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Abstract—The recent development of feedforward 3D Gaussian
Splatting (3DGS) presents a new paradigm to reconstruct 3D
scenes. Using neural networks trained on large-scale multi-view
datasets, it can directly infer 3DGS representations from sparse
input views. Although the feedforward approach achieves high
reconstruction speed, it still suffers from the substantial storage
cost of 3D Gaussians. Existing 3DGS compression methods
relying on scene-wise optimization are not applicable due to
architectural incompatibilities. To overcome this limitation, we
propose TinySplat, a complete feedforward approach for gener-
ating compact 3D scene representations. Built upon standard
feedforward 3DGS methods, TinySplat integrates a training-
free compression framework that systematically eliminates key
sources of redundancy. Specifically, we introduce View-Projection
Transformation (VPT) to reduce geometric redundancy by pro-
jecting geometric parameters into a more compact space. We
further present Visibility-Aware Basis Reduction (VABR), which
mitigates perceptual redundancy by aligning feature energy along
dominant viewing directions via basis transformation. Lastly,
spatial redundancy is addressed through an off-the-shelf video
codec. Comprehensive experimental results on multiple bench-
mark datasets demonstrate that TinySplat achieves over 100×
compression for 3D Gaussian data generated by feedforward
methods. Compared to the state-of-the-art compression approach,
we achieve comparable quality with only 6% of the storage size.
Meanwhile, our compression framework requires only 25% of
the encoding time and 1% of the decoding time.

Index Terms—3D Gaussian Splatting, Data Compression,
Novel View Synthesis, Feedforward 3DGS.

I. INTRODUCTION

THE 3D Gaussian Splatting (3DGS) has emerged as a
powerful technique for reconstructing 3D scenes from

multi-view images. By explicitly representing a scene as a
collection of anisotropic Gaussian primitives, 3DGS enables
photorealistic rendering and supports real-time free-viewpoint
navigation. The vanilla 3DGS formulation relies on stochastic
gradient descent (SGD) and adaptive density control to jointly
optimize the geometric and appearance attributes of the Gaus-
sian primitives. While this approach achieves impressive visual
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fidelity, its reliance on per-scene optimization and dense input
views significantly limits its scalability and practicality.

Recent feedforward 3DGS utilizes Neural Network (NN)
to directly infer the parameters of 3D Gaussian primitives
from input images, thereby eliminating the need for iterative
optimization. They offer substantial improvements in recon-
struction speed and are capable of handling sparse view inputs,
making them attractive for time-sensitive applications such
as AR/VR and mobile 3D capture. However, the efficiency
comes at the cost of significantly increased data volume.
3DGS requires numerous Gaussian primitives to model a
specific scene, resulting in substantial memory and storage
demands. This expansion poses major challenges for data
transmission and interactive rendering, highlighting the need
for effective compression techniques specialized for the unique
characteristics of 3DGS data.

Prior research has explored optimization-based strategies
for compressing 3DGS models, such as pruning [1]–[5],
clustering [6], motion estimation [7], [8], and probabilistic
modeling [9], [10]. Notably, HAC [9] employs multi-resolution
hash grid priors for compact encoding, while ContextGS [10]
enhances compression efficiency through hierarchical context
modeling. Nevertheless, due to their reliance on iterative
optimization, these methods inherit the same limitations as
vanilla 3DGS and are thus unsuitable for feedforward methods.

To overcome these limitations, FCGS [11] introduced an
optimization-free compression framework applicable to arbi-
trary 3D Gaussian models. By integrating hash grid-based
hyperpriors and context priors through a multi-path entropy
module, FCGS achieves notable compression ratios across
diverse datasets. However, its effectiveness for feedforward-
generated Gaussian models remains limited. First, FCGS does
not fully exploit the inherent spatial redundancy derived from
feedforward geometric generation. Additionally, the uniform
treatment of feature channels hinders effective utilization of
perceptual redundancy present in appearance features. Further-
more, reliance on multiple NN-based prior models introduces
computational overhead unsuitable for real-time or edge-based
scenarios.

In this paper, we propose TinySplat, a fully training-free
approach for generating compact 3D Gaussian scene represen-
tations directly from multi-view images. TinySplat effectively
addresses existing limitations by coupling a feedforward 3DGS
generation stage with a rendering-aware compression stage.
Specifically, in the Gaussian generation stage, we employ
existing feedforward methods, such as DepthSplat [12], to
produce Gaussian feature maps, where each element defines
parameters of individual Gaussian primitives. Subsequently,
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we introduce a novel compression framework designed to
leverage spatial and perceptual redundancies within these
feature maps for efficient storage and transmission.

