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Abstract

Neural Architecture Representation Learning aims to transform network models
into feature representations for predicting network attributes, playing a crucial role
in deploying and designing networks for real-world applications. Recently, inspired
by the success of transformers, transformer-based models integrated with Graph
Neural Networks (GNNs) have achieved significant progress in representation
learning. However, current methods still have some limitations. First, existing
methods overlook hardware attribute information, which conflicts with the current
trend of diversified deep learning hardware and limits the practical applicability of
models. Second, current encoding approaches rely on static adjacency matrices
to represent topological structures, failing to capture the structural differences
between computational nodes, which ultimately compromises encoding effective-
ness. In this paper, we introduce LeDG-Former, an innovative framework that
addresses these limitations through the synergistic integration of language-based
semantic embedding and dynamic graph representation learning. Specifically,
inspired by large language models (LLMs), we propose a language embedding
framework where both neural architectures and hardware platform specifications
are projected into a unified semantic space through tokenization and LLM process-
ing, enabling zero-shot prediction across different hardware platforms for the first
time. Then, we propose a dynamic graph-based transformer for modeling neural
architectures, resulting in improved neural architecture modeling performance. On
the NNLQP benchmark, LeDG-Former surpasses previous methods, establishing a
new SOTA while demonstrating the first successful cross-hardware latency predic-
tion capability. Furthermore, our framework achieves superior performance on the
cell-structured NAS-Bench-101 and NAS-Bench-201 datasets. The source code
will be released publicly.

1 Introduction

With the rapid development of deep learning technology, an increasing number of various neural
networks are designed and deployed in real-world applications [1, 2, 3, 4, 5]. This progression
has facilitated the practical adoption of technologies, but simultaneously increased the workload
for model deployment and development. To address this challenge, researchers have proposed
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neural architecture representation learning, leveraging deep learning techniques themselves to ac-
celerate both model deployment and novel model development [6, 7, 8, 9]. The purpose of neural
architecture representation learning is to encode network structures into feature vectors, enabling
subsequent attribute prediction based on these representations. The encoding process requires care-
ful consideration of both operational node attributes and topological structure information of the
network [6, 7, 8, 9]. Neural architecture representation learning support various downstream tasks,
such as performance prediction, hardware deployment optimization, and Neural Architecture Search
(NAS) [10, 11, 12, 13, 14, 15].

In neural architecture representation learning, neural architectures are naturally expressed as Directed
Acyclic Graphs (DAGs) [16, 17, 18, 19, 20], where nodes correspond to computational operations
and edges represent data flow between them. With the emergence of Graph Neural Networks
(GNNs) and their demonstrated effectiveness in related work, early approaches commonly relied on
GNNs, leveraging graph convolution to capture adjacency relationships between nodes for explicit
modeling of these DAGs, thereby achieving preliminary representations of neural network structures.
Representative methods such as Peephole, BRP-NAS, GATES, BANANAS, and NNLP [21, 2, 7, 22,
4] adopted this strategy. However, due to the inherent locality of GNNs’ aggregation mechanisms,
these methods exhibit limitations in representing complex cross-layer topological information [23, 24].
To overcome these limitations, Transformer architectures have gradually been introduced into neural
architecture representation learning. By leveraging their powerful global attention mechanisms,
they improve the quality of structural representation. Representative methods like TNASP and
NAR-Former [25, 8] utilize self-attention mechanisms to capture global semantic associations
between nodes, significantly enhancing model performance. The Transformer-based representation
learning method benefits from the flexibility of self-attention mechanisms, demonstrating remarkable
effectiveness on cell-structured datasets such as NAS-Bench-101 [26] and NAS-Bench-201 [27].
However, the global receptive field characteristic of Transformers makes them particularly sensitive
when encoding long sequences, resulting in relatively weaker generalization capabilities [8].

Recent research has attempted to introduce graph structure enhancement mechanisms within Trans-
former frameworks. For instance, Graphormer[28] and GraphTrans[29] both inject graph-structured
attention masks into Transformers to simulate message passing, enabling structure-aware encoding
that benefits architecture performance prediction. NAR-Former V2 [9] proposed a position-aware
graph embedding technique that explicitly integrates adjacency relationships into the attention mech-
anism, thereby improving prediction accuracy. GNN-Enhanced Transformer[30] proposes a unified
framework that combines GNN-based local topology encoding with Transformer-based global model-
ing, achieving improved performance prediction through joint structural reasoning. NN-Former [31]
incorporated forward, backward, and same-layer adjacency information into attention calculations
to achieve richer topological representations, enhancing both accuracy and generalization. Such
Transformer frameworks embedded with GNN mechanisms have demonstrated strong capabilities.

