arXiv:2506.04912v1 [cs.Al] 5 Jun 2025

Differentiable Logic Cellular Automata: From Game of Life to Pattern Generation

Pietro Miotti', Eyvind Niklasson!, Ettore Randazzo', Alexander Mordvintsev'

1Google, Paradigms of Intelligence Team
pietro.miotti @ gmail.com

Abstract

This paper introduces Differentiable Logic Cellular Au-
tomata (DiffLogic CA), a novel combination of Neural Cel-
lular Automata (NCA) and Differentiable Logic Gates Net-
works (DLGNs). The fundamental computation units of the
model are differentiable logic gates, combined into a circuit.
During training, the model is fully end-to-end differentiable
allowing gradient-based training, and at inference time it op-
erates in a fully discrete state space. This enables learn-
ing local update rules for cellular automata while preserving
their inherent discrete nature. We demonstrate the versatil-
ity of our approach through a series of milestones: (1) fully
learning the rules of Conway’s Game of Life, (2) generat-
ing checkerboard patterns that exhibit resilience to noise and
damage, (3) growing a lizard shape, and (4) multi-color pat-
tern generation. Our model successfully learns recurrent cir-
cuits capable of generating desired target patterns. For sim-
pler patterns, we observe success with both synchronous and
asynchronous updates, demonstrating significant generaliza-
tion capabilities and robustness to perturbations. We make the
case that this combination of DLGNs and NCA represents a
step toward programmable matter and robust computing sys-
tems that combine binary logic, neural network adaptability,
and localized processing. This work, to the best of our knowl-
edge, is the first successful application of differentiable logic
gate networks in recurrent architectures.

Data/Code available at:
github.com/google—-research/
self-organising—-systems/blob/master/
notebooks/diffLogic_CA.ipynb

https://

Introduction

In this paper, we explore a novel learnable computational
architecture: Differentiable Logic Cellular Automata (Dif-
fLogic CA), a combination of Neural Cellular Automata
(NCA) (Mordvintsev et al.[(2020)) and Differentiable Logic
Gate Networks (DLGNSs) (Petersen et al. (2022, [2024)).
The core question driving our research is: can we solve
tasks in a distributed manner, where local agents (cells)
interact with each other, producing solutions as an emer-
gent behavior? Specifically, we investigate whether this can
be achieved using minimal computational units, operating
solely using binary logic gates, and each cell running the

same circuit. In our experiments, we found that this ap-
proach leads to self-organizing systems with three key ad-
vantages: they are learnable, local in their operations, and
discrete, offering a possible new direction for distributed
computing architectures. To demonstrate these capabilities,
we took our model through a progressive series of chal-
lenges: (1) learning the rules of Conway’s Game of Life,
(2) generating checkerboard patterns that exhibit resilience
to noise and damage, (3) growing a lizard shape to test the
learning of arbitrary patterns, and (4) generating a grid with
multiple color channels.

This paper makes the following contributions:

* Introducing DiffLogic CA, a novel architecture that com-
bines NCA with DLGNSs.

* Proposing the first successful application of DLGNS in a
recurrent setting, both spatially and temporally for gener-
ating images.

* Demonstrating robustness to noise in these recurrent dis-
crete circuits.

The paper is structured as follows: the next section dis-
cusses related work, followed by the architecture of the Dif-
ferentiable Logic Cellular Automata. We then present our
experimental results across four distinct experiments, and
conclude with discussion and future work.

