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Abstract

Recent advancements in multimodal large language models (MLLMs) have demon-
strated considerable potential for comprehensive 3D scene understanding. However,
existing approaches typically utilize only one or a limited subset of 3D modali-
ties, resulting in incomplete representations of 3D scenes and reduced interpretive
accuracy. Furthermore, different types of queries inherently depend on distinct
modalities, indicating that uniform processing of all modality tokens may fail to
effectively capture query-specific context. To address these challenges, we propose
Uni3D-MoE, a sparse Mixture-of-Experts (MoE)-based 3D MLLM designed to
enable adaptive 3D multimodal fusion. Specifically, Uni3D-MoE integrates a
comprehensive set of 3D modalities, including multi-view RGB and depth im-
ages, bird’s-eye-view (BEV) maps, point clouds, and voxel representations. At
its core, our framework employs a learnable routing mechanism within the sparse
MoE-based large language model, dynamically selecting appropriate experts at
the token level. Each expert specializes in processing multimodal tokens based
on learned modality preferences, thus facilitating flexible collaboration tailored to
diverse task-specific requirements. Extensive evaluations on standard 3D scene
understanding benchmarks and specialized datasets demonstrate the efficacy of
Uni3D-MoE.

1 Introduction

3D scene understanding is fundamental for intelligent systems such as robotic navigation [1, 2, 3] and
autonomous driving [4, 5, 6, 7]. Recent advances in multimodal large language models (MLLMs)
have demonstrated considerable potential for enhancing the interpretation and analysis of complex 3D
environments [8, 9, 10, 11, 12, 13]. Usually, existing methods for multimodal 3D scene understanding
leverage specific combinations of input modalities. For instance, Chat-3D [14] constructs 3D MLLMs
primarily from point clouds. Chat-Scene [15] combines multi-view RGB images and point cloud
data. GPT4Scene [16] integrates RGB images of multiple views with bird’s eye view (BEV)
representations. Video-3D LLM [17] leverages positional video and 3D coordinates to generate
spatially-aware representations.

Despite these advancements, leveraging diverse modalities effectively for comprehensive 3D under-
standing remains challenging, as shown in Fig. 1. Two critical limitations persist: 1) Existing methods
usually rely on a limited subset of available modalities, potentially omitting essential information due
to occlusions or viewpoint restrictions. For example, relying solely on multi-view RGB images might
fail to capture obscured objects, complicating queries such as “How many TVs are in the house?” 2)
Different question types exhibit varying dependencies on specific modalities. Queries about object
geometry, like “What shape is the wooden desk?”, are better addressed with geometric modalities
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such as point clouds, while color-based queries (e.g., “What color is the blanket on the bed?”)
primarily use visual cues from RGB or depth images. Current dense architectures typically process
all modalities uniformly, hindering adaptive alignment with query-specific modality preferences.

Figure 1: Challenges in 3D scene understanding. (1)
Limited modalities may not provide enough scene
information. (2) Different question types have vary-
ing dependencies on modalities. Existing methods
typically treat all modality tokens equally, without
adapting to question-specific modality preferences.

In this paper, we propose Uni3D-MoE,
a scalable and adaptive multimodal 3D
scene understanding framework built upon
a sparse Mixture-of-Experts (MoE) architec-
ture. Uni3D-MoE comprises three key com-
ponents: 1) modality-specific encoders that
extract features from multiple input modali-
ties, including multi-view RGB and depth im-
ages, BEV maps, point clouds, and voxels; 2)
modality-alignment adapters that unify these
diverse modality-specific features into a com-
mon latent representation; and 3) sparse MoE
modules integrated within the large language
model (LLM), featuring a learnable routing
mechanism to dynamically select appropriate
experts for each modality token. Our Uni3D-
MoE has two merits: 1) by integrating com-
prehensive 3D modalities, the model achieves
more complete and accurate scene represen-
tations; 2) the routing mechanism selectively
activates relevant expert pathways based on
modality tokens, enabling specialized, adap-
tive processing tailored to each modality.

Extensive experiments on public 3D scene understanding benchmarks [18, 19, 20] and datasets
curated around specific question types demonstrate the effectiveness of Uni3D-MoE. In particular,
our model achieves CIDEr gains of 46.9 on the location task and 51.9 on the color task through
comprehensive modality details, with further improvements of 6.6 and 10.2 from introducing MoE.
The main contributions are summarized as follows:

• Unified 3D MoE architecture. We propose Uni3D-MoE, the first unified sparse MoE-
based MLLM explicitly designed for 3D scene understanding, supporting a wide range of
modalities, including multi-view RGB-D images, BEV maps, point clouds, and voxels.

• Exploring MoE for Adaptive 3D Modality Fusion. As the first time, we employ sparse
MoE to adaptively fuse 3D modalities. The adaptive routing effectively enhances multimodal
fusion tailored to specific queries.

• Enhanced performance. Extensive empirical evaluation demonstrates that Uni3D-MoE
significantly outperforms existing methods on several 3D scene understanding tasks.

2 Related Work

3D Vision-language Learning. Early research mainly leveraged point clouds [21, 22, 23, 24, 25] or
voxels [10, 26, 27] to model objects and scenes, enabling LLMs to perform basic 3D grounding [13,
11, 28, 29] and question answering [30, 31, 32]. Motivated by the spatial ability of self-supervised 2D
encoders, subsequent works explore projecting 2D features into 3D space [33, 27], which enhances the
comprehension of fine-grained details and complex structures. Recently, 2D videos [10, 34, 16, 17]
and BEV [16] have also demonstrated comparable performance to 3D representations, prompting a
renewed focus on 2D information in spatial understanding. While these efforts have significantly
advanced the field [35, 36, 37, 38, 39], most of them focus on exploiting the strengths of a single
modality. The exploration of complementary advantages across multiple modalities remains an open
and compelling research topic.

Mixture of Experts. The Mixture-of-Experts (MoE) framework achieves comparable performance
to dense models while activating far fewer parameters during inference [40, 41, 42, 43, 44]. MoE is
typically categorized into two types based on whether the routing is learned: hard and soft routers.
The hard router [45, 46] is suitable for scenarios with clear modality boundaries and predefined expert
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Figure 2: Overview of our method. Uni3D-MoE covers major input modalities of 3D scenes,
including RGB/depth images, BEV maps, point clouds, and voxels. To ensure informative spatial
coverage, multi-view images are selected using a Maximum Voxel Coverage Sampling (MVCS)
algorithm. Each modality is encoded by a modality-specific encoder and aligned via lightweight
adapters. The resulting 3D visual tokens, together with text tokens, are then fed into a sparse Mixture-
of-Expert (MoE)-based LLM. A learnable soft router dynamically assigns each token to a subset of
suitable experts for specialized processing. The model is optimized with a joint objective combining
cross-entropy loss lce and a sparsity-aware expert balancing loss lmoe.

assignments. It directly routes different modalities (e.g., images, text) to designated experts [14, 36].
However, hard routing is inflexible, unable to capture token-level semantics or adapt expert selection
to tasks [47]. To improve model adaptability, recent dense LLMs have introduced sparse soft routing
mechanisms [48, 49], such as LLaMA-MoE [50], MoE-LLaVA [47], and Uni-MoE [51]. These
models primarily operate on 1D text and 2D visual inputs. 3D-MoE [52] and MiniGPT-3D [53]
initially explore MoE for 3D tasks but lack unified modeling of diverse 3D modalities like voxels,
BEV and multi-view images for scene understanding. To this end, we aim to develop a 3D MLLM
with soft-routing MoE to achieve unified and adaptive fusion of diverse 3D modalities.

3 Method

Overview. Uni3D-MoE is a unified 3D MLLM framework that leverages sparse MoE for adaptive
scene understanding. Fig. 2 illustrates the architecture of Uni3D-MoE, which contains 3D scene
feature encoders, feature alignment adapters, and a sparse MoE-enhanced LLM. First, we introduce
the 3D scene feature extractor, designed to handle diverse 3D modalities and produce unified feature
tokens (Sec. 3.1). Then, we detail the learnable soft router, which selectively activates expert
pathways to enable token-level specialization (Sec. 3.2). Finally, we present the training strategy 3.3
and optimization objectives 3.4.

3.1 3D Scene Feature Extractor

Modality Data Preparation. First, we employ the Maximum Voxel Coverage Sampling (MVCS)
algorithm to select informative keyframes. Compared with previous approaches [17], our improved
MVCS achieves 100× speed-up in computing coverage by using camera poses instead of depth
images. Additionally, we enhance frame quality through voxel weighting, depth pruning, and blur
image filtering. Further algorithmic details are provided in the Appendix. Then, to provide global
spatial context, we render BEV maps with explicit semantic segmentation cues.
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Modality-specific Feature Extraction. Uni3D-MoE employs modality-specific encoders to capture
more comprehensive representations of 3D scenes. Specifically, multi-view RGB images are encoded
using a pre-trained DINOv2 [54] to obtain Frgb. For multi-view RGB-D inputs, we first extract 2D
patches via CLIP [55], and then integrate corresponding 3D spatial positions derived from depth
maps, generating spatially-aware RGB-D features Frgbd. We also use DINOv2 [54] to extract BEV
features Fbev. Point clouds, downsampled via Farthest Point Sampling (FPS) [56], are processed
through PointNet++ [56], yielding Fpc. Voxel grids are voxelized and hierarchically encoded by
Mask3D’s [57] sparse convolutional U-Net to produce Fvoxel.

