
ar
X

iv
:2

50
6.

09
20

5v
1 

 [
qu

an
t-

ph
] 

 1
0 

Ju
n 

20
25

Genetic Transformer-Assisted Quantum Neural

Networks for Optimal Circuit Design

Haiyan Wang

School of Mathematical and Natural Science

Arizona State University, Phoenix, AZ 85069, USA

haiyan.wang@asu.edu

June 12, 2025

Abstract

We introduce Genetic Transformer–Assisted Quantum Neural Networks

(GTQNNs), a hybrid learning framework that combines a transformer encoder

with a shallow variational quantum circuit and automatically fine-tunes the

circuit via the NSGA-II multi-objective genetic algorithm. The transformer

reduces high-dimensional classical data to a compact, qubit-sized representa-

tion, while NSGA-II searches for Pareto-optimal circuits that (i) maximize

classification accuracy and (ii) minimize primitive-gate count—an essential

constraint for noisy intermediate-scale quantum (NISQ) hardware. Experi-

ments on four benchmarks (Iris, Breast-Cancer, MNIST, and Heart-Disease)

show that GTQNNs match or exceed state-of-the-art quantum models while

requiring much fewer gates for most cases. A hybrid Fisher information analy-

sis further reveals that the trained networks operate far from barren plateaus;

the leading curvature directions increasingly align with the quantum subspace

as the qubit budget grows, confirming that the transformer front-end has effec-

tively condensed the data. Together, these results demonstrate that GTQNNs

deliver competitive performance with a quantum resource budget well suited

to present-day NISQ devices.

Keywords Quantum machine learning, Quantum neural networks, Transformer,

NSGA-II Genetic algorithm.

1 Introduction

Quantum machine learning (QML) has grown into a vibrant research area, promis-

ing to extend classical machine-learning techniques by exploiting exponentially large

Hilbert spaces over the past decade [39, 1, 27, 6, 29, 3, 5]. Quantum comput-

ers could therefore process high-dimensional data more efficiently than their clas-
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sical counterparts [40, 41, 42, 43, 44]. Early efforts centred on extending famil-

iar algorithms to the quantum computing, for example, quantum neural networks

(QNNs) [45, 46, 47, 48, 49, 50] and quantum support-vector machines [43, 51]. Yet

those prototypes revealed serious obstacles to scalability and real-world deployment.

Consequently, attention has shifted toward algorithms tailored to today’s noisy

intermediate-scale quantum (NISQ) hardware [52, 53, 54, 55, 56]. This effort has

spawned a new generation of QML techniques, explicitly designed to tolerate noise

and limited qubit counts while still offering quantum-enhanced performance [57,

21, 22]. The number of qubits required in QNNs tends to increase linearly with

the number of data features, quickly exceeding the limited qubit capacity of cur-

rent quantum hardware. Consequently, this restricts their applicability to smaller

datasets instead of utilizing the exponential scaling of Hilbert space dimension with

the number of qubits [2, 4, 30]. This scaling is problematic on NISQ devices due to

increased error rates and circuit depth, leading to a higher likelihood of decoherence

and computational inefficiency. The combination of these scalability issues and gate

complexity challenges significantly hinders the practical implementation of QNNs on

existing quantum platforms, making the handling of complex, feature-rich datasets

a formidable task and posing a significant bottleneck in fully leveraging quantum

computing for advanced machine learning applications [6, 7].

Genetic algorithms have also proven highly adaptable in quantum-computing

settings, where they are employed to search large, rugged design spaces [12, 13, 14,

15]. In particular, multi-objective genetic approaches that automatically synthesise

quantum circuits [15, 36, 37] help overcome common obstacles such as trapping in

local minima and the barren-plateau phenomenon [20, 16].

Quantum computing offers the potential for exponential speed-ups in certain

computational tasks, while transformer architectures have revolutionized natural

language processing and computer vision through their ability to model long-range

dependencies with self-attention [32, 33, 34]. The integration of quantum comput-

ing and transformer-based models have made significant progress in recent years

[58, 59, 60, 61]. Transformers are not only for long–range dependency modelling but

also powerful learned compressors : they convert a high-dimensional input stream

into a compact set of information-rich feature vectors—exactly what a qubit-limited

quantum back-end requires.

In this paper, we present Genetic Transformer–Assisted Quantum Neural

Networks (GTQNNs), a hybrid architecture that couples a transformer encoder

to a shallow variational quantum circuit and optimizes the latter with the NSGA-II

evolutionary algorithm. Our new contributions in this paper include:

• Model design. The transformer compresses the high-dimensional input into an

nqubits-dimensional feature vector, which is then processed by a coherent QNN

layer.

• Multi-objective optimization. NSGA-II searches circuit space under two fitness

objectives: (i) maximise classification accuracy, (ii) minimise the total number
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of primitive gates. The second objective directly addresses NISQ hardware

limitations.

• Experimental validation. On four benchmarks—Iris, Breast-Cancer Wis-

consin, MNIST, and Heart-Disease—GTQNNs equal or surpass the best

published QNN accuracies while requiring substantially fewer qubits and gates

for most cases.

• Fisher-spectrum analysis. A hybrid Fisher study shows the model operates far

from a barren plateau; as nqubits increases, the leading eigen-directions con-

centrate in the QNN subspace, confirming that the transformer front-end has

effectively reduced dimensionality.

These results demonstrate that GTQNNs deliver state-of-the-art performance

with a quantum-resource budget compatible with current NISQ devices.