Related Works

Neural Cellular Automata, introduced by |Mordvintsev et al.
(2020), represent a powerful paradigm that combines clas-
sical cellular automata (Langton| (1986)); [Wolfram| (2002))
with modern deep learning. NCA operate on a 2D grid
where each cell contains an n-dimensional vector of in-
formation (the cell’s state). The system evolves through
a two-step update mechanism: a “perception step”, where
each cell perceives its environment using Sobel filter ker-
nels (Kanopoulos et al.| (1988)) applied channel-wise, gen-
erating a perception vector that combines the cell’s current
state with information about its surroundings; and an “up-
date step”, where each cell processes its perception vector

https://github.com/google-research/self-organising-systems/blob/master/notebooks/diffLogic_CA.ipynb
https://github.com/google-research/self-organising-systems/blob/master/notebooks/diffLogic_CA.ipynb
https://github.com/google-research/self-organising-systems/blob/master/notebooks/diffLogic_CA.ipynb
https://github.com/google-research/self-organising-systems/blob/master/notebooks/diffLogic_CA.ipynb
https://arxiv.org/abs/2506.04912v1

through a neural network, determining how the cell should
change based on gathered information. The model is able to
solve a variety of tasks (Sandler et al.[(2020)); |Randazzo et al.
(2020); INiklasson et al.| (2021b); Testaldet et al.| (2022);
Walker et al.[(2022); L1 et al.| (2024))), and exhibits remark-
able robustness and interesting emergent behaviour as a re-
sult of needing to inherently solve a complex distributed co-
ordination problem at the same time as the task itself. How-
ever, NCA use the traditional building blocks of deep learn-
ing, neural networks, and as a result inherit their nature of
being difficult to interpret and depending on large matrix
multiplications to perform inference.

This limitation motivates the search for more efficient
implementations that can operate in discrete settings while
providing faster execution at inference. Differentiable
Logic Gate Networks (DLGNs), developed by |Petersen
et al.| (2022)), address this challenge by taking a fundamen-
tally different approach. Instead of weighted sums and
nonlinearities, DLGNs use deterministic logic gates as their
building blocks, working with fully discrete values of 0
and 1. Unlike prior approaches to evolving or optimizing
discrete cellular automata, which often relied on evolution-
ary strategies (Mitchell et al.l [1994) or one-dimensional
approximations (Martin, 2017), our method, building on
Petersen et. al’s work, enables direct end-to-end learning of
multi-dimensional discrete, efficient, and robust local rules
for cellular automata, using traditional gradient descent.

DLGN:Ss are structured as layers of interconnected gates,
similar to how standard neural networks consist of layers of
neurons. While standard neural networks allow each neuron
to connect to many or all neurons in the adjacent layers,
DLGNs maintain a stricter connectivity patterns where
each gate receives input from exactly two gates, randomly
sampled from the previous layer. This creates a sparse
network architecture in comparison to traditional dense
neural networks. Apart from the topological difference, the
fundamental distinction lies in what gets learned during
training. In standard neural networks, the strength of
connections between neurons (weights) is adjusted during
learning, while the computation each neuron performs (the
sum and nonlinearity) remains fixed. In contrast, DLGNs
keep their wiring structure fixed during training, and learn
which logical operation each gate should perform. To
enable gradient-based learning, DLGNs replace discrete
boolean operations with their continuous relaxation, re-
ported in Table[I] that operate on continuous values between
0 and 1, enabling gradients to flow and therefore learning
using back-propagation. During training, each DLGN gate
maintains a probability distribution across all 16 possible
binary logic operations (2 inputs, 1 output), gradually
learning the most effective operation to perform at the
particular gate, in tandem with all other gates. At inference
time, the network crystallizes into a deterministic circuit

with each gate performing its most probable operation.
These circuits can then be mapped to FPGAs, or even taped
out as ASICs, with inference measured in nanoseconds, as

shown in Petersen et al.[(2022).