Although Transformer-GNN hybrid methods for neural architecture representation learning inherit
the flexibility of Transformers and the topological encoding strengths of GNNs, achieving significant
performance improvements, these approaches still face several limitations. First, existing methods
primarily focus on encoding the network architecture itself while neglecting hardware attributes.
However, inference efficiency post-deployment is highly dependent on hardware characteristics, and
this omission significantly limits the applicability of representation learning approaches. Moreover,
with the proliferation of specialized hardware for AI models, this limitation will become increasingly
impactful.Second, current GNN-based approaches predominantly rely on static adjacency matrices
to capture topological information, failing to account for positional variations among nodes and
their distinct neighborhood attention patterns. This oversight constrains the modeling capacity for
topological structure representation.

In this paper, inspired by LLM, we conduct a new exploration and combining language embedding
and dynamic graph to address these limitations. Our major contributions can be summarized as:
1) The innovative use of LLMs’ powerful language encoding capabilities to jointly map hardware
specifications and network architecture details into a unified semantic space. This enables hardware-
software co-optimized representation learning for neural networks. Unlike prior methods limited to
single-hardware optimization, our approach facilitates zero-shot cross-hardware attribute prediction;
2) To ensure high-quality encoding, we conducted a thorough analysis of LLM encoding characteris-
tics and designed specialized language templates. Leveraging the LLM’s capabilities, we serialized
both network structures and hardware information. Furthermore, we introduce dynamic graph self-
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attention, a novel mechanism that improves flexibility in capturing topological relationships across
nodes, thereby enhancing representation effectiveness.

2 Related Works

2.1 GNN for Representation Learning

Neural Architecture Representation Learning has emerged as a vital tool for predicting model
attributes such as accuracy, latency, and energy consumption, especially under cross-platform deploy-
ment scenarios. A key insight in this field is that neural architectures can be naturally represented as
Directed Acyclic Graphs (DAGs), where nodes denote computational operations and edges represent
data flows. Early approaches, such as Peephole [21]and BRP-NAS [22] utilized handcrafted global
descriptors or structural metrics derived from DAGs, such as operation counts or edge lists, to encode
architectural features. However, these static encodings failed to capture the expressive structural
nuances of complex models.

To better model DAG structures, Graph Neural Networks were introduced. Methods like GATES [7],
arch2vec [32] and TA-GATES [33] use adjacency matrices and node-level attributes to perform mes-
sage passing over the DAG, enabling localized structural representation and improved generalization
to unseen architectures. These models successfully capture some topological semantics through fixed
edge types, but are fundamentally limited by the locality and rigidity of their aggregation functions. In
particular, they struggle to model long-range dependencies or dynamically adapt relational attention
across diverse network structures [34, 35, 36, 37]. This structural rigidity and limited expressiveness
of GNNs highlight the need for more flexible, context-aware models. Consequently, research has
shifted toward attention-based alternatives, particularly Transformer architectures, which are better
suited for learning long-range interactions in heterogeneous structures.

2.2 Transformer for Representation Learning

In response to the limitations of GNN-based models, Transformer architectures have been adopted for
Neural Architecture Representation Learning due to their ability to capture long-range dependencies
and model flexible interaction patterns. Initial Transformer-based methods such as TNASP [25] and
NAR-Former [8] represent architectures as sequences of operation or connection tokens, applying
self-attention to learn global semantic relationships. However, these sequence-based representations
lack explicit structural bias, making them sensitive to minor topological variations and insufficient
for capturing the inherent graph properties of architectures.

To incorporate structural information more directly, hybrid approaches have emerged. NAR-Former
V2 [9] introduces topology-aware token connections, embedding adjacency patterns into the attention
mechanism. NN-Former [31] goes further by disentangling multiple structural relations, such as
hierarchical, sibling, and descendant dependencies, and embedding them through graph-aware
attention kernels within a Transformer encoder. These improvements enhance the model’s capacity
to reason over complex DAGs and achieve state-of-the-art results. However, both methods still
rely on fixed structural priors, where adjacency relations are statically defined and shared between
architectures. This overlooks the dynamic relevance of different topological views for different
network instances.