In the compression framework, we propose View-Projection
Transform (VPT) to address structural redundancy from ge-
ometric generation. By exploiting the pixel-aligned charac-
teristics of feedforward 3DGS, VPT reveals a more regular
spatial layout, significantly enhancing local correlation and
enabling more effective compression. Additionally, we propose
the Visibility-Aware Basis Reduction (VABR) method to han-
dle perceptual redundancy in color attributes. Leveraging the
anisotropic properties of spherical harmonic (SH) functions,
VABR selectively retains perceptually dominant components
while suppressing negligible ones, thereby improving com-
pression efficiency without compromising rendering fidelity.
Lastly, given the resemblance between Gaussian feature maps
and traditional 2D images, we further exploit spatial redun-
dancies using an off-the-shelf video codec.

Our main contributions are summarized as follows:
• We introduce TinySplat, a fully feedforward pipeline con-

sisting of Gaussian generation and a novel compression
stage, enabling compact 3D Gaussian scene representa-
tions without scene-dependent optimization.

• We develop the VPT module, applying a coordinate-space
transformation that exploits characteristics specific to
feedforward geometric inference, thereby reducing struc-
tural redundancy and enhancing reconstruction quality.

• We propose the VABR module, which utilizes the visibil-
ity of SH bases to selectively preserve the most perceptu-
ally informative radiance components under constrained
viewing directions, enabling highly compact color repre-
sentations.

• Extensive experiments demonstrate that TinySplat can
achieve comparable quality to DepthSplat with only 1%
of storage. In comparison to the state-of-the-art (SoTA)
compression method, TinySplat achieves a 90% reduc-
tion in storage and a 75% reduction in encoding time,
simultaneously delivering superior visual fidelity..

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related works on 3DGS
generation and compression. Section III describes the pro-
posed TinySplat in detail. Section IV presents experimental
evaluations and demonstrates the advantages of TinySplat.
Section V outlines limitations and future research directions.
Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Novel View Synthesis via Per-scene Optimization

Novel-view synthesis is a pivotal task in computer vision
and graphics, aiming to generate photorealistic views from
captured multi-view images. Recently, per-scene optimization
methods have achieved remarkable progress by formulating
the 3D representation as learnable parameters optimized using
SGD.

As a seminal work in this field, the Neural Radiance
Field (NeRF) [13] proposed by Mildenhall et al. uses a deep
multi-layer perceptron to learn color and opacity mappings.

Novel view rendering is then performed through the volumet-
ric rendering pipeline. Muller et al. further propose INGP [14],
which models the scene using multi-resolution hash grids.
By querying the explicit 3D structure, INGP can significantly
reduce the computational cost of both training and inference.
Researchers have also explored various explicit data structures
for scene representation, including voxel grids [15], [16],
multiple tensor planes [17], [18], and octrees [19]. Based
on NeRFs, Kerbl et al. propose 3DGS [20], which replaces
volumetric rendering with a hardware-friendly rasterization
technique. 3DGS enables real-time rendering on consumer
devices and has inspired numerous follow-up works targeting
different application domains [21]–[24].

B. Sparse View 3D Reconstruction

Acquiring dozens of input views is usually impractical in
real-world applications. As a result, researchers have investi-
gated methods for 3D reconstruction from sparse input views.
Several approaches [25]–[29] improve the 3DGS optimization
process by introducing specialized regularization, such as
view consistency and depth normalization. Meanwhile, some
methods construct 3D scene representations using principles
from multi-view stereo [30]–[35]. They utilize techniques
like epipolar geometry and cost volume aggregation. Some
methods also leverage Vision Transformer architectures to
effectively fuse features across different views [36]. Further
research also employs structural priors derived from large-
scale diffusion models to maintain consistency between mul-
tiple viewpoints, enhancing the quality of novel view synthe-
sis [37]–[42].

C. feedforward 3D Gaussian Splatting

Vanilla 3DGS [20] requires per-scene optimization, making
it computationally intensive and time-consuming to obtain ex-
plicit scene representations. Recently, numerous feedforward
3DGS methods have been proposed, targeting 3D objects [43]–
[47] or entire scenes [12], [30], [33], [36], [42], [48]–[51]. The
feedforward methods focus on fast reconstruction of 3D scenes
from sparse input views. Specifically, these methods typically
comprise a depth estimation module and a Gaussian attribute
synthesis module.