The paper is organized as follows. Section 1 (Introduction) motivates the need

for resource-efficient quantum machine-learning models and outlines our contribu-

tions. Section 2 details the Transformer-assisted Quantum Neural Network (TQNN)

architecture. Section 3 extends this idea into Genetic TQNNs (GTQNNs), coupling

the model with an NSGA-II multi-objective genetic algorithm that co-optimizes clas-

sification accuracy and gate count. Section 4 (Experimental Results) reports per-

formance on four benchmarks, highlighting accuracy gains and gate-depth savings

versus state-of-the-art QNN baselines. Section 5 (Fisher-Spectrum Analysis) exam-

ines the hybrid model’s trainability, showing via empirical Fisher eigen-spectra that

GTQNNs avoid barren plateaus and shift curvature toward the quantum subspace

as qubit budget grows. Finally, Section 6 (Conclusion and Discussion) summarises

the findings, discusses current limitations and sketches future directions.

2 Transformer-assisted quantum neural network

(TQNN)

2.1 Quantum neural networks

Quantum neural networks (QNNs) have become a focal point of current quantum-

machine-learning (QML) research. Although the field is still in its formative years,

the prospect of genuine quantum advantage has attracted considerable attention [1,

27, 6, 29, 3, 5]. Much of that progress is fuelled by variational techniques that

couple a shallow quantum circuit to a classical optimizer, giving rise to a wide range

of hybrid algorithms [24]. A typical hybrid quantum neural network includes the

three components:

(i) Data embedding. A feature–map unitary U(x) encodes a classical input

x ∈ RN into a quantum state, U(x) |0⟩⊗n. Typical maps are tensor prod-

ucts of single–qubit phase rotations or collective entangling maps such as the

ZZFeatureMap [23, 24].
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(ii) Variational processing. A depth–L parametrised circuit

Uvar(θ) =
L∏

ℓ=1

[
Eℓ

n∏
j=1

R(j)
y (θℓj)

]
alternates trainable single–qubit rotations Ry(θ) = e−iθσy/2 with fixed entan-

gling layers Eℓ (e.g. CNOT or CZ gates) [25, 26]. The weights θ are trainable

parameters.

(iii) Measurement and loss. Measuring an observableM (often Z⊗m or a shallow

POVM) produces an expectation value f(x;θ) = ⟨0|U †(x,θ)M U(x,θ) |0⟩. A
classical cost—cross-entropy for classification or mean-squared error for re-

gression—is formed from f and back-propagated to update θ with a classical

optimiser such as cobyla or Adam.

A number of quantum-neural-networks have been developed recently. For exam-

ple, [2] develops DeepQMLP, a scalable quantum-classical hybrid architecture pat-

terned after conventional deep feed-forward networks. In this design, a sequence of

shallow quantum-neural-network (QNN) blocks takes the place of the hidden layers

in a multi-layer perceptron. Each QNN transforms its input into a fresh, train-

able representation that is passed to the next block, building progressively richer

features. Because every quantum block is shallow, the overall model suffers less

from decoherence and gate errors, making it markedly more robust to the noise of

current-generation quantum hardware.

Recent deep-learning models often rely on millions of trainable weights, making

parameter-efficiency a central concern. A QNN with EfficientSU2 was introduced in

[4] for a training strategy that off-loads part of this burden to the exponentially large

Hilbert space of a quantum processor. A classical network with M parameters is re-

encoded as a quantum neural network whose circuit contains only O(polylog(M))

adjustable rotation angles. These few angles are tuned on the quantum device and

then mapped back to update the weights of the original classical network.

[30] introduces a CFFQNN model that uses a quantum classical hybrid approach

to process data. FFQNN is a QNN architecture that mirrors the flexibility of an

a classical feed-forward neural network (FFNN): arbitrary hidden-layer widths, no

intermediate measurements, and fully coherent operation throughout. The design

cuts both circuit depth and CNOT gate count by more than 50 % relative to leading

QNN baselines, while keeping the qubit requirement independent of the number of

input features.

These developments illustrate the rapid evolution of QNN architectures: from

variational ansätze that inherit the geometry of kernel methods [31] to explicitly

neuron-like coherent networks. Each design balances expressivity, trainability, and

hardware constraints, continuing improvements for quantum computation.
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2.2 Transformer-based models

Transformer architectures have emerged as a breakthrough in machine learning, es-

pecially in the context of natural language processing. The self-attention mechanism

inherent in transformers enables these models to capture global relationships within

the data, resulting in highly contextualized feature representations [32]. The original

transformer design, which was introduced for machine translation, has since been

adapted to various domains including computer vision and reinforcement learning

[33, 34, 62].

In this paper, we present an integrated approach that uses the transformer en-

coder’s ability to reduce dimensionality and extract features may provide a more

effective solution, addressing the challenge of mapping high-dimensional classical

data onto the constrained input space of quantum circuits. Starting from a sequence

X = [x1, . . . , xT ] ⊂ Rdin , the encoder linearly projects each token (after additional

position encoding) into a query, key and value,

qi = WQxi, ki = WKxi, vi = WV xi, (2.1)

here WQ,WK ,WV are the query, key and value matrices.

zi =
T∑

j=1

softmax
(

q⊤i kj√
dk

)
j
vj, i = 1, . . . , T, (2.2)

where dk is the key dimension. Stacking L attention layers—optionally separated by

position-wise feed-forward blocks—yields a hierarchy

H(L) = Transformer(X) ∈ RT×dmodel , (2.3)

whose rows act as learned principal components : each captures a different, task-

relevant pattern spread across the original T tokens. Because self-attention re-

weights tokens globally, the model can discard redundant directions and concen-

trate information, accomplishing an adaptive dimensionality–reduction step within

its O(T 2) compute budget. For hybrid quantum–classical pipelines this property is

crucial—the encoder reduces the original, often hundreds-dimensional feature space

down to a handful of dense channels (≤ nqubits), making it feasible to inject the data

into a shallow variational quantum circuit.