2.3 Embedding Strategy for Representation Learning

The embedding strategy plays a pivotal role in determining the quality and generalization of neural
architecture representations. Earlier approaches primarily focused on embedding the structural
aspects of neural architectures, such as node operations and topological patterns [38, 39, 21, 2, 35].
These methods often relied on simple vectorization techniques that lacked semantic richness, limiting
the amount of meaningful information captured from the architecture.

With the growing adoption of Transformers, such as TNASP [25], NAR-Former [8] and Autogt [40]
introduced position-aware embeddings that tokenize architectural structures for attention-based
modeling. More recent models, including NAR-Former V2 and NN-Former, further incorporate
static attributes of neural networks by embedding them separately alongside the structure, such as
flops, depth, and batch size. These methods are specifically designed encoding approaches tailored
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Figure 1: Overview of the proposed LeDG-Former.

Figure 2: Illustration of the proposed language embedding

for network structure representation, exhibiting poor extensibility. For instance, they would fail
when encountering unseen node types or novel hyperparameters. Moreover, these encoding schemes
primarily focus on the network architecture itself while neglecting hardware-related information.

3 Methods

The final framework of LeDG-Former is shown in Fig. 1, which consists of two key stages: a
language embedding stage using a pre-trained language model and a representation learning stage
employing dynamic graph-aware self-attention. In the language embedding stage, we systematically
encode both model architecture information and hardware platform specifications through carefully
designed linguistic templates, then transform them into feature tokens using a pre-trained LLM.
These embedding tokens serve as input to our dynamic graph-aware self-attention mechanism that
adaptively models node-level dependencies in the computational graph while capturing cross-modal
interactions between hardware and architecture features. The resulting network representation token
is concatenated with the hardware platform’s language embedding for final attribute prediction. Next,
we will provide a detailed explanation of these two stages.

3.1 Language Embedding

The language embedding module is designed to encode both neural architecture information and
hardware specifications into feature vectors within a unified representation space. As shown in
Fig.2, this paper adapts the tokenizer from pretrained language models (LLMs) to achieve this joint
mapping. For neural architectures, the network architecture is first represented as a directed acyclic
graph (DAG) following the node sequence. For each node in the graph, we extract its information
according to predefined language template. These structured descriptions are then fed into the
LLM and compressed into a unified feature vector representation. An similar process is adopted in
modeling hardware platform information. Different language templates are designed for modeling
neural architecture information and hardware platform information:

• When designing language templates for neural architectures, our primary consideration is
to ensure accurate and concise descriptions of operations and their attributes so that the
embedded information remains faithful. First, we observe that different types of operations
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Figure 3: Diagram of the proposed Dynamic Graph Self-Attention (DGSA).

may affect the target prediction differently. Therefore, classifying the operation types
during standardization helps preserve this information. Meanwhile, for operation-specific
attributes, such as the kernel size of a convolution operation, we represent them using
concise numerical tokens to prevent such attributes from being overwhelmed by surrounding
context in the language embedding process. For example, "Conv 3×3" is extracted and
described using the template as “ParamL Conv 3”, where “ParamL” serves as a template
indicator for “operations with learnable parameters”.

• For hardware platform information, we focus on platform attributes that are impactful for
latency prediction. We prioritize information such as computational throughput and power
consumption under different inference precisions, which directly influence model latency.
Furthermore, to support cross-platform generalization tasks, it is also important to include
platform type and architectural-level descriptions in the template. For example, the nVidia
Tesla T4 under FP32 precision is described using the template as “Nv GPU FP32 8.1 Turing
70W”.

The language embedding for the node i is generated by:

fnodei = LLM(Tokenizer(Tarch(infoi))), (1)

where fnodei is the language embedding, and Tarch represents language template for neural archi-
tecture. infoi denotes the information of the i−th node. The LLM adopted here is not limited to a
specific one, this paper adopts BERT. The language embedding for platform is calculated as:

fplat = LLM(Tokenizer(Tplat(infoplat))), (2)

where infoplat is the platform information. Both LLM and Tokenizer adopted here are same
with that adopted in Equation (1), which ensures the neural architecture information and platform
information are projected in the same space. For a neural architecture with n nodes, the output of
language embedding stage is [fnode1 , fnode2 , . . . , fnoden , fplat].