Modality Feature Alignment. Subsequently, tokens from five modalities are aligned to the text space
via respective adapters: F ′

m = Adapterm(Fm) ∈ RNm×Dtxt , where m ∈ {rgb, rgbd, bev, pc, voxel},
Nm is the token count of modality m and Dtxt is the target embedding dimension. Finally, the
text prompt feature Ftxt, combined with modality-aligned features F ′

m, composes the unified 3D
scene representation: Funi = {Ftxt,F

′
rgb,F

′
rgbd,F

′
bev,F

′
pc,F

′
voxel} ∈ RNuni×Dtxt , where Nuni =∑

m Nm denotes the total number of multimodal tokens.

3.2 Soft Routing for Expert Selection

The MoE module employs a learnable soft routing mechanism to achieve intelligent token-to-expert
assignment. Given a token fi ∈ Funi and a set of E experts {E1, E2, . . . , EE}, a lightweight routing
network computes an affinity score s

(e)
i between fi and each expert Ee, where e ∈ {1, 2, . . . , E}.

These scores are then normalized into a probability distribution:

π
(e)
i =

exp(s
(e)
i )∑E

j=1 exp(s
(j)
i )

, where s
(e)
i = w⊤

e fi. (1)

Here, we ∈ RD denotes the expert-specific routing parameter for expert Ee, and π
(e)
i represents the

routing probability of token fi to expert Ee. Each token fi is routed to its top-k experts with the
highest probabilities, and the corresponding outputs are aggregated as:

f̂i =
∑
e∈Si

π
(e)
i · Ee(fi), (2)

where Si ⊆ {1, 2, . . . , E} is the set of top-k selected experts for fi, and Ee(fi) is the output of expert
Ee applied to token fi.

To balance expert utilization and ensure specialized routing, we incorporate sparsity-aware expert
balancing loss, detailed in Sec. 3.4. In this way, Uni3D-MoE achieves adaptive multimodal fusion
within each expert, thus accommodating prompt-specific requirements.

3.3 Training Strategy

Figure 3: Overview of two-stage training strategy.

As shown in Fig. 3, we design a progressive
two-stage training strategy for Uni3D-MoE.

Stage I: The goal of this stage is to align 3D
visual representations with the textual space,
enabling the LLM to capture semantic cues
from diverse modalities. During this stage, the
modality-specific adapters and LoRA-injected
layers within the LLM are jointly trained, while
all visual encoders remain frozen except for
the spatial-aware RGBD module and the point
cloud encoder. The model is trained with com-
plex instructions spanning multiple downstream
tasks. We avoid introducing MoE at this stage
due to optimization instability when replacing
the dense LLM directly. Instead, we refine the
model’s instruction-following and generation ca-
pabilities to prepare for sparse training.
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Stage II: The objective of this stage is to incorporate the sparse MoE architecture to expand model
capacity and enable expert specialization. Inspired by [47], we replicate the feed-forward network
(FFN) multiple times to initialize expert modules. At this stage, only the soft router and expert
modules are trainable, while all other parameters are kept frozen. To guide the routing process and
promote expert diversity, we introduce a sparsity-aware expert balancing loss lmoe alongside the
standard cross-entropy loss lce. The training data remains the same as in Stage I, ensuring continuity
and stability during the transition to sparse expert routing.

3.4 Training Objective

All tasks are standardized into a unified user-assistant interaction format. During training stage I, the
training objective is to minimize the autoregressive cross-entropy loss on the generated text:

Lce = −
T∑

t=1

logPθ(Yt | Y<t,Funi), (3)

where Yt is the t-th target token, Y<t denotes previously generated tokens, Funi is the unified
multimodal context, and θ represents trainable parameters.

In Stage II, we introduce a sparse MoE mechanism and incorporate sparsity-aware expert balancing
loss to encourage expert diversity [49]:

Lmoe = E ·
E∑

e=1

p̂(e) · π̄(e),

p̂(e) =
1

Nuni

Nuni∑
i=1

1

{
argmax

j
π
(j)
i = e

}
, π̄(e) =

1

Nuni

Nuni∑
i=1

π
(e)
i ,

(4)

where p̂(e) denotes the fraction of tokens routed to expert e, and π̄(e) is the average routing probability
to expert Ee. Consistent with the above, E is the number of experts, Nuni is the total number of
unified tokens, and π

(e)
i is the routing probability from token i to expert Ee. Here, 1{·} denotes the

indicator function, which returns 1 if the condition holds and 0 otherwise.

The final training objective is defined as the sum of Lce and Lmoe, where λ is a balancing coefficient:

Ltotal = Lce + λ · Lmoe. (5)

4 Experiments

4.1 Experiment Settings

Datasets. We construct a unified training corpus by aggregating multiple 3D scene understanding
datasets built on ScanNet [58], which contains 1, 513 indoor RGB-D scans with extensive 2D and
3D annotations. The training data covers dense captioning (Scan2Cap [19]), visual question answer-
ing (ScanQA[18], SQA3D [20]), and single- and multi-object visual grounding (ScanRefer [59],
Multi3DRefer [60]). All data are reformatted into a unified user–assistant interaction format. During
evaluation, besides standard 3D scene understanding benchmarks [18, 19, 20], we also use datasets
curated around specific question types. Additional details are provided in the Appendix.

Model Details. We initialize our LLM from LLaVA-v1.5-7B [61] and introduce MoE module into
layers 8, 12, 16, 20, 24, and 28 at the second training stage. Each MoE layer comprises 8 experts,
with the top-2 experts selected for each token at inference time. Following [47, 51], a load-balancing
coefficient of α = 0.01 is applied to promote expert utilization diversity.

Training Details. We employ a two-stage training strategy: 2 epochs in stage I and 1 epoch in stage II,
both with batch size 8. Both stages utilize the AdamW optimizer with a constant learning rate of 2e-5.
A warm-up schedule with a warmup ratio of 0.03 followed by cosine decay is applied independently
to each stage. The input sequence length is capped at 4096 tokens. To optimize training efficiency
and memory usage, we use BF16-based mixed-precision training and leverage DeepSpeed ZeRO-2
offloading.
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Table 1: Evaluation results of 3D question answering on ScanQA [18] and SQA3D [20], as well
as 3D dense caption on Scan2Cap [19]. EM@1 refers to the top-1 exact match accuracy; BLEU-1,
BLEU-4, METEOR, and CIDEr denote text similarity scores between the predicted and ground-truth
answer. For Scan2Cap [19], CIDEr is reported at IoU threshold of 0.5. ⋆ indicates that high-resolution
settings are not used. We highlight the best performance in red and the second-best in blue.

Method ScanQA SQA3D Scan2Cap
EM@1 BLEU-1 BLEU-4 METEOR ROUGE CIDEr EM@1 CIDEr

Task-specific
ScanQA [18] 21.1 30.2 10.1 13.1 33.3 64.9 47.2 -
3D-VLP [67] - 30.5 11.2 13.5 34.5 - 54.9 55.0
3D-VisTA [68] 22.4 - - 13.9 35.7 - 48.5 66.9

2D LLMs
InternVL2-8B [69] - - 3.3 14.5 34.3 62.5 33.0 -
Qwen2-VL-7B [70] - 27.8 3.0 11.4 29.3 53.9 40.7 -
LLaVA-Video [71] - - 3.1 17.7 44.6 88.7 48.5 -

3D LLMs
PQ3D [26] 20.0 36.1 - 13.9 - 65.2 47.1 80.3

LAMM [72] - - 5.8 - - 42.4 - -
3D-LLM [73] 20.5 39.3 12.0 14.5 35.7 69.4 - -
Chat-3D [14] - 29.1 6.4 11.9 28.5 53.2 - -

Chat-3D V2 [74] 22.9 38.4 7.3 16.1 40.1 77.1 54.7 -
Chat-Scene [15] 21.6 43.2 14.3 18.0 41.6 87.7 54.6 77.1

LL3DA [75] - - 13.5 15.9 37.3 76.8 - 65.2
LLaVA-3D [33] 27.0 - 14.5 20.7 50.1 91.7 55.6 79.2

LEO [76] - - 11.5 16.2 39.3 80.0 50.0 72.4
Scene-LLM [10] 27.2 - 12.0 16.6 40.0 80.0 54.2 37.9

GPT4Scene⋆ [16] - 43.4 14.6 17.7 43.6 90.9 - 60.6

Uni3D-MoE (ours) 30.8 43.7 17.5 19.0 47.1 97.6 57.2 85.2

Evaluation Metrics. Following [33, 15, 62], we adhere to the commonly used metrics to compre-
hensively evaluate our method across multiple tasks. Specifically, for ScanQA [18], we evaluate the
top-1 predicted answers using the exact match accuracy (EM@1), the refined exact match protocol
(EM-R@1), F1 score, BLEU-1 [63], BLEU-4 [63], METEOR [64], ROUGE [65], and CIDEr [66].
For SQA3D [20], we use EM@1. For Scan2Cap [19], we combine CIDEr with an IoU threshold of
0.5 between predicted and reference bounding boxes.

4.2 Comparison with State-of-the-art Methods

Comparison Results. Table 1 presents the comparative evaluation results on downstream 3D tasks,
including ScanQA [18], SQA3D [20], and Scan2Cap [19] benchmarks. Uni3D-MoE exhibits superior
performance on the ScanQA benchmark [19], surpassing existing state-of-the-art methods across
multiple metrics. Specifically, it achieves relative improvements of 11.7% on EM@1, 16.8% on
BLEU-4, and 6.0% on CIDEr. Furthermore, Uni3D-MoE outperforms LLAVA-3D [33] by 2.7% on
EM@1 on SQA3D benchmark [20]. On the Scan2Cap [19] benchmark, Uni3D-MoE achieves an
improvement of 5.8% on CIDEr@0.5 compared to the previous advanced method PQ3D [26]. More
comprehensive results, including visual grounding evaluations, are provided in the Appendix.

Analysis. The performance benefits from the synergistic effect of heterogeneous modalities, where
each modality contributes complementary and modality-specific cues. Furthermore, sparse expert
routing further enhances this by adaptively selecting the most relevant modalities for each input,
leading to more precise 3D scene understanding.

4.3 Analysis of MoE

Modality Aware Expert Specialization. Figure 4 illustrates the modality token routing behavior
across MoE layers from two perspectives: expert-centric and modality-centric. First, the top two
rows of Fig. 4 visualize the distribution of modality tokens across 8 experts at each MoE layer. The
high proportions of RGB, RGBD, and BEV tokens are attributed to their larger token counts in the
input. The expert-wise distributions still capture each expert’s modality specialization and selection
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Figure 4: Token-to-expert routing across MoE layers. The first two rows show the modality token
distribution across different experts at various MoE layers. The higher proportion of RGB, RGBD,
and BEV tokens is attributed to their larger token counts, while expert-wise distributions reveal each
expert’s modality preferences. The third row presents the expert assignment distribution for each
modality, indicating how each modality tends to select different experts throughout the MoE layers.

preferences. For instance, expert E2 shows a tendency to process voxel and point cloud tokens, which
may indicate a specialization in geometric and structural information. Expert E4 tends to focus more
on RGB and BEV inputs, suggesting a possible strength in handling appearance and spatial-view
representations. Additionally, expert E6 at layer 12 and expert E6 at layer 20 display a noticeable
preference for RGBD, potentially reflecting an ability to integrate color and depth cues. Second,
the third row of Fig. 4 presents a modality-centric view of expert routing, reflecting which experts
usually process tokens of this modality. The results also suggests that multi-view RGB tokens are
more often processed by expert E4, while point cloud tokens tend to be handled by experts E2, E7,
and E8. Text tokens appear more evenly distributed across all experts, which may indicate that each
expert possesses a basic capacity for processing language information. Overall, the results highlight
the effectiveness of our MoE design in promoting modality-aware expert specialization.

Figure 5: Modality-expert routing preferences
across different question types. Line thick-
ness indicates normalized token routing pro-
portions. Preferred modality-expert routes for
each query type are highlighted in color; oth-
ers are shown in gray.

Question-type Aware Expert Specialization. To
explore expert-specific modality preferences across
question types, we select 5 representative categories
(color, shape, location, counting, and type), each con-
taining 500 samples from downstream validation/test
sets. To mitigate biases caused by differing token
counts among modalities, token routing frequencies
were normalized within each modality. Fig. 5 pro-
vides insights into modality-expert routing prefer-
ences across these question categories. Line thick-
ness indicates normalized token routing proportions.
Preferred modality-expert routes for each question
type are highlighted in color; others are shown in
gray. For instance, color-related questions show a
preference for the RGB modality tokens routed pre-
dominantly to expert E4, and shape-related questions
favor the point cloud modality routed primarily to ex-
pert E3. Additionally, expert E4 consistently exhibits
relatively high activations across multiple question
categories, potentially indicating its broader applica-
bility within the MoE structure. These observations demonstrate that our model’s routing mechanism
exhibits adaptive modality preferences tailored to the specific question.
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Figure 6: Top-1 activated routing pathways for differ-
ent modalities, highlighting dynamic and specialized
expert activation.

Figure 7: The proportion of tokens assigned
to each expert indicates the overall load bal-
ance and routing diversity.

Activated Routing Pathways. We further track all tokens on downstream tasks and apply PCA [77]
to identify the top-10 most representative routing pathways. Fig. 6 visualizes the top-1 activated
expert routing trajectories across MoE layers for each modality. Please refer to the Appendix for
more visualization results. We observe that, at layer 20, previously unseen RGB and BEV tokens
tend to be routed to expert E6, whereas PC, voxel, and depth (RGBD) tokens prefer expert E5. This
suggests that Uni3D-MoE may implicitly distinguish visual semantic information from 3D geometric
information during high-level representation learning, assigning them accordingly to suitable experts.
Additionally, PC and voxel tokens consistently share the same expert across layers 12, 20, and 28,
which, to some extent, indicates the model’s stable preference for spatial structural features. Overall,
these results highlight Uni3D-MoE’s modality-aware dynamic routing, enhancing multimodal fusion
for scene understanding.

Expert Load Balance. Figure 7 shows the proportion of tokens assigned to each expert across
MoE layers. Benefiting from the sparsity-aware expert balancing loss lmoe, the overall token
distribution remains relatively balanced, which helps improve routing diversity and prevents expert
under-utilization.

4.4 Ablation Study

In this section, we conduct ablation studies on Uni3D-MoE. First, we evaluate modality contributions
to various question categories. Then, we examine the effectiveness of the MoE module.

Ablation on Modality Contribution. As shown in Table 2, each modality contributes distinctly
to different question types. Removing multi-view RGB modality (w/o Frgb) primarily impacts
performance on the “color” questions, indicating its crucial role in capturing visual color details.
Excluding the BEV modality (w/o Fbev) notably reduces performance on “Location” and “type” tasks,
highlighting its importance in spatial understanding. Omitting RGB-D modality (w/o Frgbd) mainly
decreases performance in the “nature” category, indicating its essential role in capturing detailed
characteristics such as object type and shape. Removing point cloud data (w/o Fpc) considerably
affects performance on both “counting” and “nature” categories, demonstrating its strength in
capturing object count and structural features. The ablation of voxel modality (w/o Fvoxel) leads
to a notable performance drop in “location” and “counting” tasks, underscoring its effectiveness in
detailed spatial and quantity understanding. Overall, these results clearly illustrate the complementary
and task-specific roles of each modality in Uni3D-MoE, highlighting how their specialized cues
collectively facilitate accurate semantic understanding and effective question-specific reasoning.

Ablation on MoE. First, we evaluate the effectiveness of the MoE module across different question
categories. Specifically, we select and construct five types of questions (location, type, nature,
counting, and color) from downstream tasks. Table 3 demonstrates that incorporating the MoE
module consistently improves performance across all these categories, with notable CIDEr gains for
“type” and “color”. Then, we investigate the effect of varying the number of experts within MoE
layers. Considering GPU memory constraints, we set the number of experts per MoE layer to 4, 6,
and 8, with each token routed to the top-2 experts. As shown in Table 4, the model with 8 experts per
MoE layer outperforms the baseline without MoE by 9.2 on CIDEr. Furthermore, the results show a
trend of improved performance with an increasing number of experts, though at the cost of increased
training time, suggesting a trade-off between accuracy and computational cost. Additional ablations
on the MoE module, including the choice of MoE-equipped layers, are provided in the Appendix.
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Table 2: Ablation results of input modalities across five question categories, including location, type,
nature, counting, and color, where “nature” mainly covers object shape and type. “w/” denotes
experiments using only the specified modality; “w/o” denotes experiments excluding that modality.
“w/o 2D info”: only point cloud and voxel; “w/o 3D info”: only RGB and BEV.

Method Location Type Nature Counting Color

F1 CIDEr F1 CIDEr F1 CIDEr F1 CIDEr F1 CIDEr

w/ Frgb 25.48 46.42 22.89 40.37 41.64 76.38 45.51 68.03 37.43 62.47
w/ Frgbd 20.79 31.50 17.27 31.54 32.34 60.65 37.95 59.66 36.96 57.43
w/ Fbev 19.92 28.76 18.35 33.56 31.97 56.33 38.94 62.89 33.65 56.92
w/ Fpc 18.71 26.26 16.95 28.34 33.62 59.31 38.54 62.83 36.73 62.31
w/ Fvoxel 16.00 25.39 18.20 31.57 37.02 69.35 42.12 70.09 31.76 56.85

w/o Frgb 32.42 59.89 31.01 55.92 52.25 102.53 53.08 89.53 49.78 86.52
w/o Frgbd 34.67 66.34 31.93 55.41 51.25 97.31 51.39 77.83 50.32 87.86
w/o Fbev 32.43 60.17 30.94 54.85 51.58 98.58 52.65 83.41 49.16 85.75
w/o Fpc 35.06 69.19 31.73 55.88 50.92 96.86 49.68 75.20 51.59 89.30
w/o Fvoxel 33.16 59.46 32.54 59.21 51.68 99.71 38.58 59.69 51.20 88.68

w/o 2D info 34.33 61.63 30.47 55.31 48.61 91.40 49.82 77.64 48.64 83.40
w/o 3D info 34.33 65.57 31.22 55.31 48.25 89.41 50.33 77.95 51.54 90.80

w/ Funi 37.57 78.59 42.68 80.32 52.89 106.40 50.59 79.52 62.52 111.08

Table 3: Ablation results of MoE module across five question categories, including location, type,
nature, counting, and color, where “nature” mainly covers object shape and type.

Method Location Type Nature Counting Color

F1 CIDEr F1 CIDEr F1 CIDEr F1 CIDEr F1 CIDEr

w/o MoE 37.5 78.5 42.6 80.3 52.8 106.4 50.5 79.5 62.5 111.0
w/ MoE 39.5↑2.0 85.1↑6.6 47.3↑4.7 93.7↑13.4 53.4↑0.6 107.9↑1.5 53.9↑3.4 86.3↑6.8 67.6↑5.1 121.2↑10.2

Table 4: Ablation results on the number of experts (E) in the MoE module on ScanQA[18]. “w/o
MoE” indicates the baseline without MoE. “Time” indicates second-stage MoE training duration.

Method E EM@1 EM-R@1 F1 BLEU-1 BLEU-4 METEOR ROUGE CIDEr Time

w/o MoE - 27.3 45.1 45.5 41.9 13.9 17.1 43.8 88.4 -
w/ MoE 4 29.5 47.1 47.3 43.2 15.8 18.2 45.7 93.1 ∼ 12h
w/ MoE 6 29.9 47.8 48.4 43.2 16.4 19.0 45.9 95.5 ∼ 14h
w/ MoE 8 30.8↑3.5 49.0↑3.9 48.8↑3.3 43.7↑1.8 17.5↑3.6 19.0↑1.9 47.1↑3.3 97.6↑9.2 ∼ 17h

4.5 Limitations

Despite promising results, Uni3D-MoE exhibits limitations due to token budget constraints and
dataset quality. Token limits necessitate modality tokens reduction strategies: multi-view images
selected by MVCS may omit critical viewpoints, causing incomplete spatial context; similarly,
FPS downsampling reduces point cloud density, compromising fine-grained details. Additionally,
performance is affected by blurry images and annotation inaccuracies, introducing noise that impacts
precise spatial understanding and object localization tasks.

5 Conclusion

In this paper, we propose Uni3D-MoE, a MoE-based 3D MLLM for comprehensive and adaptive
scene understanding. Uni3D-MoE integrates multi-view images, depth, BEV, point clouds, and
voxels through modality-specific encoders and a sparse MoE mechanism. By augmenting the LLM
with learnable sparse MoE layers, our model adaptively activates specialized experts tailored to each
token, enabling dynamic modality fusion aligned with prompt-specific needs. Experimental results
show that our method achieves competitive performance on multiple scene understanding tasks.
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A Summary

The appendix is organized as follows:

Appendix B:More Results of Uni3D-MoE.
Appendix B.1: Visualization Results.
Appendix B.2: Failure Cases.
Appendix B.3: Detailed quantitative comparison between Uni3D-MoE and other baseline models on various
benchmarks, including ScanQA [18], SQA3D [20], ScanRefer [59], Multi3DRefer [60] and Scan2Cap [19].
Appendix C: Additional Results for the MoE Module .
Appendix C.1: Visualization results of MoE, including top-10 activated routing pathways and expert assignment
distribution for each modality.
Appendix C.2: Ablation results of MoE, including experiments on MoE layer placement and evaluations across
multiple benchmarks.
Appendix D: Limitations and Broader Impacts.
Appendix E: Data Details, including dialogue data format and prompt template.
Appendix F: Model Details, including modality-specific encoders, adapters, and the sparse MoE-based LLM.

B More Results of Uni3D-MoE

B.1 Visualization Results

What is on top of a table by the 
windows near the side of the room?

Fan

I walked towards the bed to lay down and to my 
right was my desk. Can I see TV if I turn around?

Yes

What does the chair numbered 4 look like, 
and where can it be found in the scene?

This is a black chair. It is 
on the left side of the table.

What color is the chair in the kitchen?

Brown

How many chairs are 
next to the white cabinet?

2

Where is
radiator? Under 

window

Are there any objects fitting the description of "the bed, 
which is rectangular in shape, is located adjacent to the 
door"? If so, kindly provide the IDs for those objects.

No

Figure 8: Visualization of Uni3D-MoE performing diverse 3D scene understanding tasks. Examples
highlight the model’s adaptive multimodal reasoning capabilities across different query types includ-
ing counting, color recognition, object localization, spatial reasoning, and semantic identification.

As illustrated in Fig. 8, the proposed Uni3D-MoE model adeptly handles various categories of 3D scene
understanding tasks, effectively demonstrating its versatility across distinct question types. For instance, it
accurately identifies numeric details in counting tasks (e.g., "How many chairs are next to the white cabinet?"),
utilizes color recognition to specify attributes (e.g., the "brown" chair in the kitchen), and spatially localizes
objects by contextual information (e.g., finding a radiator "under the window"). Moreover, the model is capable
of interpreting spatial orientation and viewpoint-dependent questions, successfully answering queries related to
turning around to view specific objects. Conversely, it can clearly recognize when queried objects or conditions
are absent in the scene, indicating robust negative reasoning capability. These diverse examples underscore
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Uni3D-MoE’s effectiveness in dynamically leveraging multimodal data representations, showcasing its capability
for nuanced and contextually adaptive responses.

B.2 Failure Cases

Fig. 9 illustrates the failure cases of our method. In the first example, given the query “a circular end table,
it is next to a teal couch” the model predicts object 13, while the ground truth is object 21. Notably, object
13 also accurately satisfies the description, as it is similarly positioned next to a teal couch and matches the
described shape. This indicates that the error arises primarily from inherent annotation ambiguity, rather than
from a fundamental shortcoming of the model’s visual grounding capability. In the second example, for the
query “a black towel, it is hung on the shower curtain rod” the model incorrectly selects object 9 instead of the
correct object 13. This failure may be attributed to inconsistent lighting conditions between this scene and others,
resulting in color deviations in multi-view RGB images, thus impairing the model’s ability to accurately interpret
visual cues and distinguish subtle color differences. Additionally, the incorrect prediction might stem from the
higher occurrence frequency of object 9 across multiple frames, potentially biasing the model’s attention toward
it over the less prominently featured yet correct object 13. These cases highlight the importance of addressing
both annotation ambiguity and robustness to visual variations in future model improvements.

Figure 9: Failure cases of Uni3D-MoE.

B.3 Quantitative Comparison Results

Compared Baselines. We comprehensively evaluate Uni3D-MoE against three categories of state-of-the-art
approaches across several 3D benchmarks:

• Task-specific models specifically optimized for individual 3D tasks, including ScanQA [18], 3D-
VLP [67], 3D-VisTA [68], Scan2Cap [19], 3DJCG [78], Vote2Cap-DETR [79], X-Trans2Cap [80],
ScanRefer [59], MVT [81], 3DVG-Trans [82], ViL3DRel [83], and M3DRef-CLIP [60].

• 2D LLMs adapted from general image-based vision-language models, such as InternVL2-8B [69],
Qwen2-VL-7B [70], and LLaVA-Video [71].

• 3D LLMs that integrate multimodal 3D information into pretrained language models, including
PQ3D [26], LAMM [72], Chat-3D [14], Chat-3D V2 [74], 3D-LLM [73], LL3DA [75], LEO [76],
Scene-LLM [10], Chat-Scene [15], LLaVA-3D [33], GPT4Scene [16], Ground 3D-LLM [11].

Metric Details. Following previous work [33, 15, 62], we comprehensively evaluate our method using standard
metrics across multiple tasks in 3D scene understanding. Specifically:
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• For the Scan2Cap [19] task, we assess the quality of generated scene descriptions using widely adopted
captioning metrics, including BLEU-4, METEOR, ROUGE, and CIDEr, computed specifically at
Intersection-over-Union (IoU) thresholds of 0.25 and 0.5 between predicted and ground-truth bounding
boxes.

• For the ScanQA [18] question-answering task, besides captioning metrics, we utilize metrics tailored
for answer accuracy and completeness: Exact Match accuracy (EM@1) measures strict correctness of
top-1 answers, Relaxed Exact Match (EM-R@1) allows minor acceptable variations, and F1 scores
evaluate token-level overlaps.

• For referring expression grounding tasks, ScanRefer [59] and Multi3DRefer [60], we evaluate lo-
calization accuracy of predicted bounding boxes against ground-truth annotations. Specifically, we
report accuracy (Acc@0.25, Acc@0.5) at IoU thresholds of 0.25 and 0.5 for ScanRefer, and F1 scores
(F1@0.25, F1@0.5) at the same IoU thresholds for Multi3DRefer.

In summary, the metrics used can be grouped into three categories: text similarity metrics (BLEU, METEOR,
ROUGE, CIDEr) for assessing the quality and fluency of generated descriptions; accuracy metrics (EM@1,
EM-R@1, F1) for evaluating exactness and completeness in question-answering tasks; and spatial localization
metrics (Acc@IoU, F1@IoU, captioning metrics at IoU thresholds) to quantify the accuracy of bounding-box
predictions in scene grounding tasks.

3D Visual Question Answering. Table 5 provides a comprehensive evaluation of various models on the SQA3D
benchmark across different 3D question-answering tasks. The tasks are categorized by question types, including
“What”, “Is”, “How”, “Can”, “Which”, and “Others”, alongside aggregated metrics of Exact Match accuracy
(EM@1) and Relaxed Exact Match accuracy (EM-R@1). Our method, Uni3D-MoE, demonstrates superior
performance compared to existing state-of-the-art methods across multiple question types. Specifically, Uni3D-
MoE achieves the best results on the "What" (53.1%), "How" (55.8%), "Which" (55.3%), and "Others" (60.2%)
question categories, while obtaining second-best performance in “Is” (69.9%). When examining overall accuracy
metrics, our model achieves an EM@1 of 57.2% and EM-R@1 of 59.8%, outperforming most baseline methods
significantly. These results suggest that our integration of multimodal Mixture-of-Experts (MoE) architecture
effectively enhances the model’s capacity to process and interpret complex 3D scene queries, particularly in
handling open-ended and detailed inquiries.

Table 5: Evaluation results of 3D question answering across different question types on the test
set of SQA3D [20]. ⋆ indicates that high-resolution settings are not used. We highlight the best
performance in red and the second-best in blue.

Method Question Type Total

What Is How Can Which Others EM@1 EM-R@1

Task-specific
SQA3D [20] 31.6 63.8 46.0 69.5 43.9 45.3 46.6 -
3D-VisTA [68] 34.8 63.3 45.4 69.8 47.2 48.1 48.5 -
ClipBERT [84] 30.2 60.1 38.7 63.3 42.5 42.7 43.3 –
2D LLMs
InternVL2-8B [69] 30.5 53.8 5.5 47.3 25.8 36.3 33.0 45.3
Qwen2-VL-7B [70] 29.0 59.2 33.4 50.5 44.2 43.2 40.7 46.7
LLaVA-Video-7B [71] 42.7 56.3 47.5 55.3 50.1 47.2 48.5 –
3D LLMs
LEO [76] – – – – – – 50.0 52.4
Scene-LLM [10] 40.9 69.1 45.0 70.8 47.2 52.3 54.2 –
ChatScene [15] 45.4 67.0 52.0 69.5 49.9 55.0 54.6 57.5
LLaVA-3D [33] – – – – – – 55.6 –
GPT4Scene⋆ [16] 50.7 70.9 48.0 70.5 52.9 59.3 - 60.7

Ours 53.1 69.9 55.8 69.5 55.3 60.2 57.2 59.8

3D Visual Grounding. Table 6 summarizes evaluation results for 3D visual grounding tasks on ScanRefer [59]
and Multi3DRefer [60], comparing task-specific models and general 3D Large Language Models (3D LLMs).
Our method achieves state-of-the-art results, outperforming existing approaches on both benchmarks. Specifi-
cally, our model attains the highest accuracy of 62.7% and 57.4% at IoU thresholds of 0.25 and 0.5 respectively
on ScanRefer [59], and F1-scores of 65.1% and 60.5% at IoU thresholds of 0.25 and 0.5 on Multi3DRefer [60],
demonstrating improvements over the previous best-performing method, GPT4Scene-HDM [16]. These re-
sults validate the efficacy of incorporating a Mixture-of-Experts (MoE) architecture into multimodal LLMs,
highlighting substantial gains in multimodal grounding capability.
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Table 6: Evaluation results of 3D visual grounding on Scan-
Refer [59] and Multi3DRefer [60]. ⋆ indicates that high-
resolution settings are not used. We highlight the best perfor-
mance in red and the second-best in blue.

Method ScanRefer Multi3DRefer

Acc@0.25 Acc@0.5 F1@0.25 F1@0.5

Task-specific Models
ScanRefer [59] 37.3 24.3 – –

MVT [81] 40.8 33.3 – –
3DVG-Trans [82] 47.6 34.7 – 25.5

ViL3DRel [83] 47.9 37.7 – –
3DJCG [78] 49.6 37.3 – 26.6

M3DRef-CLIP [60] 51.9 44.7 42.8 38.4

3D LLMs
3D-LLM [73] 30.3 – – –

Ground 3D-LLM [11] 47.9 44.1 45.2 40.6
Chat-Scene [15] 55.5 50.2 57.1 52.4
LLaVA-3D [33] 50.1 42.7 – –

Ross3D [62] 61.1 54.4 59.6 54.3
GPT4Scene⋆ [16] 40.5 36.7 45.4 42.1

GPT4Scene-HD [16] 50.9 46.4 53.7 50.0
GPT4Scene-HDM [16] 62.6 57.0 64.5 59.8

Ours 62.7 57.4 65.1 60.5

Table 7 presents a comprehensive com-
parison between our method and other
state-of-the-art approaches on the Scan-
Refer [59]. Performance is assessed
separately across “Unique”, “Multiple”,
and combined “Overall” subsets. The
“Unique” subset involves unambiguous
samples, each with only a single instance
per object category, whereas the “Multi-
ple” subset includes ambiguous samples
containing multiple instances from the
same category. Metrics used are accu-
racy measured at IoU thresholds of 0.25
and 0.5. The proposed method achieves
superior performance, especially in han-
dling ambiguous cases within the “Multi-
ple” subset, obtaining promising accuracy
scores at 56.7% (Acc@0.25) and 51.5%
(Acc@0.5). It also demonstrates outstand-
ing overall capabilities, achieving state-of-
the-art results on the “Overall” subset with
accuracies of 62.7% and 57.4%, closely
surpassing the previously best-performing
model GPT4Scene-HDM. In the “Unique”
subset, our method achieves competitive
results (89.6% at Acc@0.25 and 83.5% at Acc@0.5), second only slightly to GPT4Scene-HDM, reflecting
strong capability in handling clear, well-defined visual grounding scenarios. These results highlight substantial
effectiveness of our method in visual grounding, notably its capability in resolving ambiguity inherent in
challenging multi-instance scenes, thus underscoring the advantages brought by integrating Mixture-of-Experts
architecture within multimodal large language models.

Table 8 illustrates the comprehensive evaluation results for 3D visual grounding performance on the
Multi3DRef [60] across five distinct scenarios: Zero Target without Distractors (ZT w/o D), Zero Target
with Distractors (ZT w/ D), Single Target without Distractors (ST w/o D), Single Target with Distractors (ST
w/ D), and Multi-Target (MT). Performance is assessed through F1 scores at IoU thresholds of 0.25 and 0.5,
emphasizing precision in object localization under varying complexity and distractor presence conditions. The
proposed approach demonstrates competitive performance across multiple scenarios, achieving notable results
especially in scenarios involving distractors. For instance, our method achieves the highest F1@0.25 (60.0) and
F1@0.5 (55.1) scores in the challenging Single Target with Distractors (ST w/ D) scenario, surpassing previous
strong models such as GPT4Scene-HDM [16]. Similarly, in the comprehensive evaluation across all scenarios
(denoted “ALL”), our method attains leading performance (F1@0.25: 65.1, F1@0.5: 60.5), indicating its broad
effectiveness in diverse grounding contexts. Task-specific methods, such as M3DRef-CLIP [60] and 3DICG
(Grounding) [78], exhibit strong performance in simpler settings (e.g., ZT w/o D and ST w/o D), though their
results show noticeable declines when encountering scenarios with distractors or multiple targets. In contrast,
the proposed approach demonstrates enhanced robustness and flexibility in addressing increased task complexity.
This observation suggests that explicitly modeling multi-modal complexity and integrating Mixture-of-Experts
(MoE) module within LLM frameworks may positively influence grounding performance.

3D Dense Captioning. Table 9 presents the evaluation results of 3D dense captioning on the Scan2Cap [19]
benchmark, comparing our model against several state-of-the-art methods. Performance is measured using
widely adopted captioning metrics—BLEU-4, METEOR, ROUGE, and CIDEr—at IoU thresholds of 0.25 and
0.5, indicating the quality and spatial accuracy of generated captions.

Our method achieves superior performance compared to other advanced approaches, including both task-specific
models and recent 3D LLMs. Specifically, at IoU=0.25, our model attains the highest BLEU-4 (44.4), METEOR
(29.9), and CIDEr (89.9) scores, indicating strong fluency, semantic alignment, and relevance of the captions. At
a stricter threshold of IoU=0.5, our model also demonstrates leading performance with top results in BLEU-4
(41.1) and CIDEr (85.2), highlighting the method’s robustness in precise localization conditions. These findings
underscore the advantage of integrating the Mixture-of-Experts architecture into multimodal language models,
improving caption generation in complex 3D scenarios.
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Table 7: Full Evaluation of 3D visual grounding on ScanRefer [59]. The “Unique” subset contains
samples in which the described object corresponds to exactly one unique instance within a given
object category, whereas the “Multiple” subset includes ambiguous cases with multiple instances
belonging to the same object category. The “Overall” category aggregates performance across both
unique and multiple-instance subsets. Accuracy is measured using IoU thresholds of 0.25 and 0.5
between predicted and ground-truth bounding boxes. ⋆ indicates that high-resolution settings are not
used. We highlight the best performance in red and the second-best in blue.

Method Unique Multiple Overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Task-specific Models
ScanRefer [59] 76.3 53.5 32.7 21.1 41.2 27.4

TGNN [85] 68.6 56.8 29.8 23.2 37.4 29.7
X-Trans2Cap [80] 73.2 50.8 37.6 25.2 44.5 30.1
InstanceRefer [86] 75.7 64.7 29.4 23.0 38.4 31.1
3DVG-Trans [82] 81.9 60.6 39.3 28.4 47.6 34.7

MVT [81] 77.7 66.4 31.9 25.3 40.8 33.3
3D-SPS [87] 84.1 66.7 40.3 29.8 48.8 37.0

ViL3DRel [83] 81.6 68.6 40.3 30.7 47.9 37.7
3DJCG [78] 83.5 64.3 41.4 30.8 49.6 37.3
D3Net [88] – 72.0 – 30.1 – 37.9

BUTD-DETR [89] 84.2 66.3 46.6 35.1 52.2 39.8
HAM [90] 79.2 67.9 41.5 34.0 48.8 40.6

3DRP-Net [91] 83.1 67.7 42.1 32.0 50.1 38.9
3D-VLP [67] 84.2 64.6 43.5 33.4 51.4 39.5

EDA [92] 85.8 68.6 49.1 37.6 54.6 42.3
M3DRef-CLIP [60] 85.3 77.2 43.8 36.8 51.9 44.7

3D-VisTA [68] 81.6 75.1 43.7 39.1 50.6 45.8
ConcreteNet [93] 86.4 82.1 42.4 38.4 50.6 46.5

3D LLMs
Chat-Scene [15] 89.6 82.5 47.8 42.9 55.5 50.2

Video-3D-LLM [17] 88.0 78.3 50.9 45.3 58.1 51.7
Ross3D [62] 87.2 77.4 54.8 48.9 61.1 54.4

GPT4Scene⋆ [16] 65.5 61.2 34.8 31.1 40.5 36.7
GPT4Scene-HD [16] 77.5 71.9 44.9 40.6 50.9 46.4

GPT4Scene-HDM [16] 90.3 83.7 56.4 50.9 62.6 57.0
Ours 89.6 83.5 56.7 51.5 62.7 57.4

C Additional Results for the MoE Module

C.1 Visualization Results of MoE

Top-10 Activated Routing Pathways. As illustrated in Fig. 10, we visualize the top-10 activated routing
pathways across different modalities (Text, RGB, BEV, RGBD, PC, and Voxel) through multiple Mixture-of-
Experts (MoE) layers. Each modality is represented in a distinct color, with the most prominent paths (Top-1
and Top-2) highlighted, while the other pathways are depicted in gray to emphasize relative activation strengths.
The visualization reveals dynamic and specialized expert activations that vary across layers, highlighting the
model’s adaptive routing mechanism. For instance, point cloud (PC) modality prominently engages expert E5 at
deeper layers (layers 20, 24, and 28), whereas RGB modality dynamically shifts its primary expert from expert
E4 at layer 8 to expert E1 at layer 24. This behavior underscores the importance of employing MoE architectures
to dynamically allocate modality-specific information to the most suitable experts at different representation
depths, thereby enhancing overall model performance.

Expert Assignment Distribution for Each Modality. Fig. 11 illustrates the varying patterns of expert
assignment for each modality (Text, BEV, RGB, RGBD, PC, and Voxel) across different MoE layers (layers 8, 12,
16, 20, 24, and 28) within the Uni3D-MoE model. Observations suggest potential modality-specific preferences
and evolving trends in expert usage as model depth increases. For example, the RGB modality distinctly varies
its expert selection patterns across layers: prominently activating expert E4 at layer 8, experts E3 and E5 at
layers 12 and 16, and shifting focus towards experts E6 and E8 in deeper layers (layers 20, 24, and 28). This
progression may reflect changing requirements in visual feature extraction as information abstraction deepens.
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Table 8: Full evaluation results of 3D visual grounding on Multi3DRef [60]. Performance is assessed
across five scenarios: Zero Target without Distractors (ZT w/o D), where no object matches the
referring expression and no distractors exist; Zero Target with Distractors (ZT w/ D), where no object
matches but distractors are present; Single Target without Distractors (ST w/o D), referring to a
single, uniquely identifiable target object without distractors; Single Target with Distractors (ST w/
D), a single target object with multiple distractors present; and Multi-Target (MT), where multiple
objects match the referring expression simultaneously. Metrics reported include the F1 score (F1)
at IoU thresholds of 0.25 and 0.5 (F1@0.25, F1@0.5), reflecting localization precision and recall.
“ALL” aggregates results across all five scenarios. ⋆ indicates that high-resolution settings are not
used. We highlight the best performance in red and the second-best in blue.

Method ZT w/o D ZT w/ D ST w/o D ST w/ D MT ALL
F1 F1 F1@0.25 F1@0.5 F1@0.25 F1@0.5 F1@0.25 F1@0.5 F1@0.25 F1@0.5

Task-Specific Model
3DVG-Trans [82] 87.1 45.8 – 27.5 – 16.7 – 26.5 – 25.5

D3Net (Grounding) [88] 81.6 32.5 – 38.6 – 23.3 – 35.0 – 32.2
3DJCG (Grounding) [78] 94.1 66.9 – 26.0 – 16.7 – 26.2 – 26.6

M3DRef-CLIP [60] 81.8 39.4 53.5 47.8 34.6 30.6 43.6 37.9 42.8 38.4

3D LLMs
Chat-Scene [39] 90.3 62.6 82.9 75.9 49.1 44.5 45.7 41.1 57.1 52.4

GPT4Scene⋆ [16] 85.2 61.4 60.1 55.1 37.7 34.4 39.4 36.3 45.4 42.1
GPT4Scene-HD [16] 93.6 81.8 72.5 66.2 46.6 42.9 41.8 38.9 53.7 50.0

GPT4Scene-HDM [16] 97.4 84.4 85.0 77.7 59.9 55.1 48.6 44.6 64.5 59.8
Ours 96.8 84.7 84.9 77.3 60.0 55.1 51.4 47.7 65.1 60.5

Table 9: Evaluation results of 3D dense captioning on Scan2Cap [19]. BLEU-4, METEOR, ROUGE
and CIDEr denote text similarity scores between the predicted answer and the ground-truth answer.
Metrics are computed under IoU thresholds of 0.25 and 0.5 between the predicted and reference
bounding boxes. ⋆ indicates that high-resolution settings are not used. We highlight the best
performance in red and the second-best in blue.

Method Scan2Cap (IoU@0.25) Scan2Cap (IoU@0.5)

BLEU-4 METEOR ROUGE CIDEr BLEU-4 METEOR ROUGE CIDEr

Task-specific Models
Scan2Cap [19] 34.2 26.3 55.3 56.8 22.4 21.4 43.5 35.2

3DJCG [78] 40.2 27.7 59.2 64.7 31.5 24.3 51.8 47.7
3D-VLP[67] 41.0 28.1 59.7 70.7 32.3 24.8 51.5 54.9

3D-VisTA [68] 36.5 28.4 57.6 71.0 34.0 26.8 54.3 61.6
Vote2Cap-DETR [79] 39.3 28.3 59.3 71.5 34.5 26.2 54.4 61.8

X-Trans2Cap [80] 35.7 26.6 54.7 61.8 25.1 22.5 45.3 43.9

3D LLMs
LEO [76] - - - - 38.2 27.9 58.1 72.4

LL3DA [75] 41.4 27.8 59.5 74.2 36.8 26.0 55.1 65.2
Chat-Scene [15] 38.2 29.0 60.6 81.9 36.3 28.0 58.1 77.1
LLaVA-3D [33] - - - - 41.1 30.2 63.4 79.2

Ross3D [62] - - - - 43.4 30.3 66.9 81.3
GPT4Scene⋆ [16] 36.3 26.5 57.6 63.8 34.2 25.6 55.2 60.6

GPT4Scene-HD [16] 40.4 28.3 60.2 79.1 37.9 27.3 57.7 74.4
GPT4Scene-HDM [16] 43.1 29.3 61.9 91.7 40.6 28.2 59.3 86.3

Ours 44.4 29.9 60.7 89.9 41.1 29.9 59.3 85.2

Similarly, the BEV modality noticeably engages experts E2, E7 and E8 frequently at intermediate layers but
seems to diversify at deeper layers, possibly due to increasing complexity in spatial reasoning tasks. The Voxel
modality frequently utilizes experts E2, E3 and E7, which might indicate specific geometric feature processing
demands. The PC modality prominently selects experts E1 and E8 in the initial layers (layers 8, 12, and 16),
while in deeper layers (20, 24, and 28) it shifts predominantly towards experts E2 and E8. This pattern might
indicate evolving requirements in geometric or structural feature extraction as the model processes point cloud
data at different abstraction levels. The Text and RGBD modalities exhibit relatively uniform expert distribution
patterns across layers, suggesting stable and balanced processing demands possibly related to semantic and
visual-depth integration tasks. These patterns collectively highlight Uni3D-MoE’s capability to potentially adapt
routing strategies for different modalities, thus possibly enhancing multimodal representation effectiveness and
task-specific performance.
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Figure 10: Top-10 activated routing pathways for different modalities, highlighting dynamic and
specialized expert activation. Colored curves illustrate the top-1 and top-2 routing paths for each
modality, while gray curves represent the remaining eight pathways.

Table 10: Ablation results of MoE layers on ScanQA[18].
Method MoE layers EM@1 EM-R@1 F1 BLEU-1 BLEU-4 METEOR ROUGE CIDEr

w/o MoE - 27.3 45.1 45.5 41.9 13.9 17.1 43.8 88.4
w/ MoE [0,2,4,6,8,10] 27.7 45.3 46.2 41.5 14.1 17.6 44.0 90.9
w/ MoE [0,4,8,12,16,20] 28.7 47.1 47.8 42.2 15.7 17.9 46.0 94.3
w/ MoE [8,12,16,20,24,28] 30.8 49.0 48.8 43.7 17.5 19.0 47.1 97.6

C.2 Ablation Results of MoE

Ablation on MoE Layer Placement. Table 10 presents the ablation results for integrating the Mixture-of-
Experts (MoE) module at different layers in the ScanQA [18] benchmark. We observe a clear performance
improvement across all evaluation metrics when employing the MoE module at deeper layers. Specifically,
incorporating MoE layers at depths [8,12,16,20,24,28] achieves the best results, significantly enhancing EM@1
accuracy from 27.3% (without MoE) to 30.8%. Similar improvements are evident across other metrics, such
as CIDEr, which rises notably from 88.4 to 97.6. These results highlight that deeper integration of the MoE
mechanism facilitates richer feature extraction, thereby enhancing the model’s ability to accurately answer
complex questions.

MoE Ablation Across Benchmarks. Tables 11-13 present additional ablation results of the Mixture-of-Experts
(MoE) module on different 3D scene understanding tasks. Specifically, on the SQA3D [20] benchmark, inte-
grating MoE yields clear improvements, achieving better exact-match accuracy (EM@1: 57.2 vs. 54.6) and
significantly higher text similarity scores (e.g., CIDEr: 147.8 vs. 136.0). For visual grounding tasks on Scan-
Refer [59] and Multi3DRefer [60], the MoE-equipped GPT4Scene backbone consistently shows performance
gains (ScanRefer Acc@0.5: 57.4 vs. 57.0; Multi3DRefer F1@0.5: 60.5 vs. 59.8). In the 3D dense captioning
scenario (Scan2Cap [19]), the MoE integration brings mixed results, slightly improving BLEU-4 and METEOR
at IoU@0.25 but slightly decreasing CIDEr scores. Overall, the introduction of MoE demonstrates consistent,
albeit varied, improvements across multiple 3D scene understanding tasks.
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Figure 11: Expert assignment distribution for each modality across MoE layers in Uni3D-MoE,
highlighting modality-specific expert selection dynamics.

Table 11: Ablation results of the MoE module on SQA3D test set [20] for 3D question answering.
EM@1 refers to the top-1 exact match accuracy; BLEU-1, BLEU-4, METEOR, and CIDEr denote
text similarity scores between the predicted and ground-truth answer.

Method EM@1 EM-R@1 BLEU-1 BLEU-4 METEOR ROUGE CIDEr

w/o MoE 54.6 55.7 50.4 39.6 35.3 52.8 136.0
w/ MoE 57.2 59.8 54.9 43.5 38.3 57.9 147.8

Table 12: Ablation results of the MoE module on ScanRefer [59] Multi3DRefer [60] for 3D visual
grounding.

Method ScanRefer Multi3DRefer
Acc@0.25 Acc@0.5 F1@0.25 F1@0.5

w/o MoE 62.6 57.0 64.5 59.8
w/ MoE 62.7 57.4 65.1 60.5

D Limitations and Broader Impacts

Limitations. Despite achieving promising results across various tasks, Uni3D-MoE still exhibits several
limitations. First, the token budget constraints of large language models necessitate strict control over modality-
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Table 13: Ablation results of the MoE module on Scan2Cap [19] for 3D dense captioning. BLEU-4,
METEOR, and CIDEr denote text similarity scores between the predicted answer and the ground-
truth answer. Metrics are computed under IoU thresholds of 0.25 and 0.5 between the predicted and
reference bounding boxes. ⋆ indicates that high-resolution settings are not used.

Method Scan2Cap (IoU@0.25) Scan2Cap (IoU@0.5)

BLEU-4 METEOR ROUGE CIDEr BLEU-4 METEOR ROUGE CIDEr

w/o MoE 43.1 29.3 61.9 91.7 40.6 28.2 59.3 86.3
w/ MoE 44.4 29.9 60.7 89.9 41.1 29.9 59.3 85.2

specific inputs. To this end, multi-view images are selected using the Maximum Voxel Coverage Sampling
(MVCS) algorithm. While effective, this method may overlook critical viewpoints, leading to an incomplete
spatial context. Similarly, point clouds are downsampled using Farthest Point Sampling (FPS), reducing point
density and limiting the representation of fine-grained object details—particularly for small-scale structures.
These input reductions might degrade model performance, especially when other modalities fail to provide
sufficient complementary information. Second, the model’s effectiveness is partially constrained by the quality of
the training dataset. Blurry multi-view images and annotation inaccuracies introduce noise and ambiguity, which
can hinder performance in tasks that demand precise spatial understanding and accurate object localization.

Broader Impacts. This paper aims to enhance the 3D perception capabilities of VLM. The proposed Uni3D-
MoE has potential applications in human-computer interaction and autonomous robotics. It can help embodied
agents better understand the environment and perform complex tasks. While there are potential concerns about
misuse, such as applications in military robotics, we believe the benefits of our approach significantly outweigh
the minimal risks.

E Data Details

Fig.s 12, 13, and 14 illustrate the data organization and prompting approach used for multimodal dialogue tasks.

Fig. 12 illustrates the structure of our multimodal dialogue data format. Each dialogue instance is grounded in a
specific 3D scene, denoted by the “scene” field. The “conversations” field contains a sequence of interactions that
revolve around this scene, capturing the exchange between the human user and the model. Each turn is marked
by a “from” field (“human” or “gpt”) and a corresponding “value”, which includes multimodal placeholders
“<image>” in the first round. An “id” is also assigned to each dialogue instance for indexing purposes.

Fig.s 13 and 14 illustrate the prompt design used in our multimodal dialogue system. Each prompt begins
with a system message that sets the context for a conversation between a human and an AI assistant. The user
input includes a list of available 3D modality features—such as MultiView, RGBD, BEV, PointCloud, and
Voxel—each referenced by a corresponding placeholder token (e.g., <multiview_dinov2>). These tokens
serve as modality-specific representations rather than raw input data.

Fig. 14 further categorizes prompt formats according to different task types. For dense captioning, the assistant
is prompted to describe the appearance and spatial context of a specific object based on its name and ID. For
question answering tasks, the user issues natural language queries, optionally with contextual grounding. Visual
grounding tasks ask the assistant to return object identifiers that match given textual descriptions. The object IDs
used in these tasks are typically generated by an instance segmentation model such as Mask3D [57], ensuring
consistent identification across the 3D scene understanding dataset.

F Model Details

F.1 Modality-specific Encoders

Multi-view RGB Encoder. Given an RGB-D video V ∈ RVv×H×W×3, we adopt Maximum Voxel Cov-
erage Sampling (MVCS) (shown in Alg. 1) to select informative keyframes as Multi-view RGB Images
I ∈ RV ×H×W×3, where Vv is the video length, H and W are the image height and width, and V is the
predefined number of views. In our implementation, we set V =24. Compared to previous methods [17], our
algorithm achieves 100× speed-up in computing coverage by using camera poses instead of depth maps. To
focus on task-relevant objects, the algorithm removes low-contribution scene segments (e.g., floor), and voxels
located too far from the camera are considered not covered. Finally, for each maximum coverage frame, the
algorithm selects its clearest neighbor as the keyframe using Laplacian variance. We use a pre-trained 2D encoder
(e.g., DINOv2 [54]) with a trainable modal projector to convert Multi-view RGB Images I into visual tokens
Frgb ∈ RV Nrgb×Drgb , where Nrgb is the number of tokens per image, and Drgb is the feature dimension.
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Figure 12: Multimodal dialogue data format.

Figure 13: Prompt template.

Multi-view Depth Encoder. Inspired by [33], we leverage depth images D ∈ RV ×H×W×1 and camera
parameters to back-project each 2D patch into 3D space, obtaining its corresponding 3D position. The 2D
patch tokens are first extracted from multi-view RGB images using CLIP [55]. These 3D positions are then
encoded into 3D embeddings, which are added to 2D patch tokens to form spatially-aware 3D patches. To reduce
sequence length while preserving spatial context, we apply a 3D-aware pooling and obtain the final RGB-D
features Frgbd ∈ RV Nrgbd×Drgbd , where Nrgbd and Drgbd represent the token count and feature dimension.

BEV Map Encoder. Egocentric images/videos typically lack global scene context, making it difficult for models
to understand the overall spatial layout. To address this, we render the 3D mesh in a bird’s-eye view (BEV) image
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Figure 14: Prompt Template for different tasks.

B ∈ RH×W×3, where H and W are the height and width, respectively. To enhance object-level understanding,
we incorporate instance segmentation into the BEV using numeric labels and colored regions, offering explicit
semantic cues. Then, we use DINOv2 [54] to extract BEV features Fbev ∈ RNbev×Dbev , where Nbev denotes
the number of tokens and Dbev is the feature dimension.

Point Cloud Encoder. We apply Farthest Point Sampling (FPS) [56] to the scene-level point cloud to obtain
P ∈ RN×C , where N is the number of sampled points and C includes the 3D coordinates along with additional
attributes such as color, normals, and semantic labels. The sampled points P are then passed through a pre-
trained PointNet++ [56] backbone to produce point features Fpc ∈ RNpc×Dpc , where Npc is the number of
point tokens and Dpc is the feature dimension. In our implementation, we use farthest point sampling (FPS)
to acquire 8,192 sampled points (Npc = 8, 192), where each point contains XYZ coordinates and RGB color
attributes (Dpc = 6).

Voxel Grid Encoder. To extract voxel features, we first voxelize the entire 3D scene and obtain the sparse voxel
inputs X ∈ RM×C′

. Here, M is the number of non-empty voxels and C′ is the feature dimension, including
sparse tensor coordinates and additional attributes. The voxelized input X is then fed into Mask3D [57], a sparse
convolutional U-Net backbone equipped with downsampling and upsampling layers to capture hierarchical
context. The voxel-level features are then assigned to their corresponding pre-generated segments, followed by
segment-wise average pooling to produce high-level representations Fvoxel ∈ RNvoxel×Dvoxel . Here, Nvoxel

and Dvoxel are the number and dimension of voxel tokens, respectively.

Subsequently, tokens from five modalities are aligned to the text space via respective adapters: F ′
m =

Adapterm(Fm) ∈ RNm×Dtxt , where m ∈ {rgb, rgbd, bev, pc, voxel} is the modality type and Dtxt is the
target embedding dimension. Finally, the text prompt feature Ftxt, combined with modality-aligned features F ′

m,
composes the unified 3D scene representation: Funi = {Ftxt,F

′
rgb,F

′
rgbd,F

′
bev,F

′
pc,F

′
voxel} ∈ RNuni×Dtxt ,

where Nuni is the total token number.
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Algorithm 1 Maximum Voxel Coverage Sampling(MVCS) with Voxel Pruning and View Refinement

Require: Scene voxel set V , camera params {Ck}, budget K, distance limit dmax

Ensure: Selected view set S
1: function SAMPLING(V , {Ck}, K, dmax)
2: Vscene ← { v ∈ V | v.type ∈ {floor, ceiling,wall}} ▷ 1. Voxel pruning
3: for each view fk do
4: Vk ← { v ∈ Vscene | visible(proj(v, Ck)) and ∥Xv −XCk

∥ ≤ dmax }
5: end for
6:
7: S ← ∅, U ← ∅ ▷ 2. Perform greedy selection based on marginal coverage
8: while |S| < K do
9: for each view fk /∈ S do

10: gk ← |Vk \ U |
11: end for
12: f∗ ← argmaxk gk
13: S ← S ∪ {f∗}, U ← U ∪ Vf∗

14: end while
15:
16: for each index i such that fi ∈ S do ▷ 3. Selected clear views
17: N ← { fj | j ∈ [max(0, i−2),min(i+2, n−1)] }
18: for each fj ∈ N do
19: sj ← Var(∇2Ifj )
20: end for
21: fbest ← argmaxfj∈N sj
22: fi ← fbest
23: end for
24: return S
25: end function

F.2 Modality-specific Adapters.

To effectively integrate diverse 3D scene representations into the shared embedding space of the language
model, we design modality-specific adapters tailored to the characteristics of each input modality. Each adapter
employs a lightweight two-layer MLP projection head to map modality-specific embeddings into the unified
4096-dimensional embedding space required by the language backbone, thereby facilitating efficient multimodal
feature alignment and fusion.

Multi-view RGB Adapter. The multi-view RGB adapter processes concatenated multi-view RGB features,
typically aggregating visual details from multiple camera views (e.g., 8 views), resulting in a 12288-dimensional
input. It projects these into the common embedding space via: Linear(12288 → 4096) → GELU →
Linear(4096 → 4096) → LayerNorm. This structure effectively reduces dimensional redundancy from multiple
views and normalizes feature distributions for stable integration.

RGBD Adapter. The RGBD adapter operates on 1024-dimensional spatially-aware RGBD embeddings,
leveraging depth-enhanced RGB features. It applies: Linear(1024 → 4096) → GELU → Linear(4096 →
4096), to unify depth-aware visual cues with the broader modality embedding space.

BEV Adapter. The BEV adapter receives BEV-encoded features from BEVDinov2Encoder, which inherently
capture spatial structures from a top-down viewpoint in 1536-dimensional embeddings. It aligns them via:
Linear(1536 → 4096) → GELU → Linear(4096 → 4096) → LayerNorm. This ensures consistent spatial
semantic representations across modalities.

Point Cloud Adapter. The point cloud adapter adapts the sparse geometric features extracted by the
PointNet2SegEncoder, which generates a compact 256-dimensional representation from raw point cloud
data. It expands and aligns these features using: Linear(256 → 4096) → GELU → Linear(4096 → 4096) →
LayerNorm, preserving critical geometric semantics for downstream tasks.

Voxel Adapter. The voxel adapter uniquely incorporates five parallel linear branches tailored to voxel features of
varying dimensionalities (256, 128, or 96), accommodating voxel grids captured at multiple spatial resolutions.
Each branch independently projects features via: Linear → LayerNorm → GELU → Dropout → Linear →
LayerNorm, producing uniform 4096-dimensional embeddings to robustly represent volumetric structural
information across scales.
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By individually tailoring adapter structures to the intrinsic properties of each input modality, these designs
collectively ensure robust alignment and effective integration of heterogeneous sensor inputs within the language
model.

Low-Rank Adaptation (LoRA) in Stage I. In Stage I training, we utilize Low-Rank Adaptation (LoRA) to
efficiently fine-tune the LLM backbone, minimizing the number of trainable parameters. Each LoRA module
is characterized by a rank of 32, a scaling factor (α) of 64, and a dropout rate of 0.05. LoRA modules do not
include bias terms, further streamlining the adaptation process. This low-rank structure substantially reduces
computational overhead, enabling stable and effective fine-tuning while maintaining the representational capacity
required to integrate diverse multimodal information.

Mixture of Expert in Stage II. In Stage II, we strategically integrate sparse Mixture-of-Experts (MoE) layers
into selected transformer blocks ([8, 12, 16, 20, 24, 28]) within the language backbone. Each MoE layer consists
of 8 parallel expert modules, implemented as specialized LLaMA-style multilayer perceptrons (MLP). These
experts expand the feature dimension from 4096 to an intermediate dimension of 11008 via parallel gated
projections (gate_proj and up_proj), followed by SiLU activations and dimensional reduction back to 4096
(down_proj). Tokens are dynamically routed to these experts using a learnable Top-K gating network, which
adaptively selects the most suitable experts based on token-level semantic characteristics. In our implementation,
we set K to 2. This design encourages sparsity and computational efficiency, enabling effective modeling of
heterogeneous modality information while preserving scalability. The adaptive routing mechanism thus enhances
the model’s ability to exploit specialized knowledge, significantly improving performance across diverse and
complex multimodal 3D scene understanding tasks.
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