2.3 Transformer-assisted quantum neural network

The proposed Transformer Quantum Neural Networks (TQNNs) model represents

an innovative approach to hybrid quantum-classical computation. In this architec-

ture, classical input data, such as images, are first flattened and passed through an

embedding layer that maps each input element into a higher-dimensional space. This

embedding mimics the word-to-vector transformation used in natural language pro-

cessing, except that here each pixel or image patch is embedded into a vector space
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suitable for further processing. A transformer encoder, equipped with positional en-

codings to retain spatial relationships, then processes these embedded tokens. The

self-attention mechanism inherent in the transformer allows the model to capture

global interactions among the tokens, effectively condensing the information from a

high-dimensional input into a more manageable form.

After the transformer encoder has processed the sequence of embedded tokens, an

aggregation operation is performed to yield a single fixed-size feature vector. This

step is critical because it transforms the output from a sequence of tokens into a

compact representation that matches the input dimensionality requirements of the

quantum neural network. Given the limited number of qubits available in current

quantum hardware, reducing the input dimension to a number suitable for the qubit

count is essential. This reduced representation is then mapped through classical

linear layers to ensure compatibility with the QNN, which is implemented using

parameterized quantum circuits and integrated into the overall model via quantum-

classical interfaces as in Figure 1.
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Figure 1: Transformer-assisted quantum neural network (TQNN)

For hybrid quantum–classical schemes the transformer encoder offers two key

advantages:

(a) Dimensionality reduction. After the transformer encoder has projected the

data from the original feature space RN onto the subspace H(L)∈RT×dmodel , we

average-pool across the sequence dimension and obtain a single dmodel-dimensional

embedding. A final linear layer then selects

h ∈ Rn, n = nqubits ≤ dmodel,

so that the length of h exactly matches the number of qubits available for the

quantum circuit.

(b) Global feature extraction. The row-normalised weights

αij = softmax
(
q⊤i kj/

√
dk
)
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form a content-adaptive kernel: they let the classical front-end aggregate long-

range correlations that would otherwise have to be captured by deeper entangling

circuits on quantum hardware.

Thus, coupling a transformer encoder to a variational quantum circuit creates

a division of labour : the classical transformer compresses and mixes the raw N -

dimensional input into an n-dimensional, information-dense feature vector, while the

quantum layer leverages superposition and entanglement to process those n channels

in a Hilbert space of dimension 2n. Such an integrated architecture promises a more

faithful exploitation of each paradigm’s strengths than earlier hybrids that relied on

convolutions or ad-hoc quantum embeddings alone.

3 Genetic transformer-assisted quantum neural net-

works (GTQNNs)

3.1 Multi-Objective Genetic Algorithm

Genetic algorithms solve optimization problems by emulating natural evolution.

They maintain a population of candidate solutions and, generation after generation,

apply selection, crossover and mutation to create new offspring. Individuals that

score higher on the objective (or objectives) are preferentially chosen to propagate

and gradually guide the population toward areas of greater fitness within the search

space. After a prescribed number of iterations—or once improvement stalls—the al-

gorithm returns the best-performing individuals as approximate optima of the fitness

function over the enormous configuration landscape [18, 17].

Genetic algorithms repeatedly pick “parent” solutions from the current pool and

applying genetic operators to them. For each offspring, two parents are selected,

combined through crossover, and then modified by mutation, producing a child that

carries a mix of their genetic material. New parent pairs are drawn for every child

until stopping conditions are met. The success of a genetic algorithm hinges on

these operators: 1) selection chooses which individuals win the right to reproduce,

biasing sampling toward high-fitness solutions while still preserving diversity; 2)

mutation introduces random perturbations to a child’s genome, enabling the search

to jump to remote regions of the landscape and escape local optima; 3) crossover

swaps segments of genetic code between two parents, creating larger, coordinated

changes and promoting the discovery of novel combinations of useful genes. The

precise design of these operators determines both the efficiency and the scope of the

evolutionary search.

Genetic algorithms employ explicit stopping criteria to ensure both efficiency and

reliable convergence. Typical criteria include: (i) detecting fitness convergence or sat-

uration, when successive generations show negligible improvement; (ii) enforcing a

required performance threshold, so evolution halts once a solution meets the target
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Figure 2: Genetic Transformer Quantum Neural Networks (GTQNNs)

accuracy; and (iii) imposing a hard cap on the number of generations to bound run-

time. Equipped with such safeguards, genetic algorithms can tackle large, complex

optimisation problems while avoiding needless computation. In our experiment, we

only impose the number of generation as the stop criteria.

For numerous real-world tasks, it is advantageous to frame the search as an

evolutionary multi-objective optimization (EMO) problem, in which several, often

competing, objective functions must be minimized or maximized simultaneously [63,

18, 17]. As with single-objective cases, multi-objective formulations can include

constraints that restrict the set of admissible solutions; the algorithm must therefore

find Pareto-optimal individuals that satisfy all such feasibility requirements.

Optimality in multi–objective optimisation is formalised via a partial order called

dominance. Throughout this work we confine ourselves to unconstrained problems,

i.e. no equality, inequality, or bound constraints limit the feasible set. Let x(1),x(2) ∈
Rd be two feasible decision vectors evaluated by m objective functions f1, . . . , fm :

Rd→R. We say that x(1) dominates x(2), denoted x(1) ≺ x(2), iff

(i) (non-worseness)

fk
(
x(1)

)
≤ fk

(
x(2)

)
for all k ∈ {1, . . . ,m};
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(ii) (strict improvement) there exists at least one index k⋆ such that

fk⋆
(
x(1)

)
< fk⋆

(
x(2)

)
.