Table 1: Logical Gates and their Continuous Relaxations,

from Petersen et al.|(2022). A, B € {0,1}, a,b € [0,1]

Gate Continuous Relaxation
FALSE 0

AND a-b
AAND(NOTB) | a—a-b

A a

(NOTA)ANDB | b—a-b

B b

XOR a+b—2-a-0b

OR at+tb—a-b

NOR 1—(a+b—a-b)
XNOR l1—(a+b—2-a-b)
NOT B 1-0

A OR (NOT B) 1—-b+a-b

NOT A 1—a

(NOT A)OR B l—a+4+a-b

NAND 1—a-b

TRUE 1

Differentiable Logic Cellular Automata

The underlying topology of Differentiable Logic Cellular
Automata is a standard 2-dimensional grid of cells. Each
cell’s state is represented by an n-dimensional binary-valued
vector. This binary state vector acts as the cell’s working
memory, storing information from previous iterations. We
use cell state and channels interchangeably throughout this
work. Inspired by the approach taken in NCA, we divide the
cell’s function into “perception” and “update” steps, where
the first gathers information from the neighbors and the sec-
ond processes the collected information to compute the new
state:

1. Perception Step

Traditional NCA use Sobel kernels to model perception,
DiffLogic CA instead takes a different approach, inspired
in part by |[Petersen et al.| (2024). Information from neigh-
boring cells is processed using multiple DLGNs, where
connections between gates are fixed, with a particular
structure, and the gates are learned. Each DLGN employs
four layers designed to compute interactions between the
central cell and its neighboring cells. We refer to the DL-
GNs used in the perception step as perception kernels (or
kernels). The kernels operate channel-wise, making the
output dimension equal to the number of kernels multi-
plied by the number of channels. Alternative versions of

this architecture involve kernels with multiple bits of out-
put per channel, rather than just one, improving conver-
gence in certain settings.

Figure 1: Architectural diagram of a DLGN-based percep-
tion kernel that processes information between a central cell
and its neighboring cells in the DiffLogic Cellular Automata
framework.

2. The Update Step

The update mechanism follows the NCA paradigm, but
employs a Differentiable Logic Network to compute each
cell’s new state rather than a neural network, as illustrated
in Figure[2] The network’s connections can be either ran-
domly initialized or specifically structured to ensure all
inputs are included in the computation and none are ig-
nored. First, we concatenate the cell’s previous state (rep-
resented in gray), and the information received in the per-
ception stage from its neighbors (represented in orange).
The new updated state is computed by applying a Differ-
entiable Logic Gate Network to this concatenated input.
In standard NCA, at this point, one would incrementally
update the state, treating the whole system like an ODE.
With DiffLogic CA, we output the new state directly. The
DLGN used in the update step is referred to as update
network.

Figure 2: Diagram of the update step in DiffLogic CA show-
ing how a DLGN processes the cell’s previous state (gray)
and perception data from neighboring cells (orange) to di-
rectly compute the new cell state

In summary; the DiffLogic CA architecture is composed of
multiple perception kernels and an update network, respon-
sible for the perception and update steps, respectively. The

perception step uses the perception kernels to process infor-
mation from the cell’s neighborhood, replacing traditional
convolution kernel-based operations, and the update step is
implemented as another DLGN (the update network) that
takes the perception output and current state as inputs, and
outputs the next binary state of the cell.

Experiment 1: Learning Game of Life
Conway’s Game of Life (Games| (1970)) is a mathemati-
cal simulation that demonstrates how complex patterns can
emerge from simple rules. Created by mathematician John
Conway in 1970, it is a cellular automata game where cells
on a grid live or die based on just four basic rules. De-
spite its simplicity, the Game of Life can produce interesting
behaviors: stable structures that never change, oscillators
that pulse in regular patterns, and even gliders that appear
to move across the grid. Due to its binary state represen-
tation and dynamic evolution patterns, Conway’s Game of
Life serves as a good proof of concept for DiffLogic CA.

State and Parameters

Given that the rules are independent of previous states and
solely depend on the neighbors’ states, we consider a cell
state consisting of 1 bit, meaning the system is essentially
memory-less. The model architecture includes 16 percep-
tion kernels, each with the same structure of nodes [8, 4, 2,
1]. The update network instead has 23 layers: the first 16
layers have 128 nodes each, and the subsequent layers have
[64, 32, 16, 8, 4, 2, 1] nodes, respectively.