For single object reconstruction, GPS-Gaussian [46] and
GPS-Gaussian+ [45] focus on 3D Gaussian reconstruction of
the human body. Leveraging strong structural priors of human
anatomy, these methods can generate a high-quality human
body model from only a few input views. Szymanowicz et al.
propose Splatter Image [43], which maps each input pixel to
a 3D Gaussian using a simple yet efficient network, achieving
real-time performance at 38 FPS for forward reconstruction.
GRM [47] further introduces a transformer-based architecture
that effectively fuses multi-view information to achieve better
reconstruction quality.

In contrast, full-scene reconstruction poses greater chal-
lenges than single-object reconstruction due to increased scene
complexity and lack of reliable structural priors. To address
these challenges, Charatan et al. propose PixelSplat [30],
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which leverages deep learning to predict dense probabil-
ity distributions in 3D space and samples Gaussian centers
accordingly to enable fast scene reconstruction. Chen et
al. introduce MVSplat [35], which generates multiple depth
maps per view and computes cross-view confidence scores
to achieve more accurate geometric reconstruction. Zhang
et al. propose the Gaussian Graph Network (GGN) [52] to
improve reconstruction quality with abundant input views. By
constructing a graph structure, GGN enables each Gaussian
primitive to aggregate features from multiple viewpoints,
which significantly reduces the number of Gaussian primitives
and effectively suppresses artifacts. Xu et al. further pro-
pose DepthSplat [12], leveraging pre-trained monocular depth
features to improve both depth prediction and reconstruction
quality, which achieves SoTA performance.

D. 3D Gaussian Splatting compression

The substantial computational cost of generating 3D Gaus-
sian models highlights the need for efficient storage and
transmission, making compression a key challenge in 3DGS
research. Researchers have proposed numerous training-based
methods to compress 3D Gaussian structures and reduce their
storage and transmission costs.

Some works create sparser representations by pruning less
significant Gaussian primitives during training [1]–[5]. Vector
quantization is also widely employed in 3D Gaussian com-
pression [1], [2], [4], [5], [53], where a learnable codebook
is used to quantize high-dimensional feature representations,
achieving efficient compression. Some other methods map 3D
Gaussian primitives onto feature planes [54], [55] to compress
with conventional video codecs. The feature planes require
end-to-end optimization to obtain more compressible represen-
tations. Further research focuses on generating more compact
Gaussian models by meticulously designing 3D representa-
tions. Lu et al. propose Scaffold-GS [6], clustering Gaussian
primitives into anchor points with neural features. More recent
approaches utilize structural priors such as hash grids and
context models to exploit the redundancies among 3DGS
primitives, achieving about 100× compression compared to
the vanilla 3DGS [9], [10], [56].

However, the aforementioned methods require an optimiza-
tion process for each specific scene. They also require dense
multi-view images as input. Both characteristics limit their
applicability. To address this, Chen et al. propose FCGS [11],
a general-purpose feedforward compression framework. By
incorporating multiple priors into the Gaussian mixture mod-
eling, FCGS achieves efficient compression for arbitrary 3D
Gaussian data, even outperforming many scene-specific opti-
mization methods. Nevertheless, the generality of FCGS limits
its ability to exploit the unique characteristics of different types
of 3D Gaussian data, leaving room for further improvement
in compression efficiency.

III. METHOD

A. Preliminary

The widely recognized 3D Gaussian splatting employs a
collection of Gaussian primitives to model 3D scenes. Each

primitive consists of geometric and SH parameters that define
its shape and radiance. Specifically, the geometric properties
of Gaussian primitives are characterized by the Gaussian
probability density function,

G(x) = 1

(2π)
3
2 |Σ| 12

exp(−1

2
(x− µ)TΣ−1(x− µ)), (1)

where µ and x denote the Cartesian coordinates of the
Gaussian center and the sample point, respectively. Σ is the
3D covariance matrix and |Σ| denotes its determinant. In the
vanilla 3DGS, the covariance matrix is further decomposed
into rotation matrix R and scaling matrix S,

Σ = RSSTRT , (2)

where the diagonal scaling matrix S is stored as a vector s ∈
R3 and R is stored as quaternion q ∈ R4 that represents
rotation.