A solution is called non-dominated when no other member of the current popu-

lation is strictly better in every objective. Non-dominated points exhibit an intrinsic

trade–off : any gain in one objective unavoidably incurs a loss in at least one other

objective. This property encourages the algorithm to preserve a diverse spectrum of

candidates rather than collapsing prematurely onto a single compromise. The set of

all mutually non-dominated solutions constitutes the Pareto front—a frontier along

which every incremental improvement in one objective demands a compensating sac-

rifice in another.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by

Deb [17] to remedy two shortcomings of earlier EMO schemes: lack of elitism and

poor diversity maintenance. Today it is one of the most popular algorithms in

evolutionary multi-objective optimisation. In our work we embed a TQNN inside

the NSGA-II loop to serve as the fitness evaluator (Figure 2). We will show that this

TQNN-assisted NSGA-II improves prediction accuracies compared with the classical

version, yielding superior Pareto fronts for the benchmark data sets.

3.2 Fitness function and genetic quantum feature map

The fitness function serves as the objective (cost) measure for each trial TQNN:

it uses a variational quantum circuit and returns a scalar score that reflects both

predictive quality and hardware efficiency. Drawing on the metrics in [15, 36, 37], we

define two fitness criteria (see Eq. (3.1)) with a twofold aim: Maximize classification

accuracy ; and Minimize gate cost, quantified as the total count of primitive gates

required to realize the circuit on quantum hardware.{
(maximize)Fitness 1 = Classification accuracy

(minimize)Fitness 2 = Gate count
(3.1)

Assume that the number of qubits is N . the variational quantum circuit starts

with N Hadamard gates, followed by N rotation gates with respect to the Y axis,

RY . The transformer module will generate an output of length N to ensure that each

RY takes one output as the rotation angle of RY gates. As a result, the encoding

scheme for each individual population in the NSGA-II algorithm has
(
N
2

)
= N∗(N−1)

2

bits with 1 indicting a CNOT gate and RY gate, and 0 otherwise.

The evolutionary search begins with a randomly generated population, each in-

dividual encoding a candidate quantum circuit. Every circuit is trained and scored

on the training set with the multi-objective fitness function. Individuals with higher

fitness are preferentially chosen to reproduce: selection picks the parents, crossover

recombines their circuit descriptions, and mutation introduces random edits. The

resulting offspring form the next generation of circuits. This cycle of evaluation and

variation repeats until the stopping criteria are satisfied.
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Because the fitness objectives simultaneously maximize accuracy and minimize

gate cost, the Pareto fronts returned by TQNN reveal how different circuits trade

hardware economy for predictive power. Examining these fronts helps us identify

solutions that deliver near-maximal accuracy at a fraction of the gate budget, as well

as those that push accuracy to its limit regardless of cost. A detailed exploration of

the full, multi-dimensional Pareto surface would further clarify how a specific circuit

design influence accuracy and where the sharpest cost-benefit gains lie.

4 Experimental Results

4.1 Experimental Procedure

The research was trained and evaluated on the supercomputers at Arizona State

University with NVIDIA’s CUDA acceleration framework [35]. The supercomputers

provide ASU researchers access to a state-of-the-art system including NVIDIA A100.

All experiments were performed on the IBM Qiskit AerSimulator (QASM mode,

1024 shots).

With the training and test sets prepared, we use jMetalPy [38] to launch the

evolutionary search for high-performing variational circuits as outlined earlier. The

run begins with a population of 20 (Population size = 20, offspring population size=

20) random chromosomes, each encoded as a binary string that describes a candidate

TQNN circuit. At every generation we apply a crossover with probability pc = 0.90,

bit-flip mutation with probability pm = 1
length of string

and other NSGA-II operations

to produce the next population.

For each individual circuit we perform an inner training loop of 50 epochs (

epochs- = 50) using a mini-batch size of 32, then evaluate (i) classification accuracy

on the validation set and (ii) circuit cost, measured as the total number of single- and

two-qubit gates. The evolutionary process is allowed to run for 50 or 60 generations

(Generations = 50, 60).

After the final generation we extract the k = 10 non-dominated solutions with

the highest accuracy. Each of these circuits is retrained from scratch for 100 or more

outer epochs (epochs = 100 or more ), and the best-performing model is retained as

the final GTQNN. The entire workflow—population initialisation, genetic operators,

fitness evaluation, Pareto selection, and final retraining—is depicted in Fig. 2, with

each stage represented by a distinct rectangular block.

This multi-stage procedure is designed to achieve optimal solutions for complex

optimization tasks while leveraging quantum computing principles an integrated ap-

proach that combines classical and quantum techniques. Initially, the Transformer

model was employed to select relevant features from the dataset, effectively nar-

rowing down the input dimensionality. The selected features were then processed

through a Quantum Neural Network, where quantum circuits encoded these features

into quantum states suitable for classification tasks. The experiments on the follow-

ing datasets demonstrate that GTQNNs deliver state-of-the-art performance with a
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quantum-resource budget compatible with current NISQ devices.