Loss function

The loss function is computed by summing the squared dif-
ferences between the predicted grid and the ground truth grid
and is quantified as follows:

N
> (wig —9ig) (1)
i,J
where y; ; € {0, 1} are the target values and are always
boolean, while the predicted values §; ; € [0, 1] are contin-
uous during training and become fully discrete (boolean) at
inference.

Training Dataset

The model was trained on all possible single-timestep transi-
tions of 3x3 grids. Given that each cell in the Game of Life
interacts with its eight neighbors, and its next state is de-
termined by its current state and the states of its neighbors,
there are 512 possible unique transitions for a 3x3 grid. To
train the model, we constructed a grid including all 512 pos-
sible grid configurations. In this setting, learning the next
state of grid correctly for all the training samples implies
learning the complete Game of Life rule set. The trained
parameters were subsequently used to simulate the model’s
behavior on larger grids.

Results

The model was able to learn the Game of Life rules per-
fectly. Using hard inference (selecting the most probable
gates), the simulation displays the learned circuit’s perfor-
mance on a larger grid than the one used during training.
The emergent patterns show us the expected structures from
Conway’s Game of Life: gliders moving across the grid,
stable blocks remaining fixed in place, and classic structures
like loaves and boats maintaining their distinctive shapes.
From the total number of possible gates (3199), only 336
were active gates, as we excluded the pass-through gates A
and B from our count. Figure |3| shows the temporal evolu-
tion of the system over three time steps in a larger domain,
while Figure []illustrates the circuit architecture learned by
the model (which computes the update of the central cell
based on the 3x3 patch).

(b) =60 (c) t=84

Figure 3: Temporal evolution of the system dynamics show-
ing the progression of pattern formation over three time
steps.

bl
b
3

i vielu

Figure 4: Circuit learned by the DiffLogic CA model imple-
menting Conway’s Game of Life rules, showing the network
of logical operations.

Experiment 2: Pattern Generation

Neural Cellular Automata have shown capabilities in pat-
tern generation tasks (Mordvintsev et al.| (2020); Niklasson
et al.| (2021b))), inspiring us to explore similar capabilities
with DiffLogic CA. In this task, the system evolves from
a random initial state toward a target image, allowing for
multiple steps of computation. By evaluating the loss func-
tion only at the final time-step, we challenge the model to
discover the discrete transition rules that guide the system
through a coherent sequence of states without step-by-step
supervision.

Successfully learning to reconstruct images would vali-
date two key aspects: the model’s ability to develop mean-
ingful long-term dynamics through learned rules, and the
training algorithm’s ability to effectively learn recurrent-in-
time (across update steps) and recurrent-in-space (across
neighboring cells) circuits. This investigation is particu-
larly significant as it represents, according to the best of our
knowledge, the first exploration of differentiable logic gate
networks (Petersen et al.| (2022, [2024))) in a recurrent setting
for generating images.

State and Parameters

We consider a cell state of 8 bits and iterate the DiffLogic
CA for 20 steps. The model architecture includes 16 per-
ception kernels. Each circuit is composed of three layers,
and the layers have 8, 4, 2 gates respectively. The update
network has 16 layers: 10 layers of 256 gates each, then
layers with [128, 64, 32, 16, 8, 8] gates, respectively.

Loss function

We define the loss function as the sum of the squared differ-
ences between the first channel in the predicted grid and the
target grid. We evaluate the loss only at the final timestep.
The loss function is:

N
Z(yi,j,o — i j0)°, 2
,J
where ¥; ;0 is the value of the first channel in the predicted
grid at position (i,j), ¥;;,0 is the value of the first channel in
the target grid at position (i,j) and N is the grid size.