In the rendering process, each Gaussian primitive is pro-
jected into the camera space and integrated to produce a
2D density function, which is combined with the opacity
parameter σ to compute pixel-wise opacity. Meanwhile, the
color value is obtained by querying SH functions with the
view direction.

To reconstruct a specific scene, the vanilla 3DGS ap-
proach first generates an initial set of Gaussian primitives
via structure-from-motion techniques. Subsequently, this initial
model undergoes optimization to match input ground-truth
images, including adaptive densification guided by gradients
to effectively capture fine geometric and textural details.

Despite delivering high-quality reconstructions, this
optimization-based approach suffers from slow processing
speeds. To mitigate this limitation, recent studies propose
eliminating the computationally intensive gradient descent
step by introducing deep NNs enhanced with cross-view
attention mechanisms. These networks trained on extensive
multi-view datasets can directly produce accurate 3D scene
representations through feedforward inference. To facilitate
NN processing, this approach typically generates Gaussian
feature maps of the same resolution as the input images,
where each location stores all geometric and color attributes
of a single Gaussian. Formally, the Gaussian inference process
can be expressed as,

F : {(Iv,Kv,Ev)}Vv=1 ⇒
{∪(σv

i ,µ
v
i , q

v
i , s

v
i ,SH

v
i )}

v=1,...,V
i=1,...,H×W ,

(3)

where I denotes the input image, K, E denote the intrinsic
and extrinsic parameters corresponding to the input image,
respectively. V denotes the number of viewpoints.

B. Proposed Pipeline

The overall pipeline of the proposed approach is illustrated
in Fig. 1. Initially, we employ pre-trained feedforward 3D
Gaussian inference networks [12], [35] to generate a set of
3D Gaussian primitives representing the target scene. For
each input view, the network produces Gaussian primitives
corresponding directly to image pixels, with each primitive
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Fig. 1. The overall framework of TinySplat. We generate Gaussian feature maps from existing Gaussian inference networks in a feedforward manner and
compress them with a meticulously designed compression framework. The symbols αv , rv , sv ,µv ,SHv denote the opacity, rotation, scale, mean position,
and SH maps associated with view v, respectively. These parameters jointly define the geometry and appearance of the Gaussian primitives. In our compression
framework, we first apply the VPT and VABR to reduce cross-channel redundancy. Subsequently, all features are quantized into 14-bit integers, and each feature
plane is independently encoded as a grayscale image using the HEVC codec. On the decoder side, we perform dequantization and apply the inverse transforms
to reconstruct the original Gaussian feature maps. Finally, we merge Gaussian maps from different views to form the complete 3D scene representation and
render novel views.
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Fig. 2. Illustration of the proposed VPT. We project the feedforward-
generated Gaussian primitives from world space into the corresponding input
camera space. We perform compression in camera space, reduce inter-channel
correlation of geometric parameters for better efficiency. During decoding, the
geometry is transformed back into world space to reconstruct the 3D scene.

consisting of geometric and color features as described in
Eq. 3. These features collectively form per-view feature maps.

Compared to the original images, the size of this 3D Gaus-
sian representation increases by more than two orders of mag-
nitude. However, according to information theory principles,
applying deterministic transformations does not inherently
amplify the information content of the source data. There-
fore, the generated 3D Gaussian model contains substantial
redundancy, while existing compression methods for 3DGS
relying on optimization are incompatible with the feedforward
inference pipeline. To address this, we introduce a training-
free compression framework designed to reduce both spatial
and perceptual redundancies, producing a significantly more
compact representation of the 3D scene.

Our compression framework comprises two lightweight yet

highly effective modules, VPT and VABR. These modules
specifically address the challenges posed by the absence
of end-to-end optimization. First, high-dimensional Gaussian
primitives inherently contain extensive redundancies. Second,
without supervision from explicit distortion metrics, quanti-
fying how deviations in parameters affect rendering quality
becomes challenging.

The VPT targets geometric compression based on the fol-
lowing key observations. First, rendering occurs in camera
space, making distortion measurements in this domain more
directly representative of rendering quality impacts. Second,
Gaussian positions derived via back-projection exhibit stronger
spatial correlations in camera space. VPT leverages these prop-
erties by performing a reversible transformation of geometric
features from world space into camera space, facilitating more
efficient compression.