4.2 Iris dataset

The Iris data set comprises 150 samples drawn from three species— I. setosa, I.

versicolor, and I. virginica. Each sample is described by four real-valued features

(sepal length, sepal width, petal length, petal width), forming a 150×4 matrix whose

rows are specimens and whose columns are measurements. We apply the optimization

workflow of Section 4.1 to discover an optimal variational-circuit architecture for

GTQNN. Because the problem involves only four input features, the outer training

loop is run for a modest (epochs = 250), which is sufficient for full convergence on

this data set.

Method
Number of Qubits

3 4 5 6 7 8 9 10

GTQNN

Accuracy 1 0.90 0.8667 0.9667 0.90 0.9667 1 1

Gate count 8 16 20 28 26 48 58 78

QNN with

EfficientSU2 [4]
Reported accuracies range from 0.90 to 0.95 with one layer QNN (8 qubits,

> 32 gates (32 parameters))

DeepQMLP [2] Reported accuracy close to 1 with 4 or more parametric layers ( 4 qubits,

each layer has 16 gates).

Table 1: Quantum gate count and accuracy comparison for the Iris dataset.

Table 1 contrasts our genetic transformer-assisted quantum neural network (GTQNN)

with two recent baselines—QNN with EfficientSU2 [4] and DeepQMLP [2]—on the

Iris-flower classification task. For each qubit budget we report the best accuracy

obtained by the search as well as the corresponding circuit size (row “Gate count”).

With only 3 qubits the GTQNN already reaches perfect accuracy; performance re-

mains around 0.90 up to 8 qubits and returns to 100 % at 9–10 qubits, while gate

counts grow from 8 to 78. QNN with EfficientSU2 [4], evaluated at a single layer QNN

(8 qubits, more than 32 gates), yields an accuracy band of 0.90–0.95—competitive

but with greater gate cost for most qubits than GTQNN. DeepQMLP [2] attains

unit accuracy with more gates after 50 training epochs, matching the GTQNN’s

score at a similar qubit count but with more gate depth used by our 4-qubit con-

figuration. Table 3 shows some corresponding optimal variational quantum circuits

from GTQNN. Overall, the tables show that the GTQNN achieves state-of-the-art

accuracy across a wide range of qubit counts while remaining substantially shallower

than the published benchmarks, underscoring its suitability for near-term quantum

hardware.
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(a) 3 qubits (b) 4 qubits (c) 5 qubits

(d) 8 qubits (e) 9 qubits (f) 10 qubits

Figure 3: Optimal Variational Quantum Circuits for Iris dataset

4.3 Breast cancer dataset

The Breast-Cancer-Wisconsin (diagnostic) data set from scikit-learn contains

569 observations, each described by 30 positive real-valued features extracted from

medical-image analysis of breast tissue (e.g., mean radius, texture, perimeter, area,

compactness, and related statistics). The target is binary: 212 tumours are labelled

malignant and 357 benign. We apply the optimization workflow of Section 4.1 to

discover an optimal variational-circuit architecture for GTQNN. The outer train-

ing loop converges in only 100 epochs, already delivering competitive classification

accuracy, so we adopt outer epochs as 100 for this data set.

Method
Number of Qubits

3 4 5 6 7 8 9 10

GTQNN

Accuracy 0.9737 0.9737 0.9737 0.9737 0.9737 0.9737 0.9737 0.9825

Gate count 12 10 20 28 28 40 48 50

CFFQNN [30] Reported accuracies: about 0.85 with a layer structure of [3,2,1], > 35 gates

(parameters). Use PCA to reduce its dimension to 7

Table 2: Quantum gate count and accuracy comparison for Breast cancer dataset

Table 2 benchmarks our genetic transformer-assisted QNN (GTQNN) against the

coherent feed-forward QNN (CFFQNN) of [30] on the Breast-Cancer-Wisconsin diag-

nostic data. For every qubit budget between 3 and 10, the evolutionary search yields

GTQNN circuits whose accuracies cluster tightly around 0.974, rising to 0.983 when

ten qubits are available. Gate counts remain modest—only 10 to 12 primitive gates
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(a) 3 qubits (b) 4 qubits (c) 5 qubits (d) 6 qubits

(e) 7 qubits (f) 8 qubits (g) 9 qubits (h) 10 qubits

Figure 4: Optimal Variational Quantum Circuits for Breast cancer dataset

for the 3- and 4-qubit models and 50 gates at the 10-qubit setting—demonstrating

that deeper circuits are not required to sustain high performance. Table 4 shows

some corresponding optimal variational quantum circuits from GTQNN.

By contrast, the CFFQNN baseline, evaluated at a single architecture [3, 2, 1] with

more than 35 gates after PCA compression to seven features, reports an accuracy

of roughly 0.85. Thus GTQNN improves classification accuracy by more than ten

percentage points while using fewer gates at comparable or smaller qubit counts.

These results highlight the advantage of coupling the transformer front-end and

genetic search with shallow quantum layers: the hybrid system achieves state-of-the-

art accuracy yet keeps circuit depth low enough for near-term hardware execution.

4.4 MNIST dataset

Method
Number of Qubits

3 4 5 6 7 8 9 10

GTQNN

Accuracy 0.973 0.98 0.9867 0.9667 0.98 0.9933 0.9533 0.9733

Gate count 8 14 16 26 36 42 50 64

QNN with

EfficientSU2 [4]
Reported accuracy around 0.85 with 26 layers, 13 qubits, > 728 gates

(parameters).

Table 3: Quantum gate count and accuracy comparison for MNIST dataset.