Training Image

The model was trained to reconstruct a 16x16 checkerboard
pattern (Figure|5)) over 20 time steps. For each training step,
the initial state of each cell was randomly sampled from a
uniform distribution of either O or 1.

Results

The DiffLogic CA fully converges to a circuit capable of
producing the target pattern. An intriguing emergent prop-
erty is the directional propagation of patterns from bottom-
left to top-right, despite the model having no built-in direc-
tional bias, as shown in Figure[6] The total number of active

gates used (excluding pass-through gates A and B) is 22.
After a further optimization step - pruning gates which are
not connected to the output - the entirety of the procedural
checkerboard-generation function learned by the circuit can
be implemented using just five logic gates, as illustrated in

Figure

How general is the solution?

Training used only a single, fixed, size for the underlying
grid. To test how general the solution is, we investigated
what happens if we change the grid size: for this purpose
we scaled up both the spatial and temporal dimensions by a
factor of four, using a grid four times larger and running the
learned circuit for four times as many steps. As shown in
Figure [§] the circuit converged to the desired target pattern
also in this new setting. This raises an interesting question
as to the inductive biases of this model. In the NCA set-
ting, it was possible to coax behavior invariant to grid size
and time, but this required either special spatially invariant
loss functions (Niklasson et al.[(2021b)), and in the case of
the growing lizard a special “alive/dead”(Mordvintsev et al.
(2020)) regime to prevent overfitting to boundary conditions.
Here, our boundary conditions are also fixed, yet the model
has learned a boundary-size-invariant way to produce the
pattern.

Given this setting, we also tested the system’s resilience to
damage and its recovery capabilities through two experi-
ments. In the first test, we evaluated pattern generation when
a large portion of cells were permanently disabled, simulat-
ing faulty components. In the second test, the disabled cells
were reactivated after a specific number of steps. The sys-
tem demonstrated robust behavior in both scenarios: main-
taining pattern integrity despite permanent cell damage in
the first case (Figure [9), and successfully self-repairing to
produce the correct pattern in the second case. These ex-
periments showed that the DiffLogic CA learned rules that
exhibit both fault tolerance and self-healing behavior, with-
out being explicitly designed around these conditions. When
some cells fail, the damage is contained, and the system con-
tinues to function with a gradual decline rather than experi-
encing catastrophic failure. This mirrors an important aspect
of biological systems, which achieve reliability through net-
works of imperfect components, suggesting a powerful ap-

Figure 5: Checkerboard target pattern with 2x2 pixel
squares

t=10 t=20

Figure 6: Temporal evolution of the pattern generation pro-
cess showing the emergence of the checkerboard pattern
from a random initial state over 20 time steps.

LR

o, —-D

o, o
mo D @
o o
e 0
g D D tD D o]
m @
=2 0]
2 :
O}

Figure 7: Circuit architecture of the DiffLogic CA model
for checkerboard pattern generation, showing the minimal
set of five logic gates implementing the pattern generation
algorithm.

o
i

t=40 t=80

Figure 8: Temporal evolution on a grid scaled 4x larger than
the training environment, demonstrating the system’s gen-
eralization capabilities across extended spatial and temporal
dimensions (t=1, t=40, and t=80).

proach for future computing systems that can maintain func-
tionality even under imperfect conditions by exploiting lo-
cality and redundancy. These features align strongly with
the concept of Robust computing as proposed by |Ackley
et al.| (2013)), representing an alternative approach to sys-
tem design, prioritizing reliable operation under real-world
conditions.