3.2 Dynamic Graph Self-Attention

Following the research line of combining transformer and GNN for representation learning [9, 31],
we propose Dynamic Graph Self-Attention (DGSA) and employ it to replace the standard self-
attention mechanism in Transformers. Unlike prior works that rely on static adjacency matrices to
model topological structures, the proposed DGSA dynamically aggregates multi-scale topological
information by adaptively retrieving relevant connectivity patterns from three hierarchical contexts:
(1) grandfather nodes (two-hop predecessors), (2) father nodes (direct predecessors), and (3) son nodes
(direct successors), as shown in Fig.3. This design facilitates adaptive topology-aware representation
learning, leading to consistent performance gains, as verified in ablation study part.

Specifically, this process contains two steps. The dynamic weights are computed by incorporating
information from predecessor nodes, with the formula:

fw
nodei = Softmax(qi · (k1, k2, . . . , ki))(v1, v2, . . . , vi), (3)

W1,W2,W3 = Softmax(MLP(fw
nodei)), (4)
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Table 1: Out of domain latency prediction on NNLQP [4]. “Test Model = AlexNet” means that only
AlexNet models are used for testing, and the other 9 model families are used for training. The best
results refer to the lowest MAPE and corresponding ACC (10%) in 10 independent experiments.

Metric Test Domain FLOPs FLOPs+ nn-Meter TPU BRP-NAS NNLP NAR-FormerV2 NN-Former Ours
MAC [3] [41] [2] (avg/best) [4] (avg/best) [9] (avg/best) [31] (avg/best)

MAPE ↓

AlexNet 44.65 15.45 7.20 10.55 31.68 10.64 / 9.71 24.28 / 18.29 11.47 / 11.17 10.92 / 10.88
EfficientNet 58.36 53.96 18.93 16.74 51.97 21.46 / 18.72 13.20 / 11.37 5.13 / 4.81 4.61 / 4.54
GoogleNet 30.76 32.54 11.71 8.10 25.48 13.28 / 10.90 6.61 / 6.15 6.74 / 6.65 5.50 / 5.39
MnasNet 40.31 35.96 10.69 11.61 17.26 12.07 / 10.86 7.16 / 5.93 2.71 / 2.54 3.31 / 3.01

MobileNetV2 37.42 35.27 6.43 12.68 20.42 8.87 / 7.34 6.73 / 5.65 4.17 / 3.66 4.29 / 4.06
MobileNetV3 64.64 57.13 35.27 9.97 58.13 14.57 / 13.17 9.06 / 8.72 9.07 / 9.03 8.30 / 8.06
NasBench201 80.41 33.52 9.57 58.94 13.28 9.60 / 8.19 9.21 / 7.89 7.93 / 7.71 8.33 / 7.84

ResNet 21.18 18.91 15.58 20.05 15.84 7.54 / 7.12 6.80 / 6.44 7.49 / 7.38 6.71 / 6.66
SqueezeNet 29.89 23.19 18.69 24.60 42.55 9.84 / 9.52 7.08 / 6.56 9.08 / 7.05 5.85 / 5.85

VGG 69.34 66.63 19.47 38.73 30.95 7.60 / 7.17 15.40 / 14.26 20.12 / 19.64 19.45 / 17.86
Average 47.70 37.26 15.35 21.20 30.76 11.55 / 10.27 10.55 / 9.13 8.39 / 7.96 7.73 / 7.41

Acc(10%) ↑

AlexNet 6.55 40.50 75.45 57.10 15.20 59.07 / 64.40 24.65 / 28.60 56.08 / 57.10 59.15 / 59.65
EfficientNet 0.05 0.05 23.40 17.00 0.10 25.37 / 28.80 44.01 / 50.20 90.85 / 90.90 91.85 / 92.25
GoogleNet 12.75 9.80 47.40 69.00 12.55 36.30 / 48.75 80.10 / 83.35 80.43 / 83.40 86.52 / 87.20
MnasNet 6.20 9.80 60.95 44.65 34.30 55.89 / 61.25 73.46 / 81.60 98.65 / 98.70 97.45 / 98.40