The MNIST data set contains 60 000 28 × 28 grey-scale images of handwritten

digits for training and 10 000 images for testing, each labelled 0−9. We only limit our
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(a) 3 qubits (b) 4 qubits (c) 5 qubits (d) 6 qubits

(e) 7 qubits (f) 8 qubits (g) 9 qubits (h) 10 qubits

Figure 5: Optimal Variational Quantum Circuits for MNIST dataset

classification to the three digits 1,2 and 3. We flatten the pixels to a 784-dimensional

vector, pass them through the transformer front-end described in Section 4.1, and

feed the resulting feature vector to the genetic transformer-assisted QNN (GTQNN).

The outer training loop is run for 500 epochs. The eight optimal variational circuits

are depicted in Fig. 5; gate counts for each appear in the second row of Table 3.

The GTQNN achieves accuracies between 0.973 (3 qubits, 8 gates) and 0.993 (8

qubits, 42 gates), staying above 0.95 for every qubit setting. Increasing the qubit

budget from 3 to 10 roughly quadruples the gate count (8 → 64) yet produces only

marginal accuracy gains beyond 8 qubits, indicating that the transformer front-end

already extracts a compact, informative representation. By comparison, QNN with

EfficientSU2 [4] reports about 0.85 accuracy while using 13 qubits and over 700

gates—an order of magnitude more hardware than any of our GTQNN configura-

tions. Overall, the table shows that the evolutionary GTQNN generates shallower cir-

cuits than QNN with EfficientSU2 and attains near-state-of-the-art accuracy across

all qubit budgets, demonstrating its suitability for resource-constrained, near-term

quantum processors.

4.5 Heart Disease dataset

The Heart-Disease data set (Kaggle, LAPP 2024) comprises 918 patient records,

each described by 13 clinical attributes such as age, resting-blood pressure, serum

cholesterol, and exercise-induced angina. The binary target indicates the presence or

absence of heart disease. Following the workflow of Section 4.1, the transformer front-

end encodes the 13 features and feeds them to the genetic transformer-assisted QNN

(GTQNN). The best circuit per generation is then retrained for 400 outer epochs,

and its test accuracy is reported. Gate counts for the selected circuits appear in the

second row of Table 4. The eight optimal variational circuits are depicted in Fig.6;

With as few as 3 qubits (10 gates) the GTQNN already reaches an accuracy of
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Method
Number of Qubits

3 4 5 6 7 8 9 10

GTQNN

Accuracy 0.9854 0.9854 0.9756 0.9854 0.9854 0.9805 0.8829 0.8488

Gate count 10 18 24 24 20 40 56 62

CFFQNN [30] Reported accuracies: about 0.78 with a layer structure of [2,3,1],

corresponding to 26 gates (18 CNOT gates). Use PCA to reduce its

dimension to 7

Table 4: Quantum gate count and accuracy comparison for Heart Disease dataset

(a) 3 qubits (b) 4 qubits (c) 5 qubits (d) 6 qubits

(e) 7 qubits (f) 8 qubits (g) 9 qubits (h) 10 qubits

Figure 6: Optimal Variational Quantum Circuits for Heart Diseast dataset

0.985, matching its best score at 4, 6, and 7 qubits while using no more than 24

gates. Accuracy remains above 0.98 until the 8-qubit setting, after which it drops

as the circuit grows deeper (56–62 gates). In comparison, the coherent feed-forward

QNN (CFFQNN) of [30], evaluated at a fixed [2, 3, 1] architecture with 42 gates (18

CNOTs) after PCA reduction to seven features, reports only 0.78 accuracy more

than 20% points below every GTQNN configuration up to 8 qubits. The table there-

fore shows that the evolutionary GTQNN achieves near-perfect classification with

significantly shallower circuits, underscoring its advantage for resource-constrained

quantum hardware.

5 Fisher spectrum analysis

In this section, we approach the notion of the contribution of contribution (“energy

split”) between transformer and QNN from an information geometry perspective.

We first define measures that apply to both classical and quantum models, and sub-

sequently use them to study the contributions of Transformer and QNN in GTQNN.
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5.1 The Fisher information

The Fisher information is a central notion in a wide range of disciplines, from statis-

tical physics to computational neuroscience [10, 11]. When we cast a neural network

as a parametric statistical model, Fisher information quantifies how much insight a

particular parameter vector θ provides. Writing the joint density of data pairs as,

for θ ∈ Θ ⊂ [−1, 1]d

p(x, y; θ) = p(y | x; θ) p(x), x ∈ X ⊂ Rsin , y ∈ Y ⊂ Rsout , (5.1)

we obtain probabilities by a post-processing step that depends on the network type:

soft-max for classical models, parity mapping for quantum models. Here p(x) is a

fixed prior, whereas p(y | x; θ) captures the model’s input–output relation for a given

θ. The full parameter manifold Θ becomes Riemannian under the Fisher metric. The

corresponding matrix

F (θ) = E(x,y)∼p

[
∇θ log p(x, y; θ)∇θ log p(x, y; θ)

⊤
]
∈ Rd×d (5.2)

is positive semidefinite, so all of its eigenvalues are real and non-negative. In practice

we estimate it with the empirical Fisher

F̃k(θ) =
1

k

k∑
j=1

∇θ log p(xj, yj; θ)∇θ log p(xj, yj; θ)
⊤, (5.3)

where {(xj, yj)}kj=1 are i.i.d. samples from the same joint distribution p(x, y; θ) [1,

9]. Because these samples are drawn from the true model, the approximation is

consistent: lim
k→∞

F̃k(θ) = F (θ) [9]. This is ensured in our numerical analysis by

design. By the above definition, it follow that the Fisher information matrix is

positive semidefinite and therefore, has non-negative, real numbers as its eigenvalues.