Asynchronicity

Following the approach of [Niklasson et al.| (2021a)), we ex-
plored the use of asynchronous update mechanisms in Dif-
fLogic CA. Rather than updating all cells simultaneously

"
t=80

Figure 9: Fault tolerance demonstration showing pattern
generation in a grid four times larger than the training grid,
illustrating the system’s ability to generalize across different
spatial scales.

with a global clock signal, our asynchronous approach ran-
domly selects a subset of cells (in our experiments, we se-
lected 60% of the total cells) to update in each step. This
methodology simulates a scenario more similar to biologi-
cal systems, where each cellular unit operates with its own
internal clock independent of its neighbors. As a first test,
we evaluated a model trained synchronously, which exhib-
ited unexpected resilience even when evaluated with asyn-
chronous updates at inference, successfully recovering the
target pattern. To further investigate the effect of asyn-
chronicity, we directly trained a circuit with asynchronous
updates present during training (again, 60% of cells active
at any given time). We observed convergence in this case
as well, with the circuit able to reconstruct the target pattern
within 50 steps. To evaluate the robustness and resilience of
both synchronously and asynchronously trained models to
perturbation, we conducted a comparative analysis. We sys-
tematically disabled a randomly selected 10x10 pixel region
within the image domain (64x64) at each inference time
step, simulating localized component failure, as shown in
Figure[I0] (a).

The error was calculated as the sum of absolute differ-
ences between the target pattern and the reconstructed im-
age:

N
Errory =Y _ i — Gijul ()
i,

Figure [I0] (b) presents the error measurements for both
the original model, and the one trained under asynchronous
conditions. The asynchronously trained model demonstrates
consistently lower error rates following perturbations. We
attribute this improvement to the inherent robustness devel-
oped during asynchronous training, where the model learns
to handle state inconsistencies between neighboring cells.

Experiment 3: Growing a Lizard

For the next experiment, we tested DiffLogic CA’s ability
to learn an arbitrary shape by training it on the outline of a
lizard. This involves more memorization than reproducing a
highly-compressible regular pattern like the checkerboard.

(a) Visual representation of system robust-
ness

Error Comparison - Async vs Sync

‘\ A I A

i »\ I\ I

H“\J ﬁ‘ p‘ ”‘{ "\‘\t“”“‘w \\ wv ‘f\‘f",
‘,. ’; w m ;‘ ‘5 | W WW \»

"/w \ ‘\ gt W V ' T WY

terations

Error (pixels)

(b) Error comparison between the model
trained synchronously (blue) and asyn-
chronously (red), using asynchronous up-
dates

Figure 10: Error analysis comparing synchronously and
asynchronously trained models, using asynchronous updates
and under perturbation, showing better recovery in the asyn-
chronously trained model.

State and Parameters

We use a cell state of 128 bits and iterate the DiffLogic CA
for 12 steps. The model architecture includes four percep-
tion kernels with 8, 4, 2, and 1 gates at each layer, respec-
tively. The update network has 10 layers: eight layers with
512 gates each, and then layers with [256, 128] nodes, re-
spectively.

Training Image

We trained the model to generate a 20x20 sized pattern of
a lizard (Figure [TT)), over 12 time steps. Following Mordv-
intsev et al.| (2020), the initial condition consists of a central
seed to break symmetry. We employed the same loss func-
tion previously used in Experiment 2.

Figure 11: Lizard target pattern

Results

The model converges to circuit capable of producing the tar-
get pattern when starting from a seed. To assess its general-
ization capabilities, we evaluated it on a larger 40x40 grid.
The results demonstrate that the model correctly learned
the growth pattern without exploiting boundary conditions
(behaviour typically observed in NCA), as shown in Fig-
ure [I2] A total of 577 active gates were used, excluding
pass-through gates A and B.

t=0 t=6 t=13

Figure 12: Temporal evolution of the lizard growth pattern
showing the progression from a central seed at t=0 to the
fully formed lizard shape at t=13.

Experiment 4: Learning the grid with colors

Having established the success of DiffLogic CA for gener-
ating monochromatic patterns, we extend our investigation
to the generation of a grid of diagonal stripes of several dif-
ferent colors, requiring coordination across the grid.