MobileNetV2 6.90 8.05 80.75 33.95 29.05 63.03 / 72.50 78.45 / 83.80 94.90 / 96.85 92.65 / 95.05
MobileNetV3 0.05 0.05 23.45 64.25 13.85 43.26 / 49.65 68.43 / 70.50 74.18 / 74.30 74.46 / 75.85
NasBench201 0.00 10.55 60.65 2.50 43.45 60.70 / 70.60 63.13 / 71.70 69.90 / 71.10 69.78 / 72.70

ResNet 26.50 29.80 39.45 27.30 39.80 72.88 / 76.40 77.24 / 79.70 70.83 / 71.55 77.93 / 78.75
SqueezeNet 16.10 21.35 36.20 25.65 11.85 58.69 / 60.40 75.01 / 79.25 77.85 / 80.95 83.10 / 84.50

VGG 4.80 2.10 26.50 2.60 13.20 71.04 / 73.75 45.21 / 45.30 29.40 / 29.85 33.12 / 36.27
Average 7.99 13.20 47.42 34.40 21.34 54.62 / 60.65 62.70 / 67.40 74.31 / 75.47 76.60 / 78.06

where qi = W dw
q fnodei , ki = W dw

k fnodei , vi = W dw
v fnodei . MLP represents a fully connected

layer with three output nodes. The final representation is calculated with formula:

fr
nodei =

3∑
i=1

Wi ·Xi, (5)

X1 = σ
((

QK⊤ ◦ (I +MGrandfather)
)
/
√
h
)
V, (6)

X2 = σ
((

QK⊤ ◦ (I +MFather)
)
/
√
h
)
V, (7)

X3 = σ
((

QK⊤ ◦ (I +MSon)
)
/
√
h
)
V, (8)

where fr
nodei

is the representation learning feature of the i−th node. Q = FWQ, K = FWK , V =

FWV denote the query, key, value. F = [fnode1 , fnode2 , . . . , fnoden ] is the language embedding
result for neural architecture. I is identity matrix, which ensures that each node can also attend
to itself when computing adjacency-based attention. MGrandfather, MFather, MSon deonte the
masks derived from the adjacency matrices corresponding to grandfather, father, and son nodes. The
derivation of these three masks is as follows: Let the binarized adjacency matrix corresponding to son
nodes be denoted as A (MSon = A). Then MFather = Bi(AT ), and MGrandfather = Bi(ATAT ),
where Bi is the binarization function.

4 Experiments

In this section, we conduct experiments on three widely used neural architecture datasets: NNLQP [4],
NAS-Bench-101 [26], and NAS-Bench-201 [27], to evaluate the effectiveness of our proposed
framework. A series of ablation studies in Section 4.3 further validate the effectiveness of our design
choices. Further experiments and implementation details related to training are included in the
supplementary material.

4.1 Latency Prediction on NNLQP

In this section, we perform latency prediction on the "unseen" datasets of the NNLQP to evaluate
the effectiveness and generalization capability of our proposed framework. This datasets offers a
diverse and comprehensive benchmark, comprising 20,000 deep learning networks across 10 distinct
architecture types (2,000 samples per type). We compare our method against eight representative
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Table 2: In domain latency prediction on NNLQP [4]. Training and testing on the same distribution.

Test Domain
MAPE ↓ Acc(10%) ↑

NNLP NN-Former Ours NNLP NN-Former Ours
(avg/best) [4] (avg/best) [31] (avg/best) (avg/best) (avg/best) (avg/best)

AlexNet 6.37 / 6.21 4.69 / 4.61 5.26 / 4.99 81.75 / 84.50 90.50 / 91.00 90.10 / 90.50
EfficientNet 3.04 / 2.82 2.31 / 2.21 2.61 / 2.50 98.00 / 97.00 99.00 / 100.0 99.60 / 100.00
GoogleNet 4.18 / 4.12 3.48 / 3.39 3.29 / 3.22 93.70 / 93.50 97.15 / 97.50 97.40 / 98.00
MnasNet 2.60 / 2.46 1.52 / 1.48 1.48 / 1.42 97.70 / 98.50 99.50 / 100.0 100.00 / 100.00

