the model’s
performance across both frequent and rare classes.

By employing this three-stage approach as proposed in
SELECT, we achieve effective, informative, and balanced
subset selection from the set of unlabeled voxels in each point
cloud, which is crucial for various real-world applications of
active 3D LiDAR semantic segmentation.

V. EXPERIMENTS

A. Experiments setup

Datasets. For the experiments, we use SemanticPOSS [20], a
commonly used dataset for the LiDAR semantic segmentation
task. This dataset contains over 2,988 LiDAR scans for train-
ing and 500 for validation. We also include SemanticKITTI [4]
in our experiments, which has more than 29,130 training scans
and 6,019 validation scans. The training scans contain more
than 1.6 billion points and 19 semantic classes. Finally, we
employ the nuScenes [1] dataset, a large-scale dataset mainly

for autonomous driving, containing more than 1,000 urban
driving scenes captured in Singapore and Boston, US.

Baselines. We benchmark our proposed method against several
active learning (AL) strategies to validate its effectiveness.
This includes both generic AL methods and previous state-
of-the-art AL methods for LiDAR semantic segmentation:

• Random [31]: This baseline method involves randomly
selecting samples from the unlabeled pool for each point
cloud.

• Entropy [82] : This baseline method leverages model
predictions to calculate an entropy score for each sample.
Samples with higher entropy, indicating greater uncer-
tainty, are selected.

• BGADL [42]: It is a method that combines Bayesian
active learning with generative models to efficiently select
and generate informative training samples, enhancing the
performance of deep learning classifiers.

• BADGE [63]: An active learning method designed for
deep neural networks which select a batch of samples
with diverse gradient magnitudes.

• CORESET [60]: This method identifies a compact, rep-
resentative subset of training data for annotation.

• ReDAL [49]: A region-based and diversity-aware active
learning framework for point cloud semantic segmenta-
tion. ReDAL selects informative sub-scene regions based
on softmax entropy, color discontinuity, and structural
complexity, and employs a diversity-aware selection al-
gorithm to avoid redundant annotations, thereby reducing
labeling costs while maintaining high segmentation per-
formance.

• SQN [41]: A weakly supervised semantic segmentation
approach that leverages the local semantic homogeneity
of point clouds to select samples.

• BaSAL [45]: A size-balanced warm start active learn-
ing method for LiDAR semantic segmentation. BaSAL
addresses class imbalance and the cold start problem
by sampling object clusters based on their characteris-
tic sizes, enabling effective model initialization without
requiring a pretrained model.

• LiDAL [98]: An active learning framework that exploits
inter-frame uncertainty in LiDAR sequences. LiDAL
measures inconsistencies in model predictions across
frames to identify uncertain regions, enhancing sample
selection and incorporating pseudo-labels to improve seg-
mentation performance.

• MiLAN [46]: A method that combines self-supervised
representations with minimal annotations for LiDAR se-
mantic segmentation. MiLAN selects informative scans
using self-supervised features and clusters points within
these scans, allowing annotators to label entire clusters
with a single click, significantly reducing annotation
effort.

• SSDR [47]: A superpoint-based active learning approach
that considers both spatial and structural diversity. SSDR-
AL groups point clouds into superpoints and employs a
graph reasoning network to select the most informative
and diverse samples, effectively reducing annotation costs
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Method Car Bike Pers. Rider Grou. Buil. Fence Plants Trunk Pole Traf. Garb. Cone. mIoU
Random [31] 21.43 48.14 36.34 16.79 69.47 40.64 27.42 70.45 13.01 0.00 3.45 0.00 0.00 26.70
Entropy [82] 31.23 43.13 39.43 18.63 69.58 69.20 43.09 71.16 25.84 16.45 11.83 5.63 7.89 34.85
BGADL [42] 29.13 37.87 44.42 9.98 71.01 55.21 45.11 74.46 25.84 7.31 5.56 4.13 6.67 32.05
BADGE [63] 26.35 47.39 47.55 5.13 77.42 74.28 40.41 74.57 21.20 11.09 5.61 11.41 10.13 34.78