State and Parameters

We considered a 64-dimensional cell state vector. The model
includes four distinct perception kernels, each structured
with three consecutive layers containing 8, 4, and 2 gates,
respectively. The update network consists of eleven sequen-
tial layers: eight homogeneous layers of 512 nodes each,
followed by three layers with [256, 128, 64] nodes, respec-
tively.

Training Image

The model was trained to generate a 14x14 colored repre-
sentation of the grid with 30 time steps (Figure [I3). Initial
conditions were set to a homogeneous state of zero across all
cells and channels, with non-periodic boundary conditions.
Symmetry breaking occurs due to the boundary conditions -
the circuits learn to break symmetry around the edges and
corners. The first three channels were reserved for RGB
color representation. As each channel is a discrete O or 1,
this resulted in a discrete 8-color palette corresponding to
the vertices of the RGB color cube.

Loss Function

The loss function is computed as the mean squared error
between the constructed grid after 30 steps and the ground

truth, calculated exclusively over the first three output chan-
nels. The error between predicted and target states is quan-
tified as follows:

N
L= Z(yi,j,O:S — i jo3)? €]
0,J
where y; ;0.3 represents the target RGB values at spa-
tial coordinates (i,), and gj; ; 0.3 denotes the corresponding
predicted values.

Results

The model successfully learned to reconstruct the target pat-
tern, as shown in Figure[T4 We identified 465 active logic
gates in the learned circuit (excluding pass-through gates
A and B). The circuit size (465 gates for the colored grid,
577 for the lizard pattern and just 22 for the monochromatic
checkerboard) and its correlation with the pattern complex-
ity seem to indicate that the system naturally scales its com-
putational complexity to match the algorithmic complexity
of the target pattern.

Discussion and Future Work

DiffLogic CA introduces a differentiable architecture for
discrete self-organizing systems, providing a first step to-
ward efficient and interpretable programmable structures.
While our experiments focused on relatively simple pat-
terns and showed promising results, scaling this approach to
larger and more complex tasks remains challenging, partic-
ularly due to significant numerical instabilities during train-
ing, and the resulting need for extensive hyperparameter tun-
ing.

We propose several possible directions for improvement,
including:

¢ Hierarchical architectures: Enabling multi-scale self-
organization via layered logic (Pan|(2023)).

* Dynamic gating: Incorporating learnable mechanisms
for information forgetting and remembering (Hochreiter
and Schmidhuber|(1997)).

* Hardware acceleration: Given the discrete and sparse
nature of logic circuits, DiffLogic CA could naturally map
to FPGA or other specialized hardware.

Figure 13: Multi-color target pattern, colored grid

t=0 t=6
|
|
t=18 =24
Figure 14: Temporal evolution of the colored grid showing

the emergence of multi-channel color coordination from a
homogeneous initial state to the final colored representation.

t=12

K

t=30

We posit this combination of differentiable logic gates
and neural cellular automata could be a step towards pro-
grammable matter, Computronium (Amato, (1991)), a the-
oretical physical substrate capable of performing arbitrary
computation. Toffoli and Margolus pioneered this direction
with CAM-8, a cellular automata based computing architec-
ture (Margolus| (19935)); [Toffoli and Margolus| (1991)), theo-
retically capable of immense, horizontally scalable compu-
tation. However, they encountered a fundamental challenge
in finding the local rules for a given arbitrary task (Amato
(1991))). With DiffLogic CA, we suggest this is now possi-
ble.

In conclusion, in this work we introduced Differentiable
Logic Cellular Automata, combining Differentiable Logic
Networks and Neural Cellular Automata. DiffL.ogic CA can
robustly generate complex patterns and in some settings nat-
urally generalize across scales. This work provides a foun-
dation for future research into robust, discrete, and inter-
pretable self-organizing systems.

References

(2023). Hierarchical Neural Cellular Automata, volume ALIFE
2023: Ghost in the Machine: Proceedings of the 2023 Arti-
ficial Life Conference of Artificial Life Conference Proceed-
ings.