MobileNetV2 2.47 / 2.37 1.54 / 1.50 1.43 / 1.34 99.30 / 99.50 99.60 / 100.0 100.00 / 100.00
MobileNetV3 3.50 / 3.43 3.17 / 2.99 2.83 / 2.78 95.35 / 96.00 96.50 / 97.00 98.10 / 98.50
NasBench201 1.46 / 1.31 1.11 / 0.96 1.16 / 1.11 100.0 / 100.0 100.0 / 100.0 100.00 / 100.00
SqueezeNet 4.03 / 3.97 3.09 / 3.08 2.58 / 2.49 93.25 / 93.00 97.70 / 98.00 99.60 / 100.00

VGG 3.73 / 3.63 2.94 / 2.89 3.06 / 2.99 95.25 / 96.50 95.80 / 96.50 96.50 / 97.50
ResNet 3.34 / 3.25 2.66 / 2.47 2.95 / 2.86 98.40 / 98.50 99.45 / 99.50 98.40 / 99.50

All 3.47 / 3.44 2.85 / 2.65 2.64 / 2.54 95.25 / 95.50 97.45 / 97.85 97.94 / 98.15

approaches, spanning from early linear regression-based prediction methods to recent representation
learning frameworks.

We consider two different experiments. The first is a practically meaningful setting, where the target
network type to be predicted does not appear in the training process. This experiment is divided
into ten groups, where in each group, all samples of one network type are used as the test set, while
samples of the remaining nine network types are used as the training set. As shown in Table 1, our
method achieves the best performance in terms of both average MAPE and Acc(10%) across all 10
experimental groups. Compared to the second-best method, NN-Former, our approach improves
the average Acc(10%) by 2.29% and reduces average MAPE by 0.66. These results demonstrate
that our proposed self-attention mechanism with dynamic adjacency awareness enables each node to
attend to more appropriate topological information, resulting in more accurate neural architecture
representations.

In the second experiment, the training and testing sets are drawn from the same network types
distribution, as shown in Table 2. We construct the training set using the first 1,800 samples from
each of the ten network types, and the remaining 2,000 networks are used as the test set. When
testing on all network types test samples, our method achieves a highest average Acc(10%) and
the best average MAPE. When testing on each network type individually, our method consistently
outperforms NN-Former on all model types, except for the AlexNet and ResNet families, where
the performance is comparable. These results further validate the effectiveness of our proposed
self-attention mechanism with dynamic adjacency awareness, which enables more precise modeling
of topological relationships among nodes.

4.2 Hardware Aware Zero-Shot

In the zero-shot latency prediction across hardware platforms experiment, we perform an in-depth
reorganization and mining of the data in the NNLQP "multi_platform" datasets, from which we
extract latency samples under four inference configurations across two hardware platforms (Nvidia
Tesla P4 and T4) and two numerical precisions (FP32 and INT8). The reorganized datasets contains
5,194 samples in total, including 1,416 and 1,075 samples for P4 under FP32 and INT8 respectively,
and 1,150 and 1,553 samples for T4 under FP32 and INT8 respectively. Due to the relatively small
number of samples and observable distributional discrepancies across different configurations, we
adopt a pretrain-finetune strategy. First, we pretrain on the NNLQP "unseen" datasets (using the same
datastes as in Section 4.1), and then finetune it on latency samples from T4 or P4 under different
precision, in order to enable latency prediction on previously unseen hardware-precision combinations.
To evaluate the effectiveness of our approach, we compare it against three baseline methods: linear
predictors using FLOPs, FLOPs+MACs, and the NN-Former framework [31]. The linear models
serve as traditional baselines commonly used for cross-hardware latency estimation, while NN-Former
represents the current state-of-the-art in learning-based latency prediction. Consistent with previous
studies [8, 9], we employ two standard evaluation metrics for latency prediction: Mean Absolute
Percentage Error (MAPE) and Error Bound Accuracy (Acc(10%)). Specifically, Acc(10%) denotes
the percentage of predictions with a relative error less than 10%.

As shown in Table 3, our method demonstrates promising and robust performance under two distinct
zero-shot latency prediction settings across hardware platforms, performing favorably compared to
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Table 3: Zero-shot latency prediction on reorganized NNLQP [4] "multi_platform" datasets. Nvidia
Tesla P4→Nvidia Tesla T4 means using latency sample on Tesla P4 for finetune, and zero-shot
prediction on Tesla P4 sample.