The VABR module addresses perceptual redundancy in
appearance parameters by leveraging the anisotropic properties
of SH functions. By assigning visibility-aware importance
weights to SH coefficients and analyzing SH distributions
across the whole scene, VABR derives perceptually consistent
basis functions. This adaptive approach selectively retains
color features that significantly contribute to dominant viewing
directions, enabling efficient yet visually faithful compression.

Subsequently, we pre-quantize the transformed features into
a 14-bit integer format based on their standard deviations.
These quantized feature maps are then encoded as grayscale
images using an off-the-shelf HEVC codec to further reduce
spatial redundancy. Additionally, metadata required for recon-
struction, including camera parameters for the inverse VPT,
basis vectors for inverse VABR, and other dequantization-
related information, is losslessly encoded and transmitted to
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•对3DGS的质量评价依靠评价新视点的二维图像

•因此我们关注渲染管线以提高编码效率
• 相机空间中的特征参数与渲染结果关系更加密切
• 观测视角影响球谐系数的重要性，给定方向，部分球
谐基函数没有响应

•相机参数是任意的？——新视点范围在实际应用
中是受限的，通常不会太过远离输入视点

Positions Scales

Fig. 3. Statistical distributions of positions and scaling factors before and
after VPT. After applying VPT, most of the positional energy is concentrated
in the depth channel (top row), and the distribution of scaling factors becomes
more compact.

the decoder.
On the decoder side, we first decode the feature maps using

an HEVC decoder, followed by dequantization to recover the
floating-point features. The reconstructed geometric parame-
ters are then transformed back to the original world coordinate
system through inverse VPT. Concurrently, the color feature
coefficients are restored to their original SH representation
using the received basis vectors. Finally, by integrating these
decoded attributes, we reconstruct the complete 3D Gaussian
representation, enabling the rendering of novel views using a
standard 3DGS renderer.

C. View-projection Transform

The Gaussian models generated by the inference network
typically exhibit pixel-wise alignment with the input views,
distinguishing them from conventional 3D Gaussian repre-
sentations. This characteristic introduces a highly structured
spatial arrangement into the generated models. Specifically,
each Gaussian center is computed by back-projection, resulting
in an ordered distribution of 3D positions. Moreover, the
projected areas of these Gaussian ellipsoids remain relatively
uniform across the input view, causing the scale parameters
to correlate strongly with their distances to the camera. This
reflects a systematic depth-dependent scaling pattern.

Based on the above analysis, we propose to apply the VPT
to the geometry parameters of Gaussian primitives, condi-
tioned upon input camera parameters. A conceptual illustration
of the VPT is shown in Fig. 2, where we transform the
Gaussian geometric parameters into the corresponding camera

space. Specifically, we first apply the view transformation to
the position of Gaussian centers,

zvi,j(x
v
i,j , y

v
i,j , 1)

T = Kv · (Rv · µv
i,j + T v), (4)

where Kv denotes the intrinsic matrix of the input view
v, while Rv and T v are the rotation matrix and translation
vector derived from the extrinsic parameters. The vector µv

i,j

represents the Gaussian center in world coordinates. zvi,j , xv
i,j ,

and yvi,j represent the transformed position. In particular, zvi,j
corresponds to the depth map, while xv

i,j and yvi,j represent
normalized 2D coordinates in the image plane. Given the
pixel-aligned nature of feedforward-generated Gaussians, co-
ordinates (xv

i,j , y
v
i,j) closely cluster around their corresponding

pixel centers ( i
H , j

W ), with H and W being the height and
width of the input images, respectively. Using this regularity,
we encode only the offsets relative to pixel centers to enhance
compression efficiency.

After transforming center positions into camera space, we
approximate transformations for the Gaussian shape parame-
ters. Since ellipsoids do not maintain exact geometric forms
under perspective projection, we perform the following ap-
proximations,

q̂v
i,j = Quat(Rv) · qv

i,j , (5)

ŝvi,j = f
svi,j
zvi,j

, (6)

where q̂v
i,j and qv

i,j denotes the rotation quaternions before
and after the transformation, respectively, and ŝvi,j and svi,j
denote the corresponding scaling factors. Quat(Rv) denotes
the quaternion form of Rv , f represents the focal length.
The transformation of the rotation and scale parameters can
be interpreted as rotating the Gaussian ellipsoids into the
camera coordinate system, followed by a perspective scaling
toward the focal plane. Since all of these transformations are
invertible, the approximations involved do not compromise
rendering performance.