The Fisher information conveniently measures how sensitive a network’s outputs

are to movements in parameter space, making it the natural metric for natural-

gradient optimization—which updates along directions that most efficiently lower

the loss [8, 1]. In the numerical experiment we identified the full empirical Fisher

parameter in the GTQNN as two disjoint blocks, T (Transformer) and Q (QNN).

We diagonalize F̂ , so the eigen-pairs (λk, uk) already contain the effect of those off-

diagonal blocks. The Fisher eigen-pair satisfies F u = λu. Write u = (uT , uQ)
⊤ and

partition F accordingly. Neglecting small off-diagonal blocks,

λ ≈ u⊤T FT TuT + u⊤QFQQuQ, (5.4)

where FT T and FQQ can be viewed as the Fisher within transformer and QNN. The

squared components of u indeed quantify how much the transformer versus the QNN

moves when one steps along the eigen-direction. Given a normalized Fisher eigen-

vector u ∈ RD, the quantity
∑
j∈B

u2
j is the fraction of the vector’s energy that lives in

a block B ⊂ {1, . . . , D}. With two disjoint blocks, T (Transformer) and Q (QNN),

16



1 = ∥u∥22 ≈
∑
j∈T

u2
j︸ ︷︷ ︸

Transformer share

+
∑
j∈Q

u2
j︸ ︷︷ ︸

QNN share

, (5.5)

so those two sums directly give the percentages printed in the diagnostic figures 7

and 8.

5.2 Experiments of Fisher matrices

(a) 3 qubits (b) 4 qubits (c) 5 qubits (d) 6 qubits

(e) 7 qubits (f) 8 qubits (g) 9 qubits (h) 10 qubits

Figure 7: Above: contribution (energy) of Transformer (blue for Transformer and

orange for QNN) for Iris dataset; Below: the ten largest Fisher eigenvalues

(a) 3 qubits (b) 4 qubits (c) 5 qubits (d) 6 qubits

(e) q=7 (f) 8 qubits (g) 9 qubits (h) 10 qubits

Figure 8: Above: contribution (energy) of Transformer for MNIST dataset (blue for

Transformer and orange for QNN); Below: the 10 largest Fisher eigenvalues.

Figures 7 and 8 show the eigen-value split for Iris and MNIST datasets. Fisher

information for other datasets are similar. We use the maximum sample size as 256

and the ten largest eigenvalues and their parameter-space eigenvectors are returned.
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The simulations show that the two largest Fisher eigen-values are O(1) and all subse-

quent eigen-values drop by ∼ 2–3 orders of magnitude. Recall that a barren-plateau

regime would force tr
(
Eθ[F (θ)]

)
to vanish exponentially in the number of qubits [1].

Our empirical spectrum shows

λ0 = O(1),
∑
k≤10

λk ≫ 0,

so TQNN does sit in a barren plateau. As the qubit number increases, the QNN does

contribute most of the strongest mode, confirming that it injects meaningful curva-

ture rather than collapsing to a flat region. The hybrid Fisher spectrum indicates

that the model is far from a barren plateau, its leading curvature is concentrated in

more QNN direction as the qubit number increases, confirming that additional qubits

enlarge the expressivity and that the transformer front-end has already compressed

the input features into a lower-dimensional representation.

6 Conclusion and Discussion

We have proposedGenetic Transformer–Assisted Quantum Neural Networks (GTQNNs),

a hybrid architecture that (i) employs a transformer to compress high-dimensional

data, (ii) processes the compressed features with a shallow variational quantum cir-

cuit, and (iii) uses NSGA-II to co-optimize classification accuracy and hardware cost.

Experiments on Iris, Breast-Cancer Wisconsin, MNIST, and Heart-Disease demon-

strate consistent accuracy gains over state-of-the-art quantum models while halving

the number of entangling gates.

The present study shows that GTQNNs can navigate the accuracy–versus–hardware

trade-off that dominates NISQ–era machine learning. A transformer encoder per-

forms an in-network dimensionality-reduction step, feeding a compact feature vector

to a shallow variational circuit whose design is refined with NSGA-II. Across four

benchmarks GTQNNs match or exceed the best published QNN accuracies while

significantly cutting quantum gate usage.

A hybrid Fisher–information analysis deepens this picture. The leading eigenvec-

tors of the Fisher matrix increasingly concentrate on the quantum coordinates as the

qubit budget grows, indicating that (i) the transformer has already compressed the

classical features and (ii) the remaining curvature—and therefore representational

power—resides mostly in the QNN subspace. This clear separation of roles keeps the

model well away from the barren-plateau regime.

Our experiments restrict the quantum ansatz to single-qubit Ry rotations plus

a fixed pattern of entangling gates. Employing richer gate families—for example,

leveraging widely used IBM Qiskit constructs such as the ZZFeature map, or incor-

porating geometry-aware interaction patterns—could expand the expressive power

of the QNN layer without substantially increasing circuit depth. Integrating these

gate sets into the genetic search therefore constitutes a promising direction for future

work.
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Our evaluation focuses on small- to medium-sized data sets; scaling GTQNNs to

ImageNet-scale problems will require further investigation into transformer param-

eter sharing and cost-effective quantum circuit design. Finally, integrating more-

sophisticated evolutionary operators—e.g. grammar-based mutations or learned crossover

policies—may uncover circuit families that generalise better across tasks. Incorpo-

rating realistic noise models and hardware connectivity should sharpen the Pareto

front even further.