CORESET [60] 25.88 45.90 43.59 22.11 66.76 64.02 46.29 68.55 30.24 23.79 15.48 9.89 11.50 36.38
ReDAL [49] 28.18 48.04 45.21 28.21 65.43 72.21 40.55 75.17 15.53 11.42 10.02 3.43 2.21 34.28

SQN [41] 29.72 41.23 42.98 26.21 75.34 72.02 33.58 70.19 17.34 25.45 5.54 1.33 2.46 34.11
BaSAL [45] 33.94 40.35 46.63 32.59 66.55 64.23 41.92 67.89 15.29 4.56 5.03 1.22 8.76 32.99
LiDAL [98] 36.47 48.55 34.07 15.55 70.32 73.56 33.45 67.97 33.21 16.56 18.88 8.66 5.81 35.62
MILAN [46] 28.20 37.56 42.01 23.61 65.66 64.58 47.71 72.22 30.57 14.21 6.65 15.63 2.22 34.68
SSDR [47] 35.35 50.19 48.32 20.63 77.63 72.48 40.55 72.56 27.21 18.41 9.89 10.59 12.33 38.19
Margin [13] 25.44 47.79 38.34 30.45 78.42 60.35 43.68 70.45 15.51 22.32 25.35 2.21 0.00 37.33

Annotator [84] 29.64 48.04 39.70 27.85 77.20 70.44 50.47 69.70 20.23 22.06 20.77 4.44 12.44 35.40

SELECT 41.00 51.02 57.63 50.90 79.52 75.00 52.90 76.25 36.66 27.60 31.06 18.57 11.56 46.90

TABLE I: The proposed SELECT achieves the highest mIoU on the SemanticPOSS dataset with SPVCNN [14] as the
segmentation model.

Method Ba.ier Bi.cle Bus Car Con-Veh. Mo.cle Ped. Fraff. Trailer Truck Dri Surf. Oth flat Side. Terr. Man. Veget. mIoU
Random [31] 37.88 2.12 0.00 60.57 8.48 0.00 0.00 0.19 1.27 44.32 84.81 0.00 39.72 55.01 77.64 67.58 29.97
Entropy [82] 29.31 0.00 1.01 66.49 0.00 1.20 0.00 11.09 0.00 41.45 88.36 0.00 34.97 59.83 68.62 68.39 29.40
BGADL [42] 27.61 0.53 2.12 58.34 0.00 0.00 0.00 2.13 0.00 43.98 80.70 0.00 36.12 46.18 68.99 66.33 27.06
BADGE [63] 40.59 0.77 0.00 60.79 0.00 0.00 0.00 15.23 0.00 48.89 85.31 5.95 44.34 59.05 73.66 74.37 31.87

CORESET [60] 25.11 0.00 3.76 71.75 0.00 0.88 0.00 9.76 0.00 47.69 87.88 0.00 40.12 62.01 70.01 69.16 30.51
ReDAL [49] 36.71 0.00 0.70 70.65 0.00 0.00 0.00 2.89 0.00 45.55 80.06 0.00 37.04 61.34 73.12 66.00 29.63

Sqn [41] 28.09 0.49 1.65 63.01 0.00 0.55 1.04 4.37 0.09 35.78 86.94 0.00 33.33 57.81 68.20 67.03 28.02
BaSAL [45] 25.12 0.00 2.33 59.88 0.00 0.72 5.91 4.76 0.00 34.68 79.22 0.00 30.41 48.67 61.93 60.22 25.93
LiDAL [98] 33.33 0.00 0.00 58.00 0.00 0.00 0.00 2.13 0.00 44.38 83.00 3.78 37.01 52.28 70.90 68.98 28.36
MILAN [46] 33.59 0.00 2.22 67.21 0.00 0.63 0.00 2.44 0.00 43.19 90.12 0.00 40.36 61.88 73.12 71.33 30.38
SSDR [47] 26.61 0.00 0.00 63.23 0.00 0.76 0.00 5.87 0.00 44.18 87.01 0.00 49.90 62.12 77.01 75.24 30.81
Margin [13] 28.78 0.00 7.78 66.01 0.00 0.00 0.00 1.20 0.00 50.24 91.24 0.00 41.17 64.89 59.44 70.21 30.06