Metric Test Domain
Nvidia Tesla P4→Nvidia Tesla T4 Nvidia Tesla T4→Nvidia Tesla P4

FLOPs FLOPs+MAC NN-Former Ours FLOPs FLOPs+MAC NN-Former Ours

MAPE ↓

AlexNet 326.99 431.72 32.66 97.95 350.29 552.4 92.49 79.17
EfficientNet 49.64 28.92 34.81 34.96 43.83 25.02 37.71 19.12
GoogleNet 27.25 37.53 68.69 20.54 50.13 28.39 46.92 19.09
MnasNet 30.76 21.42 58.39 18.3 24.47 20.2 49.87 25.31

MobileNetV2 37.61 32.52 53.30 17.51 20.96 17.86 51.93 29.56
MobileNetV3 85.08 63.58 14.46 77.84 57.05 35.23 24.83 15.78

ResNet 59.92 28.14 75.73 16.67 273.90 180.92 41.69 25.39
SqueezeNet 41.77 25.86 71.51 29.81 166.98 91.5 46.85 40.11

VGG 27.20 32.42 80.04 20.05 72.11 102.96 62.83 73.47
Average 52.58 39.24 54.13 19.06 115.22 75.03 40.82 18.43

Acc(10%) ↑

AlexNet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.67
EfficientNet 0.00 5.03 5.02 14.57 0.55 16.39 0.55 30.21
GoogleNet 14.00 3.00 0.00 30.10 5.05 20.71 0.00 29.00
MnasNet 8.16 22.45 0.00 38.78 44.12 41.18 0.00 19.05

MobileNetV2 6.12 2.04 2.04 34.69 31.82 40.91 0.00 10.88
MobileNetV3 8.50 12.5 40 3.50 9.74 14.87 7.69 49.50

ResNet 15.00 26.00 0.00 34.00 0.00 0.00 4.50 12.00
SqueezeNet 17.00 19.00 0.00 9.50 0.00 0.00 0.51 4.50

VGG 9.30 20.93 0.00 27.91 0.00 0.00 0.00 0.00
Average 10.43 13.22 7.91 34.62 4.84 11.44 3.81 39.07

Table 4: Ablation study on NNLQP [4] SqueezeNet family. Validate the effectiveness of DGSA and
investigating the impact of embedding strategies with pretrained language models.

Columns
1 2 3 4 5 (Ours)

Global DGSA w/o DGSA DGSA DGSA
Attention Dynamic Graph + NN-Former + randomly initialized + pretrain

Attention Position Embedding BERT Embedding BERT Embedding
MAPE ↓ 6.70 6.48 6.09 8.25 5.85

Acc(10%) ↑ 76.50 78.05 81.10 66.45 83.10

conventional baselines. In the Nvidia Tesla P4→T4 experiment, we finetune on latency samples from
P4 (under FP32 and INT8) and T4 (under INT8), and perform zero-shot prediction on previously
unseen T4 FP32 samples. Our method achieves the best performance, with an Acc(10%) of 36.62%
and a MAPE of 19.06. In the T4→ P4 setting, Our method again achieves the best performance, with
39.07% Acc(10%) and a MAPE of 18.43. These results outperform all baselines and highlight the
effectiveness of incorporating hardware-aware modeling. In particular, the NN-Former results further
support our observation in Section 1 that prior methods tend to overlook hardware attributes, which
limits their generalization ability in cross-platform latency prediction tasks.

Overall, LeDG-Former integrates hardware-awareness via language-based embedding and exhibits
strong generalization across diverse hardware platforms. As shown in the two experiments in Table 3,
our method enables zero-shot latency prediction not only across different hardware configurations,
but also across numerical precisions, from high-precision (FP32) to low-precision (INT8) settings on
the same device, which is a critical feature for real-world model deployment scenarios that demand
adaptability and efficiency.

4.3 Ablation Studies

In this section, we conduct a series of ablation studies on the NNLQP datasets to investigate the impact
of various modifications. We conduct comparative experiments under the different distributions of
training and testing data, and the SqueezeNet family is selected as the test domain. As shown in
Table 4, we obtain the following two conclusions: (1) Dynamically selecting adjacency relations
based on each node’s topological characteristics significantly enhances the representation
quality of neural architectures. In Columns 2, the dynamic weights in Equation (4) are uniformly
fixed, thus disabling the dynamic adjacency selection mechanism of our proposed dynamic graph-
based transformer. Compared with Columns 5, which employs our adaptive adjacency selection
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Table 5: Accuracy prediction results on NAS-Bench-101 [26] & NAS-Bench-201 [27] . We use
different proportions of data as the training set and report Kendall’s Tau on the whole datasets.