Ackley, D. H., Cannon, D. C., and Williams, L. R. (2013). A mov-
able architecture for robust spatial computing. The Computer
Journal, 56(12):1450-1468.

Amato, I. (1991). Speculating in precious computronium. Science,
253(5022):856-857.

Games, M. (1970). The fantastic combinations of john conway’s
new solitaire game “life” by martin gardner. Scientific Amer-
ican, 223:120-123.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-
ory. Neural Comput., 9(8).

Kanopoulos, N., Vasanthavada, N., and Baker, R. L. (1988). De-
sign of an image edge detection filter using the sobel operator.
IEEE Journal of solid-state circuits, 23(2):358-367.

Langton, C. G. (1986). Studying artificial life with cellular au-
tomata. Physica D: Nonlinear Phenomena, 22(1):120-149.
Proceedings of the Fifth Annual International Conference.

Li, G. H. Y., Leefmans, C. R., Williams, J., Gray, R. M., Parto, M.,
and Marandi, A. (2024). Deep learning with photonic neural
cellular automata. Light: Science and Applications, 13(1).

Margolus, N. (1995). Cam-8: A computer architecture based on
cellular automata. arXiv preprint comp-gas/9509001.

Martin, C. (2017). Differentiable cellular automata. arXiv preprint
arXiv:1708.09546.

Mitchell, M., Crutchfield, J. P., and Hraber, P. T. (1994). Evolv-
ing cellular automata to perform computations: mechanisms
and impediments. Physica D: Nonlinear Phenomena, 75(1-
3):361-391.

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin, M.
(2020). Growing neural cellular automata. Distill, 5(2):e23.

Niklasson, E., Mordvintsev, A., and Randazzo, E. (2021a). Asyn-
chronicity in neural cellular automata. In The 2021 Confer-
ence on Artificial Life, page 116. MIT Press.

Niklasson, E., Mordvintsev, A., Randazzo, E., and Levin, M.
(2021b). Self-organising textures. Distill, 6(2):¢00027.003.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. (2022).
Deep differentiable logic gate networks. In Advances in Neu-
ral Information Processing Systems, volume 35.

Petersen, F., Kuehne, H., Borgelt, C., Welzel, J., and Ermon, S.
(2024). Convolutional differentiable logic gate networks.
arXiv preprint arXiv:2411.04732.

Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M., and
Greydanus, S. (2020). Self-classifying mnist digits. Distill,
5(8):€27.002.

Sandler, M., Zhmoginov, A., Luo, L., Mordvintsev, A., Randazzo,
E., and Agiiera y Arcas, B. (2020). Image segmentation via
cellular automata. arXiv preprint arXiv:2008.04965.

Tesfaldet, M., Nowrouzezahrai, D., and Pal, C. (2022). Attention-
based neural cellular automata. In Oh, A. H., Agarwal, A,
Belgrave, D., and Cho, K., editors, Advances in Neural Infor-
mation Processing Systems.

Toffoli, T. and Margolus, N. (1991). Programmable matter: Con-
cepts and realization. Physica D: Nonlinear Phenomena,
47(1-2):263-272.

Walker, K., Palm, R. B., Moreno, R., Faina, A., Stoy, K., and Risi,
S. (2022). Physical neural cellular automata for 2d shape clas-
sification. In 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 12667-12673.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.

	Introduction
	Related Works
	Differentiable Logic Cellular Automata
	Experiment 1: Learning Game of Life
	State and Parameters
	Loss function
	Training Dataset
	Results

	Experiment 2: Pattern Generation
	State and Parameters
	Loss function
	Training Image
	Results
	How general is the solution?
	Asynchronicity

	Experiment 3: Growing a Lizard
	State and Parameters
	Training Image
	Results

	Experiment 4: Learning the grid with colors
	State and Parameters
	Training Image
	Loss Function
	Results

	Discussion and Future Work