Annotator [84] 32.40 0.00 1.46 68.79 0.00 0.00 9.59 8.28 0.51 46.03 90.24 0.17 45.06 62.34 76.47 75.75 32.31

SELECT 43.74 0.00 3.01 74.33 0.00 0.00 27.87 0.00 15.40 50.88 91.16 18.30 51.17 64.55 78.40 78.99 37.36

TABLE II: The proposed SELECT achieves the highest mIoU on the nuScenes (16-class) dataset with MinkNet [12] as the
segmentation model.

while maintaining segmentation accuracy.
• Margin [13]: This method calculates the margin as the

difference between the highest and second-highest logit
values for each point. The voxel-level margin score is
determined by finding the maximum difference among
these pairs within the voxel. The voxel with the lowest
margin score, suggesting minimal confidence in predic-
tion accuracy, is selected.

• Annotator [84]: This is a recently proposed active learn-
ing method for LiDAR semantic segmentation, where the
Voxel Confusion Degree (VCD) is calculated to assess the
class diversity within each voxel, based on the predicted
labels from the segmentation model. Voxels exhibiting
the highest VCD, indicating significant class diversity,
are prioritized for selection.

Implementation Details. We use MinkNet [12] and SPVCNN
[14] as the primary backbone segmentation models. All the
models are trained on four NVIDIA RTX A5000 GPUs.
Across all datasets and backbones, we employ a batch size
of 4. We utilize the SGD optimizer and implement the linear
warmup with a cosine decay scheduler, setting the learning
rate at 0.01.

Active Learning Setups. To initiate the active learning pro-
cess, we start by randomly selecting one voxel Vj from unla-
beled voxel Di

U in a given point cloud Pi. A human annotator
then labels each point Pk within that voxel. These labeled
points are used to train the segmentation model. We train
the segmentation model for three epochs. To ensure fairness
in our comparisons, all active learning methods selected one
voxel per point cloud in each active learning round, resulting
in Nq = 1. In our method, the number of voxels selected at
different stages, denoted by Λ, was configured as Λ1 = 200,
Λ2 = 5, and Λ3 = 1 across all datasets. We set our budget
Nbudget to 6000 points for all baselines. The initial epoch
consists of the initialization process we previously discussed,
and every three epochs, we perform one query of active
learning, with a total of Q = 5 rounds of queries. After the
Q-th query or once the budget Nbudget is exhausted, we stop
the active learning process and continue training the model
until epoch 60.

B. Results

Results on the SemanticPoss dataset. We evaluate the
performance of SELECT against various baselines, as detailed
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(a) SemanticPOSS (b) SemanticKITTI (c) nuScenes

Fig. 5: The mIoU results of AL baselines and SELECT across each active learning round for the SemanticPOSS, SemanticKITTI,
and NuScenes datasets.

(a) SELECT (proposed) (d) Random (c) Margin (b) Annotator (e) ReDAL

Fig. 6: Visualization of inference results on the SemanticPOSS dataset using MinkNet. Our method, SELECT, accurately
recognizes small and rare classes such as pedestrians (blue points) and produces clearer boundaries between objects from
different classes.

in Table I, employing SPVCNN [14] as the backbone segmen-
tation models. The results clearly demonstrate that SELECT
surpasses all previous active learning methods using different
segmentation backbones. Specifically, SELECT achieves up to
15% improvements in mIoU scores for the Car, Person, and
Rider classes compared to Annotator [84], which is the SOTA
method for active LiDAR semantic segmentation when using
the SPVCNN backbone. Another critical observation is that
most baselines, including Annotator, perform unsatisfactorily,
often approaching zero mIoU on the rare classes such as Cone,
indicating their inability to select informative points with
balanced label distribution from the unlabeled pool Di

U for
each point cloud. In contrast, SELECT achieves notable mIoU
scores of 8.92% and 15.31% on rare classes like Garbage-
can (Garb.) and Cone when using MinkNet [12] as backbone
model, with detailed per-class table results provided in the
Supplementary Materials. Fig. 5 (a) further illustrates that our
approach consistently outperforms other methods throughout
the active learning process, confirming the effectiveness of SE-
LECT. Due to space limitations, visualizations of the selected
points in each point cloud are provided in the Supplementary.