Method Publication
NAS-Bench-101 NAS-Bench-201

0.04% 0.1% 1% 3% 5% 10%
(172) (424) (4326) (469) (781) (1563)

NP [6] ECCV 2020 0.545 0.679 0.769 0.584 0.634 0.646
Graphormer [28] NeurIPS 2021 0.580 0.611 0.797 0.680 0.719 0.776

TNASP [25] NeurIPS 2021 0.669 0.705 0.820 0.640 0.689 0.724
NAR-Former [8] CVPR 2023 0.653 0.765 0.871 0.790 0.849 0.901

PINAT [42] AAAI 2024 0.715 0.772 0.846 0.706 0.761 0.784
NAR-Former V2 [9] NeurIPS 2023 0.704 0.773 0.861 0.846 0.874 0.888

NN-Former [31] CVPR 2025 0.765 0.809 0.877 0.860 0.879 0.890

Ours - 0.762 0.809 0.880 0.864 0.881 0.892

mechanism, the accuracy drops by 5.05%, clearly demonstrating the effectiveness of dynamically
modeling topological differences among computational nodes. Moreover, Columns 1, which adopts
a fully-connected adjacency design, exhibits notably worse performance than Columns 5, further
validating the advantage of our explicit dynamic topology-aware representation over traditional fixed
adjacency methods. (2) Language embedding provides richer and deeper semantic modeling
capabilities for the model. Columns 3 adopts the position embedding strategy from NN-Former
instead of our proposed language embedding. Compared to Columns 5, which utilizes our language
embedding, Columns 3 experiences a performance drop of 2.00%. This indicates that language
embedding provides a clear advantage in capturing semantic information related to neural architectures
and hardware platforms. Furthermore, when the parameters of the pre-trained language model
are randomly initialized in Columns 4, the model’s prediction accuracy significantly declines by
16.65%, further emphasizing the critical role of pre-trained semantic knowledge in enhancing the
representation quality and generalization ability of the model.

4.4 Accuracy Prediction

To further evaluate the generalization capability of our approach, we conduct accuracy prediction
experiments on NAS-Bench-101 and NAS-Bench-201, show in Table 5. While LeDG-Former also
achieves strong performance on NAS-Bench-101 and NAS-Bench-201, the improvement over the
state-of-the-art NN-Former is relatively marginal compared to the substantial gains observed on the
NNLQP benchmark. We attribute this to two main factors: First, our dynamic graph-based modeling
is particularly effective for architectures with deep and complex topologies, whereas cell-based
search spaces typically contain shallow architectures with only 5 to 7 operations, limiting the richness
of structural information that can be exploited. Second, the relatively small number of unique
architectures and training samples in these benchmarks may lead to saturated prediction performance,
reducing the observable performance gap. Despite this, the consistent results across diverse settings
further demonstrate the robustness of LeDG-Former.

5 Conclusion

In this paper, we propose LeDG-Former, a novel neural architecture representation learning frame-
work that synergistically integrates hardware-aware language embedding and dynamic graph-based
transformer modeling. Our framework addresses the limitations of existing methods by incorporating
hardware attributes and employing dynamic adjacency structures to effectively capture fine-grained
structural differences among computational nodes. By projecting both neural architectures and hard-
ware specifications into a unified semantic embedding space through language-model tokenization,
LeDG-Former achieves the first successful zero-shot latency prediction across diverse hardware
platforms on the NNLQP dataset. Comprehensive experiments further demonstrate that our approach
surpasses existing state-of-the-art methods across multiple architecture-property prediction bench-
marks, including NAS-Bench-101 and NAS-Bench-201. These findings highlight the importance
of hardware-awareness and dynamic topology modeling for deployability-aware neural architecture
representation. However, existing cross-hardware latency datasets cover limited hardware and archi-
tectural diversity, hindering robust evaluation under domain shifts. Future work should develop more
diverse benchmarks to support comprehensive and realistic assessments.
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