In summary, GTQNNs offer a practical route toward quantum-enhanced ma-

chine learning on near-term devices by tightly coupling classical feature learning

with quantum-native decision making and by explicitly optimising for the hardware

constraints that dominate today’s quantum landscape.
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review: Quantum machine learning and its applications. arXiv:2201.04093,

2022. DOI: 10.48550/arXiv.2201.04093.

[45] D.N. Diep. Some quantum neural networks. International Journal of Theoret-

ical Physics, 59:1179–1190, 2020. DOI: 10.1007/s10773-020-04397-1.

[46] A. Chalumuri, R. Kune, and B. S. Manoj. A hybrid classical-quantum approach

for multi-class classification. Quantum Information Processing, 20:119, 2021.

DOI: 10.1007/s11128-021-03029-9.

22

https://link.springer.com/book/10.1007/978-3-030-83098-4
https://doi.org/10.1038/nature23474
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.48550/arXiv.2201.04093
https://doi.org/10.1007/s10773-020-04397-1
https://doi.org/10.1007/s11128-021-03029-9


[47] B.Q. Chen and X.F. Niu. Quantum Neural Network with Improved Quan-

tum Learning Algorithm. International Journal of Theoretical Physics,

59:1978–1990, 2020. DOI: 10.1007/s10773-020-04470-9.

[48] F. Tacchino, S. Mangini, P.K. Barkoutsos et al. Variational Learning for Quan-

tum Artificial Neural Networks. IEEE Transactions on Quantum Engineering,

2:1–10, 2021. DOI: 10.1109/TQE.2021.3062494.

[49] J. Wang, Y. Chen, R. Chakraborty, and S.X. Yu. Quantum gradient descent

algorithms. arXiv:1911.12207, 2019. DOI: 10.48550/arXiv.1911.12207.

[50] Y. Li, R.G. Zhou, R. Xu, J. Luo, and W. Hu. A quantum deep convolu-

tional neural network for image recognition. Quantum Science and Technology,

5:044003, 2020. DOI: 10.1088/2058-9565/ab9f93.

[51] S. L. Wu et al. Application of quantum ensemble learning to particle-

physics analysis at the LHC. Physical Review Research, 3:033221, 2021.

DOI: 10.1103/PhysRevResearch.3.033221.

[52] K.H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M. S. Kim. Quan-

tum generalisation of feed-forward neural networks. npj Quantum Information,

3:36, 2017. DOI: 10.1038/s41534-017-0032-4.

[53] K. Beer, D. Bondarenko, T. Farrelly et al. Training deep quan-

tum neural networks. Nature Communications, 11:808, 2020.

DOI: 10.1038/s41467-020-14454-2.

[54] I. Cong, S. Choi, and M.D. Lukin. Quantum convolutional neural networks.

Nature Physics, 15:1273–1278, 2019. DOI: 10.1038/s41567-019-0648-8.

[55] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles. Trainability of dissipa-

tive perceptron-based quantum neural networks. Physical Review Letters,

128:180505, 2022. DOI: 10.1103/PhysRevLett.128.180505.

[56] M.G. Zhou, Z. P. Liu, H. L. Yin et al. Quantum Neural Network for Quantum

Neural Computing. Research, 6:0134, 2023. DOI: 10.34133/research.0134.

[57] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79,

2018. DOI: 10.22331/q-2018-08-06-79.

[58] E.A. Cherrat, I. Kerenidis, N. Mathur, J. Landman, M. Strahm, and

Y. Y. Li. Quantum vision transformers. Quantum, 8:1265, 2024.

DOI: 10.22331/q-2024-02-22-1265.

[59] H. Ma, H. Shang, and J. Yang. Quantum embedding method with transformer

neural network quantum states for strongly correlated materials. npj Compu-

tational Materials, 10:220, 2024. DOI: 10.1038/s41524-024-01406-3.

23

https://doi.org/10.1007/s10773-020-04470-9
https://doi.org/10.1109/TQE.2021.3062494
https://doi.org/10.48550/arXiv.1911.12207
https://doi.org/10.1088/2058-9565/ab9f93
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1038/s41534-017-0032-4
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.34133/research.0134
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2024-02-22-1265
https://doi.org/10.1038/s41524-024-01406-3


[60] H. Zhang and Q. Zhao. A survey of quantum transformers: Tech-

nical approaches, challenges and outlooks. arXiv:2504.03192, 2025.

arXiv:2504.03192.

[61] Li, G., Zhao, X. , Wang, X. Quantum self-attention neural net-

works for text classification. Sci. China Inf. Sci. 67, 142501 (2024).

https://doi.org/10.1007/s11432-023-3879-7

[62] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A frame-

work for self-supervised learning of speech representations. In Advances

in Neural Information Processing Systems 33, pages 12449–12460, 2020.

https://arxiv.org/abs/2006.11477

[63] E.B. Alaia, I.H. Dridi, H. Bouchriha and P. Borne, Genetic algorithm with

pareto front selection for multi-criteria optimization of multi-depots and multi-

vehicle pickup and delivery problems with time windows, 2014 15th Interna-

tional Conference on Sciences and Techniques of Automatic Control and Com-

puter Engineering, pp. 488-493, (2014).

24

https://arxiv.org/abs/2504.03192

	Introduction
	Transformer-assisted quantum neural network (TQNN)
	Quantum neural networks
	Transformer-based models
	Transformer-assisted quantum neural network

	Genetic transformer-assisted quantum neural networks (GTQNNs)
	 Multi-Objective Genetic Algorithm
	Fitness function and genetic quantum feature map

	Experimental Results 
	Experimental Procedure
	Iris dataset
	Breast cancer dataset
	MNIST dataset
	Heart Disease dataset

	Fisher spectrum analysis
	The Fisher information
	Experiments of Fisher matrices

	Conclusion and Discussion