Results on SemanticKITTI and nuScenes datasets. To
evaluate the generality and robustness of SELECT, we further
test our approach on the SemanticKITTI [4] and nuScenes [1]
datasets. Comprehensive per-class results for SemanticKITTI
dataset can be found in the Supplementary Materials, due to a

space limitation. Using MinkNet as the backbone segmentation
model on SemanticKITTI, SELECT demonstrates an overall
performance improvement of 5.06% over Annotator, with
up to a 10% increase in mIoU for rare classes such as
Parking, Trunk, and Pole. On the nuScenes dataset as shown in
Table II, our approach achieves a 5.05% overall performance
gain compared to Annotator, with notable improvements in
classes like Other Flat Surfaces and Pedestrian, where mIoU
increased by 18.13% and 18.28%, respectively. For detailed
results per query, please refer to Fig. 5 (b) for SemanticKITTI,
Fig. 5 (c) for the nuScenes and Supplementary Materials.

Analysis of Selected Voxels by SELECT. With the outstand-
ing segmentation results achieved across different datasets,
we further investigate the informativeness of the voxels se-
lected by SELECT. As previously described, informativeness
is defined as voxels that either contain points from rare
classes, where the model exhibits low confidence, or are
located along the boundaries between objects. From Fig. 7,
we observe that although less than 1% of the voxels in the
entire dataset contain points from more than one class, our
method successfully identifies approximately 9% of selected
voxels containing points from multiple classes, compared to
only 5% achieved by the previous state-of-the-art method.

Visualization of SELECT. To more intuitively demonstrate
the segmentation results of the model trained with our active
learning approach, we visualize the predictions on the Seman-
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Fig. 7: The plot shows that the proposed SELECT selects more
voxels containing points from multiple classes, suggesting it
focuses on object boundaries, which are more informative than
voxels fully within one class. Results on the SemanticPOSS
[20] dataset using MinkNet [12].

ticPOSS dataset using MinkNet. As shown in Fig. 6, even
under a limited annotation budget, our method achieves high
segmentation accuracy for certain rare-class points, such as
pedestrians. Although this comes at the cost of slightly reduced
accuracy on background classes like buildings, fences, and
plants compared to other baselines, the overall results highlight
the effectiveness of our AL selection strategy in prioritizing
rare and informative samples.

Furthermore, regarding the ability to discover points from
rare classes, such as bicycles, motorcycles, and pedestrians
in the SemanticKITTI dataset, the previous state-of-the-art
method struggles to select points from these categories, while
our method consistently identifies a considerable number of
points belonging to these rare classes. More detailed results
are provided in the Supplemental Materials.

C. Ablation Study

To analyze the proposed method, we conducted ablation
studies on the impact of different stages in SELECT, voxel
size, and various selection methods in the VLSSS stage. Due
to space limitations, additional ablation studies are available
in the Supplementary.
The effect of different stages in SELECT. To validate
the effectiveness of our proposed three-stage method, we
present a performance comparison, in Table III, involving six
variants of our approach against the Random selection method,
which serves as our baseline. We utilize MinkNet [12] as
the backbone and evaluate our method on the SemanticPOSS
[20] dataset. Our results show that individual stages of our
method impact the mIoU score differently. Specifically, using
only the Voxel-level Submodular Subset Selection (VLSSS)
stage results in a near 5% improvement over the baseline,
while the Voxel-level Model Uncertainty Estimation (VL-
MUE) stage alone increases mIoU by nearly 14%. Conversely,
the Submodular Maximization for Point-Wise Class Balancing
(SMPCB) stage decreases mIoU by 3% relative to the baseline.
This indicates that the VLMUE stage is most effective at
identifying informative samples. Additionally, implementing

only Stage 2 or Stages 1 and 2 results in zero mIoU for
the “garbage-can” and “cone/stone” classes, suggesting a bias
towards non-informative samples for rare classes. Solely using
Stage 3 underperforms compared to the baseline but when
combined with other stages, the overall performance will
increase, highlighting the importance of integrating all stages
to avoid performance drops.

TABLE III: Performance of different active learning stage
criteria on SemanticPOSS (mIoU %)

VLSSS VLMUE SMPCB mIoU (%)
– – – 31.75
✓ – – 36.52
– ✓ – 45.21
– – ✓ 28.64
✓ ✓ – 43.28
✓ – ✓ 37.53
✓ ✓ ✓ 47.77

Effect of voxel size λ. In our study, we investigate the effect of
voxel size λ on the field-of-view using Minknet [12] and eval-
uate on SemanticPoss [20] dataset. A larger λ results in voxels
Vj containing more points, which consequently decreases the
number of voxels into which each point cloud Pi is divided.
In contrast, a smaller λ allows for a finer division of point
clouds, resulting in a larger number of voxels, each containing
fewer points. According to Table IV, we observe that training
time decreases with an increase in λ, as fewer voxels need
to be processed during the active learning stage. However,
the mIoU scores tend to decline as the voxel size increases.
This is because larger voxels encompass more points, leading
to a higher likelihood of points being filtered out due to the
hashing based on voxelized coordinates, resulting in a loss
of semantic and structural information. Using a smaller voxel
size improves the mIoU score, but it significantly increases
computational time. For example, reducing λ to 0.05 nearly
triples the training time without a substantial improvement
in performance. Therefore, to strike a balance between voxel
granularity and training efficiency, our chosen voxel size of
0.25 offers an optimal compromise between performance and
training time.

TABLE IV: Effect of voxel size (λ) on performance and
training time

Voxel size (λ) mIoU (%) Training time (hours)
0.05 46.61 17.0
0.25 47.77 6.3
0.5 43.56 6.0

0.75 37.70 5.2

TABLE V: The use of a feature-based submodular function
in the first stage reduces training time and leads to a higher
mIoU compared to clustering methods.

Clustering method mIoU (%) Training time (hours)
Random [31] 34.2 5.4

K-Means++ [18] 43.76 40.1
K-Means [17] 45.19 43.4

GMM [96] 39.20 47.9
Ours 47.77 6.3

Effect of different selection methods in VLSSS stage.
We assess the effectiveness of our feature-based submodular
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function by considering both computation time and model
performance. Using MinkNet [12] as the model, we conduct
evaluations on the SemanticPOSS [20] dataset. We compared
our submodular approach against Gaussian mixture models
(GMM) [96], K-means [17], and K-means++ [18], and all
methods select Λ1 = 200 voxels per active query for each point
cloud. Detailed comparisons of performance and computation
times are provided in Table V. Our method significantly
reduces computational time compared to the clustering-based
baselines, which on average require almost six times the
computational resources of our approach. Additionally, our
method outperforms these baselines, demonstrating its superior
ability to identify informative samples efficiently.

VI. CONCLUSION

We propose SELECT, a unified submodular approach for
voxel-centric active 3D LiDAR semantic segmentation, de-
signed to overcome the limitations of existing active learning
methods. Compared to current active learning approaches for
LiDAR semantic segmentation, SELECT efficiently performs
active learning while ensuring that the selected points are both
informative and well-balanced in label distribution. Extensive
experiments on SemanticPOSS, SemanticKITTI, and nuScenes
demonstrate that the proposed SELECT enables the LiDAR
semantic segmentation model to be trained on a limited
number of points while achieving high segmentation accuracy.
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