
ar
X

iv
:2

50
5.

13
05

8v
2 

 [
cs

.L
G

] 
 2

0 
M

ay
 2

02
5

A Path to Universal Neural Cellular Automata
Gabriel Béna

g.bena21@imperial.ac.uk
Imperial College
London, UK

Maxence Faldor
m.faldor22@imperial.ac.uk
Imperial College London
London, United Kingdom

Dan Goodman
d.goodman@imperial.ac.uk
Imperial College London
London, United Kingdom

Antoine Cully
a.cully@imperial.ac.uk
Imperial College London
London, United Kingdom

=

=

=

Input

t = 1 0 t = 2 0 t = 3 0 t = 4 0 t = 5 0

Output TargetTask: Matrix Translation

Task: Matrix Multiplication

Task: Matrix Rotation

Computa�onal

Mutable State

Example tasks

Hardware

Immutable State

Cell

Local update rule

Figure 1: Our framework performs matrix operations (translation, multiplication, rotation) through continuous cellular
interactions evolving over time (from 𝑡 = 0 to 𝑡 = 60). The inset reveals the core mechanism: cells communicating only with
neighbors, and interacting with a local fixed (but learned) heterogeneous substrate, are able to collectively solve mathematical
tasks without explicit algorithms.

Abstract
Cellular automata have long been celebrated for their ability to gen-
erate complex behaviours from simple, local rules, with well-known
discrete models like Conway’s Game of Life proven capable of uni-
versal computation. Recent advancements have extended cellular
automata into continuous domains, raising the question of whether
these systems retain the capacity for universal computation. In
parallel, neural cellular automata have emerged as a powerful par-
adigm where rules are learned via gradient descent rather than
manually designed. This work explores the potential of neural cel-
lular automata to develop a continuous Universal Cellular Automa-
ton through training by gradient descent. We introduce a cellular
automaton model, objective functions and training strategies to
guide neural cellular automata toward universal computation in a
continuous setting. Our experiments demonstrate the successful
training of fundamental computational primitives — such as matrix
multiplication and transposition — culminating in the emulation
of a neural network solving the MNIST digit classification task
directly within the cellular automata state. These results represent
a foundational step toward realizing analog general-purpose com-
puters, with implications for understanding universal computation
in continuous dynamics and advancing the automated discovery of
complex cellular automata behaviours via machine learning.

Web version available at https://gabrielbena.github.io/blog/2025/bena2025unca/

Keywords
Neural Cellular Automata, Self-organization, Emergence, Exotic
Computing

Contributions
Gabriel Béna and Maxence Faldor contributed equally to this work.
Maxence Faldor initiated the project, conceived its central ideas,
including the concept of state and immutable state for hardware
representation. He also developed the initial software library and ex-
perimental design. Gabriel Béna provided crucial feedback on these
foundational ideas, developed the tasks setup, led the development
of the compiler and the Graph Neural Network (GNN) components,
conducted the extensive experiments, and was the primary author
of the project website. Dan Goodman and Antoine Cully super-
vised the project, offering guidance, insightful discussions, and
contributing to brainstorming sessions.

https://gabrielbena.github.io/
https://maxencefaldor.github.io/
https://neural-reckoning.org/dan_goodman.html
https://www.imperial.ac.uk/personal-robotics/people/previous-post-doctoral-researchers/antoine/
https://gabrielbena.github.io/blog/2025/bena2025unca/
https://arxiv.org/abs/2505.13058v2


1 Introduction
Cellular Automata (CA) represent a fascinating class of computa-
tional models that have captivated researchers across disciplines for
their ability to produce complex behaviours from simple rules [10].
At their core, CA typically consist of a grid of cells, each in one
of a finite number of states, which evolve over discrete time steps
based on a fixed deterministic rule. This rule, applied uniformly
to all cells, governs the state transition of each cell based solely
on its current state and those of its neighbors. Despite their sim-
plicity, CA have become a cornerstone in studying emergence and
complexity [31]. Mathematical proofs have established that well-
known CA, such as Conway’s Game of Life, Elementary Cellular
Automata, and Wireworld, are capable of universal computation,
underscoring their remarkable power and expressiveness [8, 24].
Beyond these formal demonstrations, researchers have constructed
fully functional Turing machines within these CA, albeit through
arduous efforts requiring meticulous design and substantial time
investment.

In recent years, the development of continuous CA has enabled
to bridge the gap between the discrete nature of traditional mod-
els like Conway’s Game of Life and the analog characteristics of
the real world. Notable examples include Lenia [6] and Smooth-
Life [21], which extend classic CA to simulate lifelike patterns with
continuous dynamics. However, a key open question persists: are
these models capable of universal computation? While the answer
is likely affirmative, given their expressive potential, proving this
remains elusive. The lack of discrete states and well-defined tran-
sitions makes it harder to encode symbolic information reliably —
slight perturbations can lead to significant divergence over time,
undermining the stability required for computation. Moreover, in
contrast to the sharp boundaries and interactions of traditional CA,
continuous models often exhibit smooth, fuzzy dynamics that make
it challenging to design modular components like wires, gates, or
memory elements with predictable behavior. What was already a la-
borious task in discrete CA becomes more difficult, if not practically
impossible, in the continuous domain, highlighting a fundamental
challenge in building efficient analog computers.