To illustrate the effectiveness of VPT, we analyze the distri-
bution of Gaussian geometric parameters before and after the
transformation, as depicted in Fig. 3. Compared to the initial
distribution, the transformed Gaussian geometric parameters
exhibit enhanced regularity and spatial coherence.

D. Visibility-aware Basis Reduction

3DGS employs SH feature coefficients to model the
anisotropic radiance distribution of each Gaussian ellipsoid.
Although SH functions can effectively model the radiance
with strong physical interpretability, from a compression per-
spective, the representation is notably redundant. Representing
RGB colors using SH functions of order Nl requires a total
of 3 · (Nl + 1)2 coefficients, leading to substantial storage
overhead. However, Many SH basis functions correspond to
spherical regions rarely or never observed from the available
viewpoints, thus minimally contributing to rendering quality.

The redundancy is particularly pronounced in sparse view
reconstruction tasks, where the range of novel views is limited
due to the lack of visual information from distant viewpoints.
As illustrated in Fig. 4, the response of SH functions varies
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Fig. 4. The variation of SH basis function values with respect to viewing
direction. At a specific direction, a larger absolute value indicates that the
corresponding SH coefficient has a greater influence on the final rendering
result. Y m

l in the figure denotes the SH basis function of degree l, where m
ranges from −l to l, representing 2l + 1 distinct spatial orientations.

significantly across viewing angles. Therefore, treating all SH
coefficients equally without considering their visibility may
reduce the compression efficiency.

To address this issue, we introduce the VABR, which
linearly adapts standard SH bases into a compact, visibility-
aware basis set. We first compute the visibility-based weights
to capture the directional importance of each SH component.
Each weight factor λm

l is defined as the average absolute value
of the corresponding SH basis function Y m

l over a region of
valid directions,

λm
l = ED|Y m

l (ω)| = 1

|D|

∫
ω∈D

|Y m
l (ω)|dω, (7)

where l and m represent the order and orientation factors of
the SH function. D denotes the area of valid directions. In
practice, it is challenging to rigorously define the area D, so
we approximate it via Monte Carlo integration,

λm
l =

1

Ns

Ns∑
i=1

|Y m
l (ωi)|, (8)

where Ns is the number of sample directions. To obtain
representative viewing directions, we cast camera rays through
a 3×3 grid uniformly covering the entire image plane for each
input view and aggregate them.

Subsequently, these weights inform the construction of a
compact set of new spherical basis functions, which also reflect

the statistical distribution of SH coefficients within the scene.
In particular, to ensure balanced perceptual contributions, we
scale the original SH bases by their visibility-aware weights
and linearly combine them into new optimized bases, resulting
in the following transformation,

Ŷ (ω) = W T ·∆−1 · Y (ω), (9)

where Y (ω) and Ŷ (ω) denote the original SH basis func-
tions and the transformed basis functions, respectively. The
weight matrix ∆ denotes the diagonal matrix consisting of
(λ0

0, ..., λ
m
l , ...). W ∈ Rd×k represents the transform matrix

to be solved, which contains a set of d-dimensional unit
orthogonal vectors, with k representing the dimensionality of
the transformed function space. Subsequently, the forward and
inverse transformations of the color coefficients are as follows,

Z = W T ·∆ ·X, X̂ = ∆−1 ·W ·Z, (10)

where X, X̂ ∈ Rd×M ,Z ∈ Rk×M represent the input,
reconstructed, and transformed data matrices, respectively.
Here, M refers to the total number of Gaussian ellipsoids in
the current scene.

To determine the transformation matrix W that can op-
timally preserve the perceptual information from higher-
dimensional SH coefficients, we perform a statistical analysis
on all SH coefficients in the current scene. Motivated by the
formulation of principal component analysis, we compute the
covariance matrix of ∆ ·X and extract its principal compo-
nents via eigen decomposition. In particular, the eigenvectors
corresponding to the k largest eigenvalues are selected as the
principal basis to form the transform matrix W .

IV. EXPERIMENTAL RESULTS

Datasets. We conduct comprehensive experiments on sev-
eral widely used benchmark datasets in the field. Among
them, RealEstate10K [57] and ACID [58] represent two large-
scale multi-view 3D scene datasets that have been extensively
adopted in related research. RealEstate10K dataset primarily
comprises indoor scene multi-view images collected from
online sources, containing 7,289 test scenes. The ