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Figure 1: Object-X learns object-centric embeddings from an input object segmentation of a 3D scene
reconstruction. The embeddings learned from multi-modal data (e.g., mesh, images, text descriptions)
enable fast 3D Gaussian Splat reconstruction via a specifically trained decoder, and other downstream
tasks operating directly in the latent space, such as localization and scene alignment. Object-X
allows for representing the scene as a set of object descriptors without having to store storage-heavy
representations like point clouds and image databases, while providing similiar functionalities.

Abstract

Learning effective multi-modal 3D representations of objects is essential for nu-
merous applications, such as augmented reality and robotics. Existing methods
often rely on task-specific embeddings that are tailored either for semantic un-
derstanding or geometric reconstruction. As a result, these embeddings typically
cannot be decoded into explicit geometry and simultaneously reused across tasks.
In this paper, we propose Object-X, a versatile multi-modal object representa-
tion framework capable of encoding rich object embeddings (e.g., images, point
cloud, text) and decoding them back into detailed geometric and visual reconstruc-
tions. Object-X operates by geometrically grounding the captured modalities in
a 3D voxel grid and learning an unstructured embedding fusing the information
from the voxels with the object attributes. The learned embedding enables 3D
Gaussian Splatting-based object reconstruction, while also supporting a range
of downstream tasks, including scene alignment, single-image 3D object recon-
struction, and localization. Evaluations on two challenging real-world datasets
demonstrate that Object-X produces high-fidelity novel-view synthesis compara-
ble to standard 3D Gaussian Splatting, while significantly improving geometric
accuracy. Moreover, Object-X achieves competitive performance with specialized
methods in scene alignment and localization. Critically, our object-centric descrip-
tors require 3-4 orders of magnitude less storage compared to traditional image-
or point cloud-based approaches, establishing Object-X as a scalable and highly
practical solution for multi-modal 3D scene representation. The code is available
athttps://github.com/gaiadilorenzo/object—x.

Preprint. Under review.
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1 Introduction

Robust 3D scene understanding, incorporating geometric, visual, and semantic information, forms a
cornerstone for advances in robotics, augmented reality (AR), and autonomous systems [[15} 10} 2]].
A key goal is to develop 3D representations that are not only accurate but also compact, efficient, and
flexible enough to integrate multiple sensor modalities and support diverse downstream tasks.

Traditional 3D representations, often relying on explicit geometry such as dense point clouds [4}, [18]]
or meshes [[16], alongside collections of images, tend to incur prohibitive storage and computational
costs. More recently, implicit neural and Gaussian representations, notably Neural Radiance Fields
(NeRF) [14] and 3D Gaussian Splatting (3DGS) [9], have achieved state-of-the-art results in syn-
thesising novel views from images, jointly encoding geometry and appearance. However, these
methods typically generate a monolithic, scene-level representation, primarily driven by visual input.
As a consequence, they inherently lack object-level modularity, making it difficult to reason about
individual objects, efficiently incorporate other modalities (e.g., text, semantics), or easily use the
representation for object-level tasks beyond rendering or 3D reconstruction.

To address the need for modularity, object-centric approaches, such as 3D scene graphs [1]], have
gained traction. Such methods decompose a scene into a collection of objects and their relationships,
often associating a learned embedding with each object. Such embeddings have proven effective
for abstract, object-level tasks, including cross-modal localization [[13l], scene retrieval [22], and 3D
scene alignment [21]]. However, a critical limitation persists: existing object embeddings are generally
learned for specific tasks and cannot be decoded to reconstruct the explicit, high-fidelity appearance
and geometry of the object they represent. This forces systems to retain the original, high-bandwidth
source data (images, point clouds, meshes) alongside the learned embeddings, undermining the goals
of creating a compact, self-contained, and truly versatile object representation.

In this work, we bridge this crucial gap by introducing Object-X, a framework for learning rich,
multi-modal, object-centric embeddings that are simultaneously suitable for downstream tasks and
decodable into explicit, high-quality 3D representations. Object-X geometrically grounds multiple
input modalities pertaining to an object within a 3D voxel structure, fusing this with semantic
attributes (like class labels or object descriptions) to learn a compact, latent embedding. Crucially,
we design a decoder that uses this embedding to predict the parameters of a set of 3D Gaussians,
enabling high-fidelity, object-level rendering and geometry extraction via 3D Gaussian Splatting. The
same learned embedding can be directly leveraged for diverse downstream tasks.

Our experiments on challenging, real-world datasets demonstrate that Object-X supports high-fidelity
novel-view synthesis comparable to, and geometric reconstructions superior to, standard 3DGS,
while also achieving competitive performance on scene alignment and localization tasks. Critically,
Object-X reduces storage requirements by 3-4 orders of magnitude compared to storing the underlying
point clouds or images, while offering similar functionalities. Our main contributions are:

1. A novel framework for learning compact, multi-modal, object-centric embeddings that can
be decoded into high-fidelity geometry and appearance, parameterized by 3D Gaussians.

2. The demonstration that a single, unified embedding supports both high-quality 3D reconstruc-
tion (encompassing novel view synthesis and detailed geometry) and performs competitively
on diverse downstream tasks, such as scene alignment and visual localization.

3. Significant storage reduction (3-4 orders of magnitude) compared to explicit representations
as the decodability of our embeddings obviates the need to store raw images or point clouds.

2 Related Works

Understanding 3D scenes is a fundamental problem in computer vision, with applications spanning
robotics, augmented reality, and 3D content creation. Numerous representations have been proposed
to capture the complexities of 3D environments, each offering different trade-offs between accuracy,
efficiency, storage, and ease of use. Our work, Object-X, builds on and connects several key areas by
proposing a novel object-centric embedding strategy.

3D Representations. Traditional methods for representing environments include point clouds [4],
meshes [18]], and voxel grids [[16, 134, 131]]. Point clouds offer a direct representation of geometry
but lack structure and demand significant storage for detailed scenes. Meshes provide structure by
connecting points with polygons, facilitating efficient rendering and geometric operations, though
the meshing process can lead to detail loss, especially when optimizing for storage. Voxel grids
discretize 3D space, but suffer from high memory requirements at resolutions needed for fine detail.
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Figure 2: Overview of Object-X, learning object embeddings to reconstruct 3D Gaussians and
support other tasks such as visual localization [13]. (a) The method takes a mesh or point cloud of
an object along with posed images observing it. The canonical object space is voxelized based on
object geometry, and DINOv2 features extracted from the images are assigned to each voxel. This
produces a 64 x 8 structured latent (SLat) representation [29]. (b) The SLat is further compressed
into a 163 x 8 U-3DGS embedding using a 3D U-Net. The embedding is trained with a masked mean
squared error loss to ensure accurate reconstruction of the SLat, which in turn enables decoding into
3D Gaussians using standard photometric losses. (c) Additional task-specific losses, such as those for
visual localization [[13]], can be incorporated to optimize the embedding for multiple objectives.

These representations are often accompanied by posed image datasets for applications such as visual
localization, which introduces the overhead of managing and storing large image collections. The
pursuit of compact and versatile representations motivates our work on learnable object embeddings.

Recently, neural implicit representations have gained attention. Neural Radiance Fields (NeRF) [14]]
represent scenes with MLPs, enabling photorealistic novel view synthesis but can be computationally
intensive. 3D Gaussian Splatting (3DGS) [9] presents a compelling alternative, using a collection
of 3D Gaussians for high-quality, real-time rendering. While methods like MV-Splat [3], Depth-
Splat [30], NoPoSplat [32], and alternatives learn a monolithic 3DGS model for an entire scene from
images, we focus on an object-centric paradigm. We learn compact, multi-modal embeddings for
individual objects, which can then be decoded into object-level 3DGS parameters. Although recent
works have explored 3DGS modifications for editing [33]] or compression [23]], they typically operate
on or refine an existing 3DGS scene. In contrast, Object-X learns fundamental object embeddings
that serve not only as a source for 3DGS reconstruction but also as versatile descriptors for various
other downstream tasks, offering a more holistic object representation.

3D Scene Graphs. Scene graphs [8]] provide a structured representation by capturing objects, their
attributes, and interrelations. 3D scene graphs [[1]] extend this concept to 3D, integrating semantics
with spatial and camera information. They have proven useful for tasks like scene alignment [21],
retrieval [13122], and task planning [S]]. The construction of 3D scene graphs has been streamlined by
recent advances in object detection and relationship prediction, with tools such as MAP-ADAPT [34],
OpenMask3D [24], and ConceptGraphs [5]. Existing scene graph methodologies often associate
nodes with learned embeddings tailored for specific tasks (e.g., alignment, retrieval). However, a
key limitation is that these embeddings typically lack a generative or reconstructive capability; they
cannot be decoded back into explicit object geometry or appearance. This necessitates retaining the
original sensor data (images, point clouds) alongside the graph, undermining compactness. Object-X
addresses this gap by learning rich, multi-modal object embeddings that are explicitly designed to
be decodable into high-fidelity 3DGS representations. Furthermore, these same embeddings retain
strong descriptive power, enabling competitive performance on downstream tasks like localization
and alignment without requiring task-specific modifications. This dual capability — reconstructive and
descriptive — is a core contribution of our work, offering a pathway to leverage the semantic richness
while also providing access to explicit 3D object representations.

3D Generative Methods for content creation have rapidly advanced, with 3DGS [9] emerging as an
expressive and efficient primitive. Several methods leverage 2D distillation from text or images to
generate 3D 3DGS scenes [25,[19]. More recent works explore structured latent spaces for improved
scalability and control in generation. For instance, Trellis [29] uses a unified Structured LATent
(SLat) representation, decodable into various 3D forms including Gaussians, for large-scale object



generation. L3DG [20] employs a latent diffusion framework with VAEs for efficient sampling and
3DGS rendering, while DiffGS [35] introduces a diffusion model for controlling Gaussian parameters.

These methods focus on de novo generation or generation from abstract inputs (e.g., text prompts, style
images), showcasing the potential of learned latent spaces for 3D content creation. Object-X shares the
goal of leveraging learned latents but differs in its main objective. Instead of open-ended generation,
our focus is on learning compact and versatile embeddings from observed multi-modal data. The key
is to create embeddings that capture an object geometry and appearance for reconstruction, while also
being discriminative enough for tasks like localization and alignment. Thus, we emphasize robust
representation learning from captured data for multi-task utility, rather than pure synthesis.

3 Learning Versatile Object Embeddings

We propose Object-X, taking a reconstructed scene with a 3D object segmentation as input and
learning a compact and descriptive embedding for each object from their associated multi-modal data
(e.g., images, point cloud). To achieve this, we process each 3D object through the following steps:

1) Extract Structured Latent Representation (SLat): We first process the input data for
an object. We voxelize the object into a canonical 3D grid and aggregate local image
features within these voxels via multi-view projection, inspired by [29]. A 3D encoder then
transforms these voxel-aligned features into a structured set of latent vectors (the SLat),
which represents the object’s initial rich encoding.

2) Project SLat to an Unstructured Embedding: We then learn to compress SLat into a
dense and unstructured latent representation of a fixed, significantly smaller dimension.
Besides compression loss, other objectives are also considered during training to facilitate
downstream tasks, e.g., object retrieval. This embedding, which we term the U-3DGS
Embeddinﬂ becomes our core storage unit and descriptor for an object.

3) Decode the U-3DGS Embedding to 3DGS: One key application of the U-3DGS embedding
is its decodability. For reconstruction, we map this dense embedding back to an SLat
representation and then decode this into a full 3D Gaussian Splat model for the object.

Below, we detail the formation of the SLat representation. We then describe its compression into
the versatile U-3DGS embedding. Following this, we explain the decoding mechanism that enables
3DGS-based reconstruction from this embedding. The utility of U-3DGS for other direct downstream
applications will be demonstrated in subsequent sections. Fig. 2] summarizes the overall pipeline.

3.1 Structured Latents from Multi-View Images

Let a set of object instances O be given, where each object o = (P,Z, M, A, ...) € O is associated
with a multi-modal input, such as multi-view images (Z), instance masks (M), point clouds (P) and
other attributes (.A4). For each object o, we extract an object-specific latent embedding w,. The scene
representation is defined as W = {w, },c0, enabling lightweight storage compared to dense point
clouds or images. The goal is to learn mapping O +— W, where WV allows decoding into 3D objects.
Here, we focus on modalities P and Z to learn the reconstructable embedding. Other modalities will
be discussed when training also for downstream applications in the next section.

Voxelization and Feature Extraction. Given multi-view images of an object o, we first voxelize its
canonical 3D space into an N x N x N grid (e.g., 64%). For each voxel p; that intersects the surface
of the object, we project p; into each image to retrieve localized features. Similar to [29], we employ
a pre-trained DINOvV2 feature encoder [[17] on masked object images. Averaging these image-level
features yields a per-voxel feature f; € RP. Concatenating over all active voxels forms a sparse,
voxel-aligned feature set as f = {(fi,pi)}, L < N3.

Structured Latent Representation (SLat). We convert f into a structured latent representation
z = {(2,p;)}, viaa 3D encoder E as follows:

z={(z,pi)}, = E(f), 2 €RY, p;e{0,...,N -1}
Each voxel p; is paired with a local latent z; capturing shape and appearance. By preserving the sparse
grid structure, z offers geometric grounding (through p;) and localized feature encoding (through z;).
3.2 Compression to a Dense Embedding

Although z is sparse relative to raw 3D data, it can still be large for high-resolution grids when we
aim at capturing fine details. Moreover, downstream tasks favor a compact embedding for each object,

"Named for its designed decodability into 3D Gaussian Splats, though it serves broader purposes.
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Figure 3: The proposed Object-X learns per-object embeddings that are beneficial for a number of
downstream tasks, besides object-wise 3DGS reconstruction, such as cross-modal visual localiza-
tion (via image-to-object matching), 3D scene aligment [21] (via object-to-object matching),
and full-scene reconstruction by integrating per-object Gaussians primitives.

rather than a collection of per-voxel vectors. Thus, we learn a mapping to compress 2 into a fixed-size
vector w € R?, where d is small and independent of the size of the object at hand as w = fy.3pgs(2),
where w is an Unstructured 3D Gaussian Splatting (U-3DGS) embedding. We implement fy_spgs
using a 3D network (similar to a U-Net) that first organizes z into a dense N x N x N x C tensor
(with zero-filling for inactive voxels), then, downsamples and encodes it to w.

Masked MSE for Compression Learning. We supervise fyipgs by requiring that the dense
embedding w can be decoded back into the original structured representation z (or a close approxi-
mation). Specifically, we introduce a decompression function fgecomp that maps w back to a predicted
z2 = {4, pi}iLzl. We then encourage Z; =~ z; under a masked mean-square-error (MSE) or L1 loss
that focuses on occupied voxels as 2 = fuecomp(W), and the objective includes

1 L

s 2 1-M;

»Ccompress = Z Z[MZ HZZ - Zi” + =
i=1

where binary mask M; indicates if voxel p; is occupied, and w is a down-weighting factor for

non-occupied regions.

Z; _Zi||2]a

3.3 Decoding to 3D Gaussian Splats

In this section, we use the learned object embeddings w to reconstruct the object into a 3DGS
representation. As discussed in the previous section, we can obtain the reconstructed structured latent
representation Z from w by applying decompression network 2 = fgecomp(W)-

Deterministic Autoencoder for 3DGS. We next train a decoder Dgs that takes in the reconstructed
structured latents Z (obtained from w) and outputs a set of 3D Gaussian Splat parameters as follows:

A N
© = Dgs(2), © = {(Ii75i,qz',oéi,ci)}i:1~ (D

Each Gaussian is specified by position z;, scale s;, rotation g;, opacity «;, and color ¢;. We
train Dgg by rendering these Gaussians from multiple viewpoints and minimizing image-space
reconstruction losses (e.g., L1, SSIM, and LPIPS) against ground-truth images of the object using
108$ Lrenger = ALL1 + (1= A)[1— Lssiu] + Lipips. Since 2 can accurately encode fine object
details, Dgs learns to produce high-fidelity splats.

Voxel-Level Offsets. For spatial alignment, the center of each Gaussian is computed as xz; =
pi + tanh(oi), where o; is an offset predicted by Dgs and p; is the voxel location. This ensures
positions remain near the coarse voxel layout, but can adjust locally for more precise fits.

Training. The proposed pipeline is end-to-end trainable, learning a compact embedding space in a
single training pass. The optimization jointly minimizes the reconstruction loss, ensuring accurate
recovery of the SLat representation from the U-3DGS embedding, and photometric loss, learning the
mapping from SLat features into 3DGS that can be used for NVS and surface reconstruction.

3.4 Learning Auxiliary Tasks

The U-3DGS embedding, primarily learned to capture object appearance and geometry for high-
fidelity reconstruction, also serves as a potent foundation for various downstream auxiliary tasks
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Figure 4: Object reconstructions. Each row shows an input object (left) and its reconstruction
obtained by, from left to right: (i) 3DGS [2/]] optimized on all images, (ii) 3DGS or (iii) 2DGS [37/]]
using only 12 multi-view images, and (iv) Object-X. For each method, we present a rendered image
from the reconstructed 3D Gaussians and the corresponding mesh.

such as visual localization [13] and 3D scene alignment [21} [22]] (see Fig.[3). To further enhance
performance on such tasks, we augment the pre-trained U-3DGS representation by integrating
information from other relevant modalities. This augmentation involves incorporating features
from auxiliary data sources like textual descriptions, object relationships, or broader scene context
(which can be derived, for example, from a 3D scene graph structure [21]). Each auxiliary modality
is processed by its own dedicated encoder (e.g., a CLIP-based model with a projection head for
text features), following [21]. The resulting feature vectors from these auxiliary encoders are then
concatenated with the original U-3DGS embedding to form a richer, multi-faceted representation
for the object. The training strategy for these augmented representations, leveraging the pre-trained
U-3DGS encoder and decoder, proceeds in two main stages after the initial U-3DGS pre-training:

Auxiliary Encoder Training with Frozen Core: Initially, the pre-trained U-3DGS encoder and
decoder (responsible for appearance and geometry) are kept frozen. The newly introduced encoders
for the auxiliary modalities are trained. In this stage, the learning is guided by a combined loss:

Laux = Liask (Wconcat) + AreconLrecon (WU-3DGS)7 )

where Weonca 18 the full concatenated embedding (U-3DGS + auxiliary features). Ly is the task-
specific loss (e.g., a contrastive loss for localization). Lecon is the reconstruction loss also used for
pre-training the U-3DGS embeddings. Crucially, Lyecon is applied using the U-3DGS decoder, which
operates only on the corresponding U-3DGS portion (Wy_3pgs) Of Weoncar- This ensures that the
new auxiliary features are learned in a way that remains compatible with, and does not corrupt, the
reconstructive capabilities of the core U-3DGS representation. A..con balances these two objectives.

Joint Fine-tuning: After the auxiliary encoders have been trained, all network components are
unfrozen. This includes the U-3DGS encoder and decoder, as well as all auxiliary modality encoders.
The entire ensemble is then fine-tuned end-to-end using the same combined loss L, (Eq |Z[)

Through this process, Object-X learns to effectively fuse intrinsic object properties (geometry,
appearance via U-3DGS) with extrinsic or contextual information (text, relationships via auxiliary
encoders). We will demonstrate this approach by training our model for visual localization [13l],
and subsequently evaluate its zero-shot or fine-tuned performance on related tasks like 3D scene
alignment, showcasing the versatility and robustness of the learned augmented embeddings.

4 Experiments

Next, we will provide experiments on various tasks benefiting from Object-X. Ablation studies, more
visuals, and detailed descriptions of baselines are provided in the supplementary material.

Mesh extraction. To evaluate the geometric accuracy, we extract a triangle mesh from the optimized
3D Gaussians, following the procedure from 2DGS [37]. We first render depth maps from different
viewpoints. These depths are fused using the Truncated Signed Distance Function (TSDF) integration
in Open3D [36]. Finally, a triangle mesh is extracted using Marching Cubes [12]].

Implementation details. All experiments are conducted on a machine with an A100 GPU with
80GB of RAM. During sparsification, a threshold of 0.5 is applied to the predicted occupancy. The
mesh is constructed using a voxel size of 0.015 and an SDF truncation value of 0.04.



Table 1: 3DGS Object reconstruction photometric quality, geometric accuracy, runtime, and storage
efficiency on 3RScan [26] and ScanNet [4]]. We compare Object-X with baselines that store objects as
a set of 12 (3RScan) or 4 images (ScanNet) and reconstruct 3D Gaussians at test time using 3DGS [27],
2DGS [37]], and DepthSplat [30]. As a reference, we report the results of 3DGS, optimizing directly
on all dataset images. We report NVS scores (SSIM, PSNR, LPIPS), geometric accuracy (Accuracy,
Completion, and F1 score at a 0.05 m threshold), per-object run-time (secs), and storage (MB). We
do not show geometric accuracy for DepthSplat as it failed mesh reconstruction.

Method SSIM1 PSNR7T LPIPS| Acc.@0.051 Compl.@0.051 F1@0.051 Time(s)| Storage (MB)
3DGS [27] 0.956 34.009 0.051 33.75 73.38 4141 58.461 32.74
S g 3DGS2vZl | 0944 ~ 31613 0072 | 3372 7781 4435 | 58461 | 671
S 2DGS (12V) [7] 0.932 29.613 0.093 26.55 67.69 35.67 84.280 6.71
E DepthSplat (12V) [30] | 0.619 21.669 0.304 - - - 0.491 6.71
' Object-X 0.953 30.981 0.065 80.22 77.80 77.80 0.051 0.14
3DGS [27] 0.975 38.138 0.032 33.81 79.13 43.00 129.02 270.97
g 3DGSE@VIRT [ 0.949 = 30754 0.059 | 3695 8237 4818 | 12002 | 5526
% 2DGS (4V) [7] 0.945 29.604 0.073 26.96 74.85 37.10 169.65 55.26
8 DepthSplat (4V) [30] 0.832 26.152 0.134 - - - 0.138 55.26
L2 Object-X 0.966 31.563 0.047 88.66 90.08 89.09 0.033 0.14

Datasets. The 3RScan dataset [26] consists of 1,335 annotated indoor scenes covering 432 distinct
spaces, with 1,178 scenes (385 rooms) used for training and 157 scenes (47 rooms) reserved for
validation and testing. The dataset provides semantically annotated 3D point clouds, with certain
scenes captured over extended periods to reflect environmental changes. Scene graph annotations are
available from [27]]. Since the test set lacks such annotations, we reorganized the original validation
split, allocating 34 scenes (17 rooms) for validation and 123 scenes (30 rooms) for testing. Objects
without available images were removed to ensure a consistent evaluation.

ScanNet. To evaluate generalization, we test on ScanNet [4] without training our model on it. Since
ScanNet does not provide scene graph annotations, we apply SceneGraphFusion [28] on RGB-D
sequences to generate 3D instance segmentations and object relationships (used for auxiliary tasks).
Compared to 3RScan, ScanNet captures RGB-D sequences at a higher frame rate with minimal
motion between consecutive frames. To ensure diverse viewpoints, we sample one image every 25
frames. We use 77 test scenes from the split defined in [13]. Scenes, where SceneGraphFusion fails
to generate annotations, are excluded. As in 3RScan, objects without associated images are discarded.
The test split, along with its annotations, will be publicly released.

1. Object Reconstruction. First, we evaluate the Object-X decoder in terms of storage efficiency,
geometric fidelity, and visual quality on the object reconstruction task.

Baselines. 3DGS [9] serves as a high-fidelity baseline, representing each object as a set of 3D
Gaussians. While this approach captures fine details, it requires substantial storage, as every object is
represented by a set of Gaussians. We provide results for 3DGS (12 views) that stores each object as
12 images captured from different viewpoints. During reconstruction, 3DGS is applied to recover
the 3D Gaussians from these views. This reduces storage compared to full 3DGS but introduces a
trade-off: reconstruction takes longer, and the quality may be slightly degraded. 2DGS (12 views) [7]
follows the same 12-image storage strategy but employs 2DGS [37] instead of 3DGS. Both 2DGS
and 3DGS leverage the segmented mesh as initialization. Default parameters are used. DepthSplat
(12 views) [130]] also relies on 12 stored views but reconstructs objects using DepthSplat, a fast
feed-forward network. We use the pre-trained model provided by the authors, which was not trained
on 3RScan. Since we train on 3RScan, comparisons on this dataset may be unfavorable to DepthSplat.
However, we also evaluate on ScanNet, where neither DepthSplat nor our method has been trained.

For the baselines, we select k frames that maximize viewpoint diversity. To achieve this, we apply
k-means clustering to the positions of the cameras observing the object. In 3RScan, we use the
maximum number of frames supported by DepthSplat (i.e., 12), while in ScanNet, where fewer
non-overlapping frames are available, we limit the selection to four frames per object.

We present examples in Fig. [ showing renderings and the reconstructed meshes. Object-X produces
significantly smoother renderings and higher-quality meshes, whereas meshes reconstructed by
baselines exhibit strong artifacts and fail to achieve accurate geometry.

Metrics. We evaluate our method using the standard novel view synthesis scores: PSNR, SSIM, and
LPIPS. Additionally, we report standard geometric metrics: accuracy, completeness, and F1 score.



Table 2: Full-scene composition on 3RScan [26]. We compare Object-X to 3DGS [27] optimized on
all unmasked images, and two 12-view baselines: 3DGS (12V) and 2DGS (12V), which optimize
scenes using a subset of training images constructed by taking the union of the 12 best views selected
per object. Object-X achieves the second highest geometric accuracy the fastest. When combined
with refinement (Object-X + Opt), it also achieves the best perceptual quality among all methods.

Method SSIM1t PSNR1 LPIPS| Acc.@0.051 Compl.@0.051 F1@0.051 Time (s) .
3DGS [27] 0.855 24.404 0.417 16.48 31.99 21.40 260
" 3DGS(12V)[27] | 0.767  18.806 ~ 0.517 | 16.81 3263 2188 | 150
w  2DGS (12V) [7] 0.752 18.900 0.523 18.09 30.92 22.61 250
ﬁ Object-X 0.677 15.488 0.526 46.22 54.98 49.99 1
Object-X + Opt 0.727 17.098 0.507 63.00 71.54 66.49 150

Results on 3RScan. The top part of Table [I] reports the results on 3RScan. Object-X achieves
comparable novel view synthesis quality to the baselines, with an SSIM score closest to 3DGS, the
second-best PSNR score, and the best LPIPS score. Object-X substantially outperforms all baselines
in geometric accuracy. Our method improves geometric accuracy by a large margin of 46 percentage
points compared to all baselines while also exhibiting good completeness. This demonstrates that
the proposed U-3DGS embeddings effectively capture object geometry, accurately recovered by the
Object-X decoder. We omit geometric results for DepthSplat [30], which failed to produce reasonable
geometry. Our runtime is three orders of magnitude faster than methods relying on optimization.
Moreover, our approach requires an order-of-magnitude less storage, as we only store a single
embedding per object instead of numerous images or 3D Gaussians.

Results on ScanNet. The bottom part of Table [I] reports the results on ScanNet. Note that we did
not train our model on this dataset and used the model trained on 3RScan. Even without training,
we achieve the highest novel view synthesis scores compared to the baselines, being the closest to
the reference 3DGS reconstruction. Our geometric accuracy significantly outperforms all baselines.
Given the higher resolution images in this dataset compared to 3RScan, the optimization-based
approaches are quite slow, even when using only 4 views. We are four orders of magnitude faster
than 3DGS (4V) and 2DGS (4V) requiring 3 ms to reconstruct an object on average.

2. Scene Reconstruction. Although the we do not explicitly perform scene reconstruction, we
evaluate scene composition by integrating object-level reconstructions. Object-X composes the full
scene by decoding embeddings for each object and rendering their splats jointly. While this method
is highly efficient, artifacts can emerge due to missing object segmentations. We also show results
for Object-X + Opt, where the initial scene is constructed via Object-X, and optimized using 3DGS
on the same image set used in 3DGS (12V). This setup isolates the benefit of Object-X as a strong
initialization while allowing to overcome the problems caused by missing objects.

Table [2] reports results on the 3RScan dataset. While Object-X achieves lower SSIM and PSNR
compared to 3DGS (12V), it significantly outperforms all methods in geometric accuracy. Also,
it runs two orders of magnitude faster than the baselines. With refinement (Object-X + Opt), our
method not only matches or exceeds the photometric quality of 3DGS (12V), but also achieves the
highest geometric accuracy by a large margin. Runtime remains comparable to the 12-view baselines,
and significantly faster than full-scene 3DGS optimization.

3. Single-Image Reconstruction. We further evaluate the flexibility of Object-X by reconstructing
objects from a single RGB or RGB-D frame. Let us note that the Object-X was not explicitly trained
for this task nor to infer unseen parts of an object. In the RGB-only scenario, we estimate monodepth
using [l6]. Using the object mask and depth map, we lift the object pixels in 3D, obtaining a point
cloud. We then voxelize it following the process described in Sec.[3.1} Object-X is then applied
to obtain the object embedding from this input which is then fed directly into our decoder. We
compare our approach to 3DGS [27] which optimizes 3D Gaussian splats based on a single masked
image. Results in Table |lp show that Object-X outperforms 3DGS in all metrics on RGB-D and
RGB inputs while also achieving significantly better F1 scores, indicating more precise and reliable
reconstructions. We note that while there is still room for improvement in this task, achieving
improved results demonstrate the versatility of the learned object embeddings.

4. Coarse Visual Localization. We evaluate visual localization on 3RScan. Following the protocol
from SceneGraphLoc [13]], we evaluate on 123 scenes from 30 rooms in the test set. We select query
images for each scene and match them against 10 candidate scenes (including the target) to determine
if the correct scene can be identified. This process is repeated for every image in each room, resulting



Method | LPIPS| PSNR{ SSIM 1 | F1@0.05 1 Method Modalities 10 scenes
Z 3DGS 0.131 2658  0.891 27.01 P I O 3DSG|R@lI R@3 R@5
S Object-X | 0.099 2803  0.926 44.79 SGLoc [13] 7 X 7~ x |36 819 9s
g 3DGS 0.129 2672 0.896 8.70 CrossOver[22] | X v X X | 460 779 905
&  Object-X 0.110 27.27 0.918 10.53 Object-X X X v v 56.6 822 91.8

(a) Single-Image Object Reconstruction on (p) Coarse Visual Localization on 3RScan [26]].

RGB (depth predicted by [0]) and RGB-D  Retrieval recall at various thresholds using vari-
frames from 3RScan [26]. Photometric and geo-  ous methods and input modalities.

metric accuracy of 3DGS vs. Object-X.

Figure 5: Comparison of (a) object reconstruction and (b) coarse localization performance using
3DGS and Object-X across tasks and input modalities.

Table 3: 3D Scene Alignment on 3RScan [26] by Object-X, SGAligner [21]] and EVA [11]]. We
report Mean Reciprocal Rank and Hits@K that denotes the proportion of correct matches appearing
within the top K, based on cosine similarity. Evaluations are conducted using modalities: point cloud
(P), others (O), and 3DGS. In constrast to the baselines, Object-X is used without training on this
task.

Method » M‘(’gal‘;‘lgss G | MeanRR 1 | Hits@11 Hits@21 Hits@3] Hits@41 Hits@51
EVA [11] v X X 0.867 0.790 0.884 0.938 0.963 0.977
SGAligner 2T | v X X 0.884 0.835 0.886 0.921 0.938 0.951
SGAligner 211 | v ¢ X 0.950 0.923 0.957 0.974 0.982 0.987
Object-X X v v 0.910 0.864 0.917 0.948 0.965 0.975

in a total of 30,462 query images used for evaluation. Our method, along with SceneGraphLoc
and the recent CrossOver [22], uses a ViT to extract per-patch object embeddings from the query
image. For each candidate scene, a similarity score is calculated by identifying the most similar
object embedding in the scene for each patch in the image. Robust voting is then performed across
all patch-object similarities to determine the scene where the query image was captured. We report
the scene retrieval recall at 1, 3, and 5, measuring the percentage of queries for which the correct
scene is ranked within the top 1, 3, and 5 retrieved scenes. The results are shown in Table E]) We
indicate whether a method uses point cloud (P), image (Z), other modalities like object attribute and
relationship (O), or the proposed U-3DGS embedding. Our method, leveraging 3DGS and other
modalities, achieves the highest R@1 and R@3 scores.

5. 3D Scene Alignment. To further assess our generalization capabilities, we evaluate on a new
task, Scene Alignment, on 3RScan, following the protocol from SGAligner [21]. This task involves
matching objects across partially overlapping scans of the same scene by comparing their embeddings.
Unlike SGAligner, explicitly trained for this task using point cloud and object-level modalities, our
method relies solely on the proposed Object-X embedding trained with reconstruction and localization
losses, without finetuning for scene alignment. As shown in Table[3] Object-X performs comparably
in all metrics (achieving the second highest accuracy) to the baselines tailored for this task.

5 Conclusion

We introduced Object-X, a novel framework for learning compact, versatile, multi-modal object-
centric embeddings. These unique embeddings are decodable into high-fidelity 3D Gaussian Splats
for object reconstruction while also serving as potent descriptors for diverse downstream tasks,
such as visual localization, single-image reconstruction, and 3D scene alignment, often without
task-specific fine-tuning. Object-X achieves excellent geometric accuracy and novel-view synthesis,
comparable or superior to specialized methods, while drastically reducing storage requirements by
3-4 orders of magnitude by obviating the need for raw sensor data. Our approach effectively bridges
the gap between abstract learned object representations and detailed explicit 3D models, offering a
scalable and practical solution for advanced 3D understanding. The code will be made public.

Limitations. Despite these advances, Object-X has limitations. The high degree of compression can
lead to a loss of the finest details in some reconstructions, particularly for large or complex objects.
Furthermore, while promising in zero-shot scenarios for tasks like single-image object reconstruction,
performance may not yet consistently match optimized task-specific methods.
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Supplementary Material

This supplementary material provides additional training details, experimental setups, visualizations,
and ablation studies in support of the main paper. It is organized as follows:

1. Additional details on baseline comparisons and visualizations for object-level, image-based,
and scene-level reconstruction (Section[A)

2. Training procedures for pretraining, compression, and downstream adaptation (Section [B)

3. Setup and evaluation details for visual localization using U-3DGS embeddings (Section [C))

4. Scene alignment task setup, including sub-scene construction and evaluation metrics (Sec-
tion

5. Ablation results on compression, occlusion robustness, and architectural variants (Section@)

A Baselines and Visualizations

This section details the implementation and evaluation protocols for all baseline methods discussed
in the main paper. We cover object-level, scene-level, and single-image reconstruction settings. To
ensure a fair and rigorous comparison across all experiments, we maintain consistent supervision
levels, initialization strategies, and evaluation metrics when assessing storage requirements, visual
quality, and geometric fidelity.

A.1 Object Reconstruction Baselines

All optimization-based methods, specifically 3D Gaussian Splatting (3DGS) [9]] and 2DGS [37],
operate on masked RGB-D input sequences. Our comparative analysis includes three primary
optimization-based baselines:

1. 3DGS (Full Scene): Utilizes all available images from a given scene to serve as an upper-
bound reference reconstruction.

2. 3DGS (kV): Employs k pre-selected views that observe the target object.

3. 2DGS (kV): Also uses k pre-selected views observing the target object.

To ensure a fair comparison by providing identical starting conditions for all methods, we initialize
Gaussian splats directly from ground-truth object meshes. The k views for object-specific baselines
are selected using a k-means clustering strategy (detailed below) to promote viewpoint diversity and
ensure high object visibility. Crucially, evaluation is consistently performed on a disjoint test set of
images that were not utilized during the training or optimization phases of any method. For both
3DGS and 2DGS, we conduct optimization for 7,000 iterations using their default hyperparameter
settings. For experiments on the 3RScan [26] dataset, we use 12 views and, on ScanNet [4]], which
typically offers fewer views per object instance, we restrict the number of selected views, k, to a
maximum of 4 per object.

Regarding DepthSplat [30], we evaluate using the publicly available pre-trained model. As this
model was not trained on object reconstruction tasks, we apply it to the unmasked image and, we
post-process its output by removing any splats that fall entirely outside the masked object region.

Visual comparisons are provided in Figure [6] Alongside rendered novel views, we present mesh
reconstructions derived from the 3D Gaussians using the TSDF fusion technique, as proposed
in [37]]. These visualizations demonstrate that our proposed method, Object-X, achieves significantly
smoother novel view syntheses and more geometrically accurate mesh reconstructions compared to
the baselines.

Frame Selection Protocol. To ensure consistent and representative view selection across all relevant
experiments (object-level and scene-level k-view baselines), we employ a clustering-based strategy
for choosing training/optimization views. From the available set of frames for an object or scene, we
first cluster their camera extrinsics (position and orientation) using k-means. Subsequently, we select
one frame from each resulting cluster, prioritizing the frame that exhibits the fewest masked pixels
(i.e., maximal object visibility within the frame). Any objects for which no valid test images remain
after this selection process (e.g., due to insufficient visibility in all remaining frames not reserved for
testing) are excluded from the evaluation set to maintain fairness.
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Figure 6: Object reconstructions. Each row shows an input object (left) and its reconstruction
obtained by, from left to right: (i) 3DGS [27]] optimized on all images, (ii) 3DGS or (iii) 2DGS [37]
using only 12 multi-view images, and (iv) Object-X. For each method, we present a rendered image
from the reconstructed 3D Gaussians and the corresponding mesh.

A.2 Scene-Level Reconstruction

For full-scene evaluation, we adapt 3DGS and 2DGS to operate jointly across all objects within
a scene. This is achieved by utilizing the union of the same k views per object as in the object-
level experiments (specifically, 12 views for 3RScan and 4 for ScanNet), but here the RGB-D
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inputs are unmasked. Our method, Object-X, reconstructs the scene by independently decoding the
learned U-3DGS embedding for each constituent object and then rendering their collective splats.
This compositional approach requires no additional scene-level optimization. We also evaluate an
augmented version, denoted as Object-X + Opt. This variant leverages the compositional scene
from Object-X as an initialization for a subsequent refinement stage. Specifically, it undergoes an
additional 4,000 iterations of 3DGS optimization. To ensure stability during this fine-tuning process,
all learning rates are reduced by a factor of 10x compared to the standard 3DGS settings.

Visualizations of scene-level reconstructions are presented in Figure[8] While Object-X generally
produces significantly smoother results than the baseline methods, its performance can be affected
by objects missing from the input segmentations (e.g., a poster on a wall, as shown in the first row
of the figure, or the objects on the desk, as shown in the second row). Additionally, fine- grained
details might sometimes be diminished. However, applymg 3DGS optimization as a post- processing
step (Object-X + Opt) yields substantial improvements in accuracy, effectively recovering such lost
details.

A.3 Single-Image Reconstruction

We extend our evaluation to a single-view reconstruction setting for all methods. In this scenario,
3DGS is optimized from scratch using a single masked RGB-D image (and its corresponding RGB
image) for 3,000 iterations. To ensure a fair comparison, Object-X utilizes the same reference image.
This image is selected based on criteria that maximize unmasked object coverage while minimizing
cropping along the image borders. We also test our method with only RGB input with depth predicted
by Metric3D [6] to generate the initial point cloud. Similarly to the scene reconstruction case, we use
Object-X to provide an initial reconstruction which we further refine by applying an additional 1,000
iterations of 3DGS optimization, using learning rates reduced by a factor of 10x (consistent with the
scene-level refinement). Visual results for this setting are presented in Figure[7}

Notably, despite Object-X not being explicitly trained for single-image reconstruction tasks, it
frequently produces visually cleaner reconstructions than 3DGS when both methods are constrained
to the same single input view and 3DGS is optimized from scratch under these conditions. The
reconstructed meshes are also substantially more accurate than the ones from 3DGS.

A.4 Evaluation Summary

Across all experimental settings, methods are evaluated on a fixed set of test views, distinct from
training/optimization views, on a per-object or per-scene basis as appropriate. We report standard
quantitative metrics, Peak Signal-to-Noise Ratio (PSNR), and the perceptual metric LPIPS. Qualitative
comparisons are provided in the relevant figures accompanying each experimental section ( e.g.,
Figure [6| for object-level, Figure 8] for scene-level, and Figure [7) for single-image results). Across
all evaluated levels — single-view, multi-view object reconstruction, and full-scene composition —
Object-X demonstrates strong performance, simultaneously offering significant advantages in terms
of computational efficiency and flexibility in initialization.

B Training Details

The training procedure encompasses three primary phases: sparse representation learning, compres-
sion model training, and adaptation for downstream tasks. Each phase employs distinct optimization
settings to ensure both stability and efficiency. For the sparse transformer-based encoder and decoder,
we apply gradient clipping at a threshold of 0.01. This is crucial for stabilizing the training process
and preventing excessively large updates within the structured latent space. Optimization is conducted
using the AdamW optimizer with a learning rate of 1 x 10~%. This learning rate is selected to strike
an effective balance between training stability and convergence speed. AdamW is chosen for its
decoupled weight decay mechanism, which aids in regularizing the model without adversely affecting
the gradient-based optimization updates. During the compression phase, a 3D U-Net architecture
is trained to map the structured latent representation to a more compact form suitable for efficient
storage or transmission. A higher learning rate of 1 x 10~2 is utilized in this phase. This facilitates
accelerated convergence while preserving reconstruction quality. Explicit gradient clipping is not
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Figure 7: Qualitative comparison for image to 3D. We compare the proposed Object-X to standard
3DGS on RGB and RGB-D inputs. For each method, we present the image from which the object
(left column) is reconstructed and the rendered novel view together with the mesh reconstructed from
the 3D Gaussians by: (2nd column) proposed Object-X with RGB-D input; (3rd) 3DGS with RGB-D;
(4th) proposed Object-X with RGB input; (5¢h) 3DGS with RGB. The proposed method leads to
significantly cleaner novel views and meshes than 3DGS applied to a single image.

deemed necessary for the U-Net, as its inherent hierarchical structure and typical training dynamics
provide sufficient stabilization.

For adaptation to downstream tasks, such as object localization or instance retrieval, training is
performed using the AdamW optimizer with a learning rate of 1 x 10~3 when the voxel-based latent
representation is kept frozen. However, if the voxel representation is fine-tuned concurrently with the
task-specific modules, a lower learning rate of 1 x 10~ is adopted. This approach helps to mitigate
the risk of catastrophic forgetting of the learned representations. Key regularization techniques
employed include the aforementioned gradient clipping and structured weight decay (e.g., as provided
by the AdamW optimizer).

C Supplementary: Coarse Visual Localization

We provide additional details for the visual localization experiment on the 3RScan dataset. This ex-
periment is designed to evaluate the downstream utility of the U-3DGS embeddings when augmented
with auxiliary modalities.

Training. The model utilized for localization is trained following the auxiliary learning setup
described in the main paper. We freeze the pre-trained U-3DGS encoder and decoder. Auxiliary
encoders are then trained on object-level inputs derived from 3D scene graphs, specifically object
relationships, attributes, and structural context. Each RGB query image is processed through a
DINOV2 backbone followed by a patch-level encoder to generate patch-wise descriptors. A contrastive
loss function aligns these image patches with the corresponding object embeddings within the scene.
Concurrently, a compression loss ensures that the original U-3DGS component of the joint embedding
remains accurately decodable. After this initial stage, all modules, including the U-3DGS components
and auxiliary encoders, are jointly fine-tuned to enhance task-specific performance while preserving
reconstruction fidelity.

Setup. Following the evaluation protocol established by SceneGraphLoc [13]], we sample 123 distinct
scenes from 30 rooms within the 3RScan test split. For each query image, the objective is to identify
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Figure 8: Qualitative comparison for full-scene composition. We compare the proposed Object-X
to standard 3DGS optimized on all unmasked scene images, and two 12-view baselines: 3DGS
(12V) and 2DGS (12V), which optimize scenes using a subset of training images constructed by
taking the union of the 12 best views selected per object.

the correct scene from a candidate pool of 10 scenes, which includes the ground-truth scene. This
experimental setup results in a total of 30,462 query evaluations.

Evaluation. At test time, each posed RGB image is encoded into a set of patch-level embeddings. For
every candidate scene in the pool, these image patch embeddings are compared against all available
object embeddings from that scene using cosine similarity. The final prediction for the scene is
determined via a robust voting mechanism that aggregates all patch-object similarity scores. We
report Recall@K for K € {1, 3,5}, which measures the frequency with which the correct scene
appears among the top-K predicted scenes. This metric directly reflects the model’s capability to
localize images effectively using the learned, object-centric multimodal representation.
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Results. We compare our results with SceneGraphLoc [13]] and the recent CrossOver method [22].
Our approach demonstrates competitive localization accuracy while crucially maintaining compat-
ibility with 3D reconstruction and other downstream applications, a benefit stemming from our
jointly trained, modular representation. Detailed results are presented in Table[d] In this table, we
indicate whether a given method utilizes point clouds (P), images (Z), other modalities such as
object attributes and relationships (O), or the proposed U-3DGS embedding. Our method, leveraging
U-3DGS embeddings in conjunction with other modalities, achieves the highest Recall@1 and
Recall@3 scores. This outcome suggests that the proposed U-3DGS embeddings furnish information
comparable to, or even richer than, that provided by raw point clouds or images for the task of visual
localization.

Furthermore, we present an ablation study for our method (indicated with an asterisk * in Table [
using only the U-3DGS embeddings, without any specific fine-tuning of our main encoder for this
localization task. As anticipated, the auxiliary modalities (attributes, relationships, etc.) offer valuable
complementary information, contributing significantly to the superior performance of the full model.
Interestingly, even in this constrained setting (U-3DGS embeddings alone, without targeted training),
our method performs comparably to the recent CrossOver approach [22]. This highlights the inherent
richness and suitability of our learned U-3DGS embeddings for visual localization tasks, even without
explicit optimization for this specific application.

Method Modalities 10 scenes
P I O 3DSG | Recall@l Recall@3 Recall@5
SGLoc [13]] VR 4 X 53.6 81.9 92.8
CrossOver [22] | X ' X X 46.0 77.9 90.5
Object-X X X Vv v 56.6 82.2 91.8
" Object-X* | X X X/ | 287 585 765
Object-X* X X Vv v 448 72.6 85.7

Table 4: Coarse visual localization on the 3RScan dataset [26] using the proposed U-3DGS
embedding, compared to SceneGraphLoc [13] and CrossOver [22]]. We report retrieval recall at 1, 3,
and 5 when selecting the correct scene from 10 candidates. Evaluations are conducted using different
map modalities: point cloud (P), image (Z), other modalities (O), and 3DGS. In the lower section
(*), we also present results where the U-3DGS embedding is used without task-specific training.

D Supplementary: Scene Alignment

We provide additional details on the setup and evaluation procedure for the 3D Scene Alignment task
on the 3RScan dataset [26]], following the protocol established by SGAligner [21].

Setup. To construct the evaluation data, we generate sub-scenes by selecting fixed-length sequences
of consecutive RGB-D frames from the 3RScan validation set. Each such sequence is then fused
into a partial 3D reconstruction using volumetric integration. This process results in a total of 8§48
sub-scenes, each representing a distinct viewpoint or region within an original, larger scene. From
these sub-scenes, we create 1,906 pairs by selecting pairs that originate from the same ground-truth
scene. These pairs are deliberately constructed to span a wide range of spatial overlap percentages
(from 10% to 90%) thereby ensuring coverage of both straightforward and challenging alignment
scenarios.

Evaluation. We extract object embeddings independently from each sub-scene. These embeddings
are produced by the same network architecture and weights trained for the scene localization task, as
detailed in Section[C| During the evaluation phase, we compute the cosine similarity between every
object embedding in one sub-scene and all object embeddings in its paired sub-scene. For each object
in the first sub-scene, candidate objects from the second sub-scene are ranked based on this similarity
score. We evaluate the quality of these rankings using standard retrieval metrics: Mean Reciprocal
Rank (MRR) and Hits@K, where K € {1,2,...,5}. The Hits@K metric measures the proportion
of queries for which a correct match appears within the top-K ranked results, while MRR quantifies
the average inverse rank of the first correct match.
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E Ablation Studies

This section analyzes the impact of key components and design choices in our proposed method.
Table [5] presents results as a function of the compression rate, which is defined by the resolution
of the underlying voxel grid, where each voxel stores eight parameters. As a reference, we also
report results for standard 3D Gaussian Splatting (3DGS). In addition to our proposed 3D U-Net
architecture for compression, we evaluate a naive downsampling approach that applies max pooling
followed by interpolation.

The results corresponding to a 642 voxel grid resolution effectively represent our Structured Latent
(SLat) representation without any subsequent compression, as this directly matches the original
voxel resolution described in the main paper. The ablation results demonstrate that employing
naive downsampling leads to a significant degradation in accuracy as the resolution decreases. In
contrast, our proposed 3D U-Net maintains high fidelity with only a marginal loss in accuracy, while
substantially reducing the number of parameters required per object from 642 x 8 = 2097 152 to
amere 83 x 8 = 4096. Based on this analysis, we adopt a resolution of 162 for the compressed
representation in all our main experiments.

Table [6] evaluates the robustness of our method to varying degrees of occlusion by systematically
removing parts of an object before it is encoded. Occlusion is simulated by selecting a random point
on the object’s surface and removing all geometry within a sphere of diameter d. The diameter
d is defined as a fraction of the object’s characteristic size; for example, d = 0.4 corresponds to
approximately 40% of the object’s volume being removed. The results indicate that even under severe
occlusion, our proposed method maintains high reconstruction accuracy, thereby demonstrating its
resilience to incomplete or missing input data.

Resolution | Method | LPIPS (Mean + o) | Median | | PSNR (Mean + o) T Median T
3DGS - 0.086 + 0.082 0.060 30.15 + 5.06 30.14
643 (SLat) - 0.094 +0.101 0.059 27.30 +£6.13 27.06
393 Naive 0.124 +0.126 0.076 25.28 + 5.51 25.80
3D Unet 0.099 + 0.108 0.060 27.06 +6.18 26.84
163 Naive 0.189 +0.137 0.137 21.32 +5.53 21.41
3D Unet 0.103 £0.113 0.062 27.01 £6.29 26.71
g3 Naive 0.257 +0.187 0.211 17.46 £ 5.26 16.86
3D Unet 0.110+0.119 0.065 26.74 + 6.35 26.50

Table 5: Ablation study on latent dimensions. Mean and median LPIPS and PSNR on a subset
of scans from the test set. We compare the standard 3DGS (as a reference), the SLat embedding
without dimensionality reduction, and U-3DGS with compressed representations at 323, 163, and
83. Also, we evaluate naive downscaling approaches using max pooling and interpolation alongside
the proposed 3D U-Net. The 163 resolution is selected for all other experiments as it significantly
reduces storage while maintaining near-optimal reconstruction accuracy.

d , LPIPS Mean+0)| Median| A PSNR (Mean+0)1 Median 1

0.0 0.104 +0.114 0.062 26.85 £ 6.25 26.66
0.1 0.104 £0.113 0.063 26.96 £6.32 26.69
0.2 0.106 +0.114 0.064 26.70 £6.44 26.50
0.4 0.113 +£0.119 0.068 26.07 £6.70 25.93

Table 6: Ablation study on occlusion. Before encoding an object, we randomly select a point
on its surface and remove all parts within a spherical region of diameter d. For example, d = 0.4
corresponds to a removal region spanning 40% of the object’s size. We report LPIPS and PSNR
scores for different values of d to assess the impact of occlusion on reconstruction quality.
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