In parallel with these developments, Neural Cellular Automata
(NCA) have emerged as a compelling paradigm that blends the local,
decentralized dynamics of classical CA with the representational
capacity and trainability of neural networks [18]. Unlike traditional
CA, where the update rule is explicitly handcrafted, NCA leverage
differentiable architectures wherein the rule is parameterized by
a neural network and optimized end-to-end via gradient descent.
This makes it possible to learn complex behaviours and dynamics
from data, bypassing the need for manual rule design. Recent work
has demonstrated that NCA can be trained to perform a wide range
of tasks: from self-organizing into complex morphologies [18], to
solving algorithmic reasoning tasks such as instances of the 1D-
ARC challenge [9], exhibiting emergent collective behaviours [22],
and growing artificial neural networks [19]. These results highlight
the versatility of NCA as a model of computation and pattern for-
mation. Given the Turing completeness of classical CA, NCA offer
an exciting new lens through which to explore the space of rules
— not by manually engineering them, but by searching for them
through optimization. In essence, NCA turn rule discovery into a

machine learning problem. This shift is significant: the traditionally
arduous task of hand-crafting rule sets that give rise to desired
behaviours is now offloaded to the learning algorithm itself. Back-
propagation through time, combined with the differentiable nature
of NCA, allows for flexible, automated tuning of highly non-trivial
dynamics.

In this work, we explore the potential of the Neural Cellular
Automata paradigm to pioneer the development of a continuous
Universal Cellular Automata [29], with the ambitious goal of induc-
ing a universal Turing machine [27] to emerge within a continuous
CA through training via gradient descent. The development of Uni-
versal Neural Cellular Automata has implications beyond academic
curiosity or creating interesting simulations. It touches on funda-
mental questions about the potential for continuous dynamic sys-
tems to exhibit universal computation, or the possibility to create a
universal analog computer. This paper establishes the foundational
framework and presents promising initial steps toward realizing
this grand vision. First, we propose a novel framework that disen-
tangles the concepts of “hardware” and “state” within NCA. In this
abstraction, CA rules serve as the “physics” dictating state transi-
tions across space and time, akin to the fundamental laws governing
computation. The CA state, in turn, acts as the dynamic physical
substrate — comparable to electrical charges in a computer or neu-
rochemical patterns in a brain—while the “hardware” represents an
immutable scaffold, fixed in its spatial configuration throughout
a simulation. This hardware can be leveraged by the physics (i.e.,
the CA rules) to guide computation but remains unalterable dur-
ing runtime, providing a stable backbone for emergent behaviours.
Second, we introduce preliminary objective functions and training
setups designed to steer NCA toward universal computation in a
continuous domain. Third, we conduct experiments demonstrating
the training of essential computational building blocks — such as
matrix multiplication, dot-product and transposition — within the
NCA framework. Finally, we showcase the practical utility of these
building blocks by emulating a neural network directly within the
mutable CA state, successfully solving the MNIST digit classifica-
tion task. These results mark a critical first step, illustrating how
NCA can harness gradient descent to sculpt continuous CA into
powerful, general-purpose computational systems.

2 Related Work
Discrete CA have long been a cornerstone for studying universal
computation due to their ability to generate complex behaviours
from simple, local rules. A number of discrete CA, such as Con-
way’s Game of Life [12, 24], Rule 110 of Elementary Cellular Au-
tomata [8, 32], Langton’s Ant [11], and Wireworld [2] have all been
proven Turing-complete. These works rely on discrete states and
labor-intensive, hand-crafted designs. To mitigate this, evolutionary
algorithms have been employed to automate the discovery of CA
rules or patterns with specific properties [17, 25], reducing human
effort though still targeting discrete systems and predefined goals
rather than general-purpose computation.

The shift to continuous CA aims to connect discrete models with
real-world analog systems, prompting inquiries into their computa-
tional potential. Models like Lenia [6] and SmoothLife [21] intro-
duce smooth state transitions, yielding lifelike emergent patterns,

2



yet their capacity for universal computation remains unproven.
Recent efforts have applied evolutionary search to Lenia [1, 23] to
automatically discover and optimize patterns, though these pursuits
prioritize specific behaviours over general-purpose computation.
Similarly, gradient descent has been used on Lenia patterns and
rules to discover and optimize patterns [14], though again not tar-
geting general-purpose computation.

NCA mark a paradigm shift by replacing hand-crafted rules
with neural networks trained via gradient descent. NCA have been
successfully applied to specific tasks such as morphogenesis [18],
classification [22], and solving difficult problems like the 1D-ARC
challenge [9]. Most relevant to our work, HyperNCA [19] uses NCA
to grow artificial neural networks, suggesting broader computa-
tional versatility. These advances highlight NCA’s strength in au-
tomating rule discovery, offloading the burden of manual design to
machine learning. Nevertheless, prior NCA research predominantly
focuses on pattern formation or specific tasks. It is to be noted that
the matrix copy and multiplication tasks were first implemented
with NCA by Peter Whidden [30], and that our approach builds
upon this idea that NCA can be used in a continuous computational
setting. Very recently, [20] have also demonstrated that NCA rules
can be implemented using (differentiable) logic gates, confirming
the possibility to run self-organizing systems on standard digital
harware. Finally, in parallel of our work [13] was developped using
a similar idea: cells augmented with "private memory tapes" were
shown to exhibit stable, multi-task capabilities.

Our research intersects with analog computing and particularly
neuromorphic approaches that bridge biology and silicon. Analog
computation utilizes continuous physical systems, and leverages
physical phenomena such as wave propagation, diffusion, and mate-
rial properties to represent and transform information continuously,
avoiding the quantization overhead of digital systems [28]. NCAs
draw inspiration from biological neural networks, which primarily
employ local computations for energy efficiency [4, 5, 16]. This
principle of locality is fundamental to both systems, and demon-
strates that sophisticated computation can emerge from simple,
localized rules without requiring global connectivity. The brain’s
co-location of computation and memory offers a solution to the von
Neumann bottleneck that increasingly limits conventional comput-
ing systems as model complexity grows [3]. Neuromorphic systems
implement this biological principle through distributed processing
elements with local memory, often using mixed-signal circuits that
approximate neural dynamics while maintaining energy efficiency
[7, 15, 26]. While deep learning has flourished through hardware-
software co-design optimized for parallel matrix operations, this
specialization has simultaneously restricted algorithmic innovation
to operations aligned with current hardware capabilities. By explor-
ing how systems with local interactions like NCAs can implement
universal computation, we can develop more versatile computing
architectures that maintain the locality constraints of biological
systems while leveraging silicon’s speed advantages. This approach
may yield computing systems that better balance computational
powerwith the remarkable efficiency and adaptability characteristic
of biological intelligence.

3 Methods
We leverage the CAX [9] library for high-performance neural cel-
lular automata implementions and run our experiments on a single
L40 GPU.

3.1 General Setup
The goal of our framework is to demonstrate the ability of neural
cellular automata to act as a general computational substrate. To
do so, we tackle a variety of tasks, directly in the NCA state (see
3.4). In this work, we introduce a novel architecture design that
enhances such computational capabilities. Our approach partitions
the NCA state space into two distinct components.

• The mutable state: this serves as the main workspace (where
the tasks inputs are transformed into their outputs). This
state is the only one changing through time during a single
experiment / task roll-out. This is the computational sub-
strate, meaning that tasks (such as matrix operations) are
directly embedded in this space, and transformations on in-
puts have to happen in this state. The update dynamics of
the mutable state are governed by the NCA rules, described
in section 3.2.

• The immutable state: this functions as a specialized hardware
configuration which is spatially heterogeneous. This hard-
ware can itself be monolithic (the same shape as the entire
grid) or modular (created from different specialized compo-
nents for each task specific instance). This is learned across
training but fixed in any duration of a single experiment /
task instance. Details are specified in section 3.3

Overall, this framework enables a two-level optimization strat-
egy: At the global level, we train a general-purpose NCA rule (per-
ceive and update functions) to support diverse computational oper-
ations. At the task-specific level, we optimize individual hardware
configurations. The system achieves task-specific computation by
adapting its dynamics using the local available hardware (reminis-
cent of placing the correct components on a motherboard). From
an efficiency perspective, this architecture also provides significant
practical advantages: once the general NCA rule is trained, adapting
the system to new tasks requires only the optimization of hardware
configurations, a process that is substantially less computationally
intensive than training the full NCA rule from scratch. Full training
details are described in section 3.5.

Figure 2: Schematic of our architecture, showing the distinc-
tion between mutable (computational) and immutable (hard-
ware) states.

3



3.2 Neural Cellular Automata
We develop computational models that solve tasks directly within
their mutable state, with dynamics governed by local cell inter-
actions. These interactions are parametrized by a neural network
serving as the cellular automaton’s rules. The two key components
of this neural network are its perception function and update func-
tion:

Perceive Function: The perceive function gathers informa-
tion about each cell’s neighborhood through learnable convolution
filters applied to the immediate vicinity within the mutable state.
This perception module transforms input state channels into a
higher-dimensional perception vector, capturing relevant local spa-
tial patterns. The kernel size, padding, and activation functions are
configurable hyperparameters.

Update Function: The update function utilizes the perception
vector and local hardware vector to update each cell’s state. Our
architecture employs an attention-based update module that calcu-
lates state update Δ𝑆 by conditioning perceived information 𝑃 on
an external input vector 𝐼 , which encodes task-specific information
or global context (in our implementation, representing local cell
hardware).

(1) Each cell receives a perception vector 𝑃 (local spatial pat-
terns) and a hardware vector 𝐼 (its immutable state).

(2) The hardware vector 𝐼 activates different "computational
modes" through an attention mechanism: 𝛼 = softmax((𝐼 ·
𝑊embed)/𝑇 ), where𝑊embed is a learned embedding matrix
and 𝑇 is a temperature parameter controlling the sharpness
of the activation.

(3) The perception vector 𝑃 is simultaneously processed through
𝑁 parallel pathways (implemented as MLPs), producing po-
tential update vectors 𝑉ℎ for each pathway.

(4) The final state update is computed as a weighted mixture
of these pathways: Δ𝑆 =

∑𝑁
ℎ=1 𝛼ℎ𝑉ℎ , with the cell’s state

updated residually: 𝑆𝑡+1 = 𝑆𝑡 + Δ𝑆 .

This design allows the NCA to adapt its behavior dynamically
based on the local hardware—cells in input regions might activate
different computational pathways than those in output regions or
computational zones. The result is a flexible computational sub-
strate where the same underlying rule can perform diverse opera-
tions depending on the hardware context.

3.3 Hardware (Immutable State)
As briefly explained in section 3.1, a core innovation in our approach
lies in separatingmutable and immutable parts of the computational
state. This distinction separates the update model’s role (which
needs maximal generality and expressiveness) from task-specific
hardware configurations that can be diverse and fine-tuned. We
explore two different approaches for designing these specialized
hardware configurations.

3.3.1 Monolithic hardware. Our first implementation optimizes
task-specific parameters with the same spatial dimension as the
computational state and a fixed number of hidden channels. This
approach successfully trains the NCA on various tasks using spe-
cialized hardware for each. The optimized hardware configurations

Transla�on Mul�plica�onRota�on

ID
Rot

Mul
M
u
l

Figure 3: Monolithic hardware configurations for 3 different
sub-tasks. We plot a PCA projection of the hidden channels
to be able to display them as RGB. Colors thus does not have
direct functional relevance. Overlayed are schematics of the
(fixed) input-output transformations that each hardware was
optimized on.

are visually interpretable, providing insights into the computation
flow required for specific tasks (see fig. 3).

However, this approach lacks generalizability. For example, hard-
ware optimized for matrix translation from bottom-left to top-right
would require retraining for the opposite operation. It also compro-
mises the inherently scale-free nature of NCAs. An NCA trained
for small-scale matrix multiplication would not be able generalize
to larger matrices without hardware retuning. These limitations
led us to develop a modular hardware approach.

3.3.2 Modular hardware. To address the limitations of monolithic
hardware, we developed a modular and composable approach. Sim-
ilar to how specialized components on a motherboard emulate
desired behavior, we train three purpose-specific hardware compo-
nents:

(1) An input embedding vector specifying cells that receive in-
puts in the computational task. Cells whose mutable state
receives inputs include this vector in their immutable state.

(2) An output embedding vector marking cells that will serve
as output during a specific task.

(3) A task embedding vector enabling the NCA to recognize the
type of input-output transformation required. This learned
vector is added to every cell’s hardware state.

These three core components are then manually assembled for
each task instance to create specific task examples. The resulting
immutable state remains accessible to the update rule throughout an
experiment. This modular approach balances the scale-free nature
of NCAs with the need for local heterogeneous substrate to perform
diverse computational tasks. We also demonstrate that this enables
zero-shot generalization, allowing the NCA to perform unseen task
configurations and even composite task chaining (see section 4.3).

3.4 Tasks
To train robust and versatile Neural Cellular Automata (NCA) mod-
els capable of performing general computation, we implement a
flexible framework of matrix-based operations. These tasks, exer-
cise different computational capabilities and test the NCA’s ability
to process, transform, and route information across the grid.

4



Transla�on Mul�plica�onRota�on

Input

Target

Hardware

Figure 4: Modular hardware configurations for 3 different
sub-tasks, and (now varying) different matrix sizes and place-
ment.

Matrix Operations. The core of our framework is a set of funda-
mental matrix operations that represent different computational
primitives:

• Identity Mapping: Reproducing an input matrix at a differ-
ent target location. This tests information preservation and
signal routing across the grid.

• Matrix Multiplication: Given input matrices𝐴 and 𝐵, com-
pute 𝐶 = 𝐴 × 𝐵. This tests the NCA’s ability to perform
non-local computations requiring information integration
across regions.

• Transposition /Rotation: Given input matrix 𝐴, compute
𝐵 = 𝐴𝑇 (or alternatively 𝐵 = 𝐴𝑇

𝑓 𝑙𝑖𝑝𝑝𝑒𝑑
representing a 90

degree rotation in the plane) . This evaluates spatial infor-
mation routing capabilities and geometric understanding.

Diverse Input Distributions. To prevent overfitting to specific in-
put patterns, we employ matrices with varied statistical properties:

• UniformandGaussianDistributions: Randomly distributed
matrix values test general processing capabilities.

• Spatially Correlated Patterns: Self-similar patterns with
spatial correlations test the NCA’s ability to process struc-
tured information and recognize spatial relationships.

• Sparse Representations: Matrices where most elements
are close to zero test the NCA’s efficiency in handling infor-
mation sparsity.

Flexible Placement and Size. To ensure the NCA develops ro-
bust computational abilities that generalize beyond fixed spatial
arrangements, we include in the task framework:

• Dynamic Placement: Input and output matrices can be
positioned at different locations within the grid, preventing
the NCA from memorizing fixed spatial patterns and forcing
it to develop general computation mechanisms.

• Variable Matrix Sizes: Tasks involve matrices of different
dimensions, from small to large relative to the grid size,
testing the NCA’s ability to scale its computations and adapt
to varying information densities.

• Multiple Inputs and Outputs: Tasks can involve multiple
input and output matrices distributed throughout the grid,
requiring the NCA to coordinate information flow between
different regions and perform parallel processing.

(This flexible task placement scheme is only usable in conjunc-
tion with a modular hardware configuration, as discussed in sec-
tion 3.3)

Through this comprehensive framework, the NCA develops gen-
eral computational capabilities that are robust to variations in task
type, input distribution, matrix size, and spatial arrangement.

3.5 Training
To equip our Neural Cellular Automaton (NCA) with the capacity
to perform a diverse range of computational tasks, we utilize a joint
training framework. This approach simultaneously optimizes a sin-
gle, shared NCA rule across a collection of distinct tasks instances.
Each task is defined by a specific objective (an operation to be made
on the inputs), and one task instance is typically represented by an
initial grid state 𝑆0, a desired target final state 𝑆target, and often a
mask𝑀 indicating the regions of the grid relevant for evaluation.

During training, batches containing instances from various tasks
are sampled. For each instance, the NCA model evolves the initial
state 𝑆0 over a defined number of discrete time steps 𝑇steps to pro-
duce a final state 𝑆final. To enhance stability of the NCA, final states
used to compute the loss are chosen at random between 𝑇steps and
𝑇steps −𝑇steps//4.

A loss function (commonly a masked error metric such as MSE),
quantifies the discrepancy between the achieved final state and the
target state within the relevant regions defined by the mask𝑀 .

Gradient-based optimization is employed to minimize this loss.
Parameters associated with the shared NCA rule and any shared IO
hardware components (in the modular hardware case) are updated
based on gradients aggregated across all tasks within the batch,
promoting the learning of general-purpose computational primi-
tives. Parameters belonging to task-specific modules (monolithic
hardware, or task components in the modular case) are updated
using only the gradients derived from their corresponding task
instances, enabling specialized behavior. This joint optimization
process encourages the emergence of a versatile NCA capable of
executing multiple computational functions through its learned
local dynamics, dynamically adapting its behavior based on the
presented task hardware.

4 Experiments and Results
4.1 Task Training
4.1.1 Joint Training. In a multi-task training setup, our Neural
Cellular Automata successfully master various matrix operations
simultaneously through a shared update rule architecture combined
with task-specific hardware components. Our findings demonstrate
that a single NCA can develop general computational principles
that apply across different matrix tasks while maintaining the spe-
cialized parameters needed for each specific operation.

The multi-task learning capability reveals the fundamental com-
putational versatility of NCAs. By simultaneously learning to per-
form diverse operations such as matrix multiplication, transla-
tion, transposition and rotation within a unified framework, the
model demonstrates mastery of a complete algebra of matrix opera-
tions—the essential building blocks for more complex computation.

This multi-task foundation directly enables more sophisticated
composite applications, such as ourMNIST classifier emulation (sec-
tion 4.2). The ability to decompose complex operations into smaller
matrix tasks and process them through the same underlying cellular
mechanism demonstrates a pathway toward increasingly complex

5



computation. By establishing that NCAs can reliably perform these
fundamental operations, we provide the essential building blocks
for future work on more elaborate composite tasks, including full
neural network emulation, algorithmic reasoning, and potentially
even more advanced computational models implemented entirely
within the cellular substrate.

4.1.2 Downstream Tasks Fine-tuning. A key advantage of our ar-
chitecture emerges once the NCA is pre-trained: new tasks can be
accommodated by fine-tuning only the hardware configurations
while keeping the core CA update rules frozen. This approach signif-
icantly reduces computational requirements for adaptation to novel
tasks. In our experiments, fine-tuning hardware alone increases
training speed by a factor 2, compared to full model retraining. A
more comprehensive comparison of joint training vs fine-tuning is
nevertheless needed.

4.2 MNIST Classifier emulation

We demonstrate a practical downstream application by using
our Neural Cellular Automata (NCA) to emulate an entire neural
network directly in its computational workspace. Specifically, we
emulate a single-layer Multi-Layer Perceptron (MLP) solving the
MNIST digit classification task.

First, we pre-train a simple linear feedforward network to classify
MNIST digits with sufficient accuracy. This classifier uses a single
weight matrix without bias terms, where inference requires only a
matrix multiplication between the flattened input images and the
weight matrix, followed by an argmax operation to determine the
predicted digit. Our NCA model was pre-trained as well, on smaller
8×8matrix multiplication tasks.While we could hope for generaliza-
tion to larger matrices, operations of the scale required for MNIST
classification (784×10) would exceed the capacity of what can be
performed by such a model. To address this limitation, we imple-
ment block-matrix decomposition, fragmenting the classification of
MNIST images into multiple smaller 8×8 matrix operations that fit
within the NCA’s state constraints. The resulting decomposed op-
erations can be executed directly within the NCA’s computational
state without requiring task-specific fine-tuning, demonstrating
the robustness of our approach to novel matrix distributions. The
NCA processes each block multiplication operation in parallel, after
which we aggregate the results to reconstruct the complete clas-
sification logits. When evaluating performance, we compare the
predictions and accuracy of our NCA-based emulation against the
original classifier.While we observe some accuracy degradation due
to error propagation across numerous sub-operations, the model
still achieves respectable performance (around 60% accuracy for
the emulated classification compared to 84% for the original, with
predictions agreeing around 69% of the time). We argue that this
is providing empirical evidence that neural network emulation via
NCA is feasible.

This research has significant implications for analog and phys-
ical computing. If our NCA’s update rules were implemented as
physical state transitions, this would represent a pathway toward
physical neural network emulation without reverting to binary-
level operations. The ability to operate directly at the level of matrix

operations using hardware specifically designed for this computa-
tional paradigm could offer substantial efficiency and performance
improvements over conventional digital approaches.

4.3 Future directions: task composition and
neural compiler

Themodular hardware configurationwe developed enables straight-
forward creation of out-of-distribution tasks through component
composition. This flexibility allows us to design novel computa-
tional scenarios that the NCA was not explicitly trained on, yet
can still execute successfully. For instance, we can implement data
distribution patterns by duplicating a central matrix into multiple
corners using the matrix translation task embedding and multi-
ple target tiles fig. 6. This simple example demonstrates how our
architecture supports operations beyond the training distribution
without requiring additional training. This framework opens the
path toward complex composite tasks created through sequential
chaining of primitive operations. Consider the following multi-step
procedure (fig. 7 bottom panel):

(1) Start with a input matrix and distribute copies to two corner
positions using target tiles.

(2) Replace the current hardware configuration with new pa-
rameters that redefine these targets as inputs, then perform
matrix multiplication towards a third corner.

(3) Update the hardware again to rotate the resulting matrix
and return it to the original position.

While such composite sequences may not appear useful on their
own, they demonstrate a critical capability: the NCA can execute
complex algorithmic workflows through sequential reconfiguration
of its hardware parameters. This capability lays the groundwork
for more sophisticated computational reasoning and abstraction.

This composite task chaining also highlights the crucial role
of stability in achieving composable computations. When outputs
produced within the NCA’s computational state serve as inputs for
subsequent operations, establishing stable representations becomes
essential. In parallel to biological systems, where homeostasis main-
tains internal equilibrium despite external changes, NCAs require
a form of computational homeostasis to maintain reliable state rep-
resentations between operations. Similarly, analog computers may
require homeostasis to successfully implement extended chains of
tasks and computations without degradation of information.

We propose that this sequential operation model suggests a
compelling dual-timestep approach to neural compilation: At the
neuronal timestep, the NCA’s mutable state evolves according to its
update rules, creating the fundamental dynamics of computation.
At the compiler timestep, hardware parameters are reconfigured to
provide task abstractions and high-level procedural steps. This sep-
aration of concerns, where fast neuronal dynamics handle computa-
tion while slower hardware changes control program flow, mirrors
classical computer architecture but within a continuous, differen-
tiable substrate. As this approach matures, it could enable direct
compilation of algorithms into neural cellular automata, combining
the flexibility of neural networks with programmatic execution.
This would possibly be facilitated by a better task-abstraction and
hardware generation that we detail in the next section.

6



Inputs

Emulate

Aggregate

Original: 86% Emulated: 60%

Figure 5: NCA emulates a neural network. Inputs show a batch of flattened MNIST images, alongside the weight matrix of
a pre-trained single-layer linear classifier. We decompose this matrix multiplication into sub-blocks, that can be directly
emulated in parallel by the NCA. Results are fetched from NCA states and aggregated back into logits (figure shows the first 32
outputs only for readability). We compute accuracy by taking the logits argmax per batch and comparing with labels.

Figure 6: Examples of an Out of Distribution Task: the NCA
needs to distribute a matrix in all corners in a larger grid
than the one seen during training.

4.3.1 Graph-based hardware hypernetwork. Finally, building upon
the limitations of the previous hardware approaches, we are curently
developing a more principled graph-based hardware generation
framework that offers significant improvements in both flexibility
and scale-invariance. This (WIP) approach leverages a task repre-
sentation abstraction where computational operations are modelled
as a graph, with nodes representing input and output regions and
edges encoding specific transformations between them. At the core
of this framework is a Hardware Meta-Network consisting of two
main components: a Graph Neural Network (GNN) encoder and a
coordinate-based hypernetwork.

The GNN processes a task graph structure, where nodes contain
normalized spatial information about input and output regions,
and edges represent specific operations (e.g., matrix multiplica-
tion, rotation) to be performed between regions. Through multiple
message-passing layers, the GNN distils this graph representation
into a fixed-dimensional latent task vector that captures the essen-
tial computational requirements of a single task instance problem.

This latent representation then conditions a coordinate MLP
hypernetwork that generates hardware vectors for every spatial

location in a scale-free manner. The hypernetwork leverages posi-
tional encodings to create spatially varying hardware patterns that
guide the NCA’s computational dynamics across the grid. Crucially,
this approach maintains exact spatial invariance: task specifications
are normalized relative to grid dimensions, which should enable
the generated hardware to automatically adapt to different grid
sizes and region placements without retraining.

This graph-based representation provides an intuitive interface
between human-specified computational tasks and the continuous
NCA substrate. Users can define tasks through a natural graph spec-
ification (inputs, outputs, and operations), and the meta-network
translates these specifications into appropriate hardware configura-
tions. This approach would effetively improve on the concept of a
compiler between human intent and the NCA’s computational capa-
bilities, allowing for better definition of task chaining and temporal
hardware evolution. Moreover, the graph structure can enable rich
extensions beyond our initial implementation. Tasks can be ordered
through edge attributes, allowing sequential execution planning.
Dynamic hardware reconfiguration becomes possible by modify-
ing the task graph over time, creating a secondary dynamics layer
that complements the fast neural dynamics of the cellular automa-
ton itself. This hierarchical temporal structure, where fast neural
dynamics implement local computations while slower hardware
dynamics guide algorithmic flow, mirrors the dichotomy in tradi-
tional computing architectures between clock-cycle operations and
higher-level program execution. Doing so within a unified differen-
tiable framework may ultimately enable more efficient, adaptable
continuous computational paradigms.

7



Figure 7: Illustrating composite computational tasks using modular hardware configurations. Top panel: Multi-Rotation
Sequential rotations resolving in the identity function. Bottom panel: Distribute-Multiply-Rotate task, showing a three-step
process where matrices are distributed, multiplied, and rotated to achieve the target state. Each step shows both the hardware
configuration and corresponding computational states.

Figure 8: Graph-based tasks representations and GNN-based
hypernetwork for hardware generation

5 Conclusion
The exploration of universal computation within cellular automata
has historically been confined to discrete systems, where models
like Conway’s Game of Life and Elementary Cellular Automata
have demonstrated the remarkable ability to emulate Universal
Turing Machines. However, extending this capability to continuous
cellular automata presents significant challenges, primarily due
to the absence of discrete states and the inherent instability of
smooth, analog dynamics. In this work, we have taken pragmatic
first steps toward overcoming these hurdles by leveraging NCA as
a substrate for developing universal computation in a continuous
domain. By employing gradient descent to train NCA rules, we
have demonstrated a pathway to sculpt complex computational
behaviours without the need for manual rule design, shifting the
burden of discovery from human ingenuity to machine learning.

Our results illustrate that NCA can successfully encode funda-
mental computational primitives, such as matrix multiplication and

inversion, and even emulate a neural network capable of solving the
MNIST digit classification task directly within its state. These find-
ings suggest that NCAs can serve as a bridge between traditional
computing architectures and self-organizing systems, offering a
novel computational paradigm that aligns closely with analog sys-
tems. This linkage is particularly promising for designing efficient
computational frameworks for AI models operating, where energy
efficiency and robustness are paramount. Rather than training en-
tirely new rules for each task, our approach hints at the possibility
of discovering optimal hardware configurations that exploit the
fixed physical laws governing these substrates, enablingmeaningful
computations with minimal overhead.

Looking forward, we believe this work lays the groundwork
for transformative advancements in computational science. By au-
tomating the discovery of general-purpose computers within di-
verse physical implementations, NCA could revolutionize how we
harness novel materials and systems for computation, potentially
leading to ultra-efficient analog hardware systems or computa-
tional paradigms that scale linearly with resource demands. While
challenges remain — such as stabilizing continuous dynamics for
reliable symbolic encoding and scaling these systems to more com-
plex tasks—the potential of NCA to unlock universal computation
in continuous cellular automata opens new avenues for exploration.
Ultimately, this research not only advances our understanding of
computation in continuous dynamics but also paves the way for
the next generation of adaptive, energy-efficient computing tech-
nologies.

8



References
[1] 2024. Toward Artificial Open-Ended Evolution within Lenia using

Quality-Diversity. Artificial Life Conference Proceedings, Vol. AL-
IFE 2024: Proceedings of the 2024 Artificial Life Conference.
doi:10.1162/isal_a_00827 arXiv:https://direct.mit.edu/isal/proceedings-
pdf/isal2024/36/85/2461065/isal_a_00827.pdf

[2] ADA University, Vladislav Gladkikh, Alexandr Nigay, and International Univer-
sity of Information Technologies. 2018. Wireworld++: A Cellular Automaton
for Simulation of Nonplanar Digital Electronic Circuits. 27, 1 (2018), 19–44.
doi:10.25088/ComplexSystems.27.1.19

[3] John Backus. 2007. Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs. Association for ComputingMachinery,
New York, NY, USA, 1977. https://doi.org/10.1145/1283920.1283933

[4] Danielle Smith Bassett and Ed Bullmore. 2006. Small-World Brain Net-
works. The Neuroscientist 12, 6 (2006), 512–523. doi:10.1177/1073858406293182
arXiv:https://doi.org/10.1177/1073858406293182 PMID: 17079517.

[5] Edward T. Bullmore and Olaf Sporns. 2012. The economy of brain network
organization. Nature Reviews Neuroscience 13 (2012), 336–349. https://api.
semanticscholar.org/CorpusID:16174225

[6] Bert Wang-Chak Chan. 2019. Lenia - Biology of Artificial Life. 28, 3 (2019),
251–286. doi:10.25088/ComplexSystems.28.3.251 arXiv:1812.05433 [nlin]

[7] Dennis Valbjørn Christensen, Regina Dittmann, Bernabé Linares-Barranco, Abu
Sebastian,Manuel Le Gallo, Andrea Redaelli, Stefan Slesazeck, ThomasMikolajick,
Sabina Spiga, Stephan Menzel, I. I. Valov, Gianluca Milano, Carlo Ricciardi, Shi-
Jun Liang, Feng Miao, Mario Lanza, Tyler James Quill, Scott Tom Keene, Alberto
Salleo, Julie Grollier, Danijela Markovi’c, Alice Mizrahi, Peng Yao, J. Joshua
Yang, G. Indiveri, John Paul Strachan, Suman Datta, Elisa Vianello, Alexandre
Valentian, Johannes Feldmann, Xuan Li, WolframH. P. Pernice, Harish Bhaskaran,
Stephen B. Furber, Emre O. Neftci, Franz Scherr, Wolfgang Maass, Srikanth
Ramaswamy, Jonathan C. Tapson, Priyadarshini Panda, Youngeun Kim, Gouhei
Tanaka, Simon J. Thorpe, Chiara Bartolozzi, Thomas A. Cleland, Christoph Posch,
Shih-Chii Liu, Gabriella Panuccio, Mufti Mahmud, Arnab Neelim Mazumder,
Morteza Darvish Morshedi Hosseini, Tinoosh Mohsenin, Elisa Donati, Silvia Tolu,
Roberto Galeazzi, Martin Ejsing Christensen, Sune Holm, Daniele Ielmini, and
N. H. Pryds. 2021. 2022 roadmap on neuromorphic computing and engineering.
Neuromorphic Computing and Engineering 2 (2021). https://api.semanticscholar.
org/CorpusID:239050390

[8] Department of Computation and Neural Systems, Caltech, Mail Stop 136-93,
Pasadena, California 91125, USA and Matthew Cook. 2004. Universality in
Elementary Cellular Automata. 15, 1 (2004), 1–40. doi:10.25088/ComplexSystems.
15.1.1

[9] Maxence Faldor and Antoine Cully. 2025. CAX: Cellular Automata Accelerated
in JAX. In The Thirteenth International Conference on Learning Representations.
https://openreview.net/forum?id=o2Igqm95SJ

[10] Gary William Flake. 1998. The computational beauty of nature. MIT Press,
Cambridge, MA, USA.

[11] A. Gajardo, A. Moreira, and E. Goles. 2002. Complexity of Langton’s ant. 117, 1
(2002), 41–50. doi:10.1016/S0166-218X(00)00334-6

[12] Martin Gardner. 1970. MATHEMATICAL GAMES. Scientific American 223, 4
(1970), 120–123. http://www.jstor.org/stable/24927642

[13] Etienne Guichard, Felix Reimers, Mia Kvalsund, Mikkel Lepperød, and Stefano
Nichele. 2025. EngramNCA: a Neural Cellular Automaton Model of Memory
Transfer. arXiv:2504.11855 [cs.NE] https://arxiv.org/abs/2504.11855

[14] Gautier Hamon, Mayalen Etcheverry, Bert Wang-Chak Chan, Clément Moulin-
Frier, and Pierre-Yves Oudeyer. 2024. Discovering Sensorimotor Agency
in Cellular Automata using Diversity Search. doi:10.48550/arXiv.2402.10236
arXiv:2402.10236 [cs]

[15] C. Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990),
1629–1636. doi:10.1109/5.58356

[16] David Meunier, Renaud Lambiotte, and Edward Bullmore. 2010. Modular and
Hierarchically Modular Organization of Brain Networks. 4 (12 2010), 200. doi:10.
3389/fnins.2010.00200

[17] Melanie Mitchell, James Crutchfield, and Rajarshi Das. 2000. Evolving Cellular
Automata with Genetic Algorithms: A Review of Recent Work. First Int. Conf. on
Evolutionary Computation and Its Applications 1 (May 2000).

[18] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin.
2020. Growing Neural Cellular Automata. Distill (2020). doi:10.23915/distill.00023
https://distill.pub/2020/growing-ca.

[19] Elias Najarro, Shyam Sudhakaran, Claire Glanois, and Sebastian Risi. 2022. Hy-
perNCA: Growing Developmental Networks with Neural Cellular Automata.
doi:10.48550/arXiv.2204.11674 arXiv:2204.11674 [cs]

[20] Pietro Miotti, Eyvind Niklasson, Ettore Randazzo, Alexander Mordvintsev. 2025.
Differentiable Logic CA: from Game of Life to Pattern Generation. https://google-
research.github.io/self-organising-systems/difflogic-ca.

[21] Stephan Rafler. 2011. Generalization of Conway’s "Game of Life" to a continuous
domain - SmoothLife. doi:10.48550/arXiv.1111.1567 arXiv:1111.1567 [nlin]

[22] Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and
Sam Greydanus. 2020. Self-classifying MNIST Digits. Distill (2020). doi:10.23915/
distill.00027.002 https://distill.pub/2020/selforg/mnist.

[23] Chris Reinke, Mayalen Etcheverry, and Pierre-Yves Oudeyer. 2020. Intrinsically
Motivated Discovery of Diverse Patterns in Self-Organizing Systems. doi:10.
48550/arXiv.1908.06663 arXiv:1908.06663 [cs]

[24] Paul Rendell. 2016. Turing Machine Universality of the Game of Life. Emergence,
Complexity and Computation, Vol. 18. Springer International Publishing. doi:10.
1007/978-3-319-19842-2

[25] Emmanuel Sapin, Olivier Bailleux, and Jean-Jacques Chabrier. 2003. Research of
a Cellular Automaton Simulating Logic Gates by Evolutionary Algorithms. doi:10.
1007/3-540-36599-0_39 Pages: 423.

[26] Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell,
Mark E. Dean, Garrett S. Rose, and James S. Plank. 2017. A Survey of Neuromor-
phic Computing and Neural Networks in Hardware. arXiv:1705.06963 [cs.NE]
https://arxiv.org/abs/1705.06963

[27] A M Turing. 1937. ON COMPUTABLE NUMBERS, WITH AN APPLICATION
TO THE ENTSCHEIDUNGSPROBLEM. (1937).

[28] Bernd Ulmann. 2022. Analog Computing. De Gruyter Oldenbourg, Berlin, Boston.
doi:doi:10.1515/9783110787740

[29] Eric W. Weisstein. [n. d.]. Universal Cellular Automaton. https://mathworld.
wolfram.com/UniversalCellularAutomaton.html Publisher: Wolfram Research,
Inc..

[30] Peter Whidden. [n. d.]. . https://github.com/PWhiddy/Growing-Neural-Cellular-
Automata-Pytorch/tree/master

[31] Stephen Wolfram. 1984. Cellular automata as models of complexity. 311, 5985
(1984), 419–424. doi:10.1038/311419a0 Publisher: Nature Publishing Group.

[32] Stephen Wolfram. 2002. A New Kind of Science. Wolfram Media. https://www.
wolframscience.com

9

https://doi.org/10.1162/isal_a_00827
https://arxiv.org/abs/https://direct.mit.edu/isal/proceedings-pdf/isal2024/36/85/2461065/isal_a_00827.pdf
https://arxiv.org/abs/https://direct.mit.edu/isal/proceedings-pdf/isal2024/36/85/2461065/isal_a_00827.pdf
https://doi.org/10.25088/ComplexSystems.27.1.19
https://doi.org/10.1145/1283920.1283933
https://doi.org/10.1177/1073858406293182
https://arxiv.org/abs/https://doi.org/10.1177/1073858406293182
https://api.semanticscholar.org/CorpusID:16174225
https://api.semanticscholar.org/CorpusID:16174225
https://doi.org/10.25088/ComplexSystems.28.3.251
https://arxiv.org/abs/1812.05433 [nlin]
https://api.semanticscholar.org/CorpusID:239050390
https://api.semanticscholar.org/CorpusID:239050390
https://doi.org/10.25088/ComplexSystems.15.1.1
https://doi.org/10.25088/ComplexSystems.15.1.1
https://openreview.net/forum?id=o2Igqm95SJ
https://doi.org/10.1016/S0166-218X(00)00334-6
http://www.jstor.org/stable/24927642
https://arxiv.org/abs/2504.11855
https://arxiv.org/abs/2504.11855
https://doi.org/10.48550/arXiv.2402.10236
https://arxiv.org/abs/2402.10236 [cs]
https://doi.org/10.1109/5.58356
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.23915/distill.00023
https://doi.org/10.48550/arXiv.2204.11674
https://arxiv.org/abs/2204.11674 [cs]
https://google-research.github.io/self-organising-systems/difflogic-ca
https://google-research.github.io/self-organising-systems/difflogic-ca
https://doi.org/10.48550/arXiv.1111.1567
https://arxiv.org/abs/1111.1567 [nlin]
https://doi.org/10.23915/distill.00027.002
https://doi.org/10.23915/distill.00027.002
https://doi.org/10.48550/arXiv.1908.06663
https://doi.org/10.48550/arXiv.1908.06663
https://arxiv.org/abs/1908.06663 [cs]
https://doi.org/10.1007/978-3-319-19842-2
https://doi.org/10.1007/978-3-319-19842-2
https://doi.org/10.1007/3-540-36599-0_39
https://doi.org/10.1007/3-540-36599-0_39
https://arxiv.org/abs/1705.06963
https://arxiv.org/abs/1705.06963
https://doi.org/doi:10.1515/9783110787740
https://mathworld.wolfram.com/UniversalCellularAutomaton.html
https://mathworld.wolfram.com/UniversalCellularAutomaton.html
https://github.com/PWhiddy/Growing-Neural-Cellular-Automata-Pytorch/tree/master
https://github.com/PWhiddy/Growing-Neural-Cellular-Automata-Pytorch/tree/master
https://doi.org/10.1038/311419a0
https://www.wolframscience.com
https://www.wolframscience.com

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 General Setup
	3.2 Neural Cellular Automata
	3.3 Hardware (Immutable State)
	3.4 Tasks
	3.5 Training

	4 Experiments and Results
	4.1 Task Training
	4.2 MNIST Classifier emulation
	4.3 Future directions: task composition and neural compiler

	5 Conclusion
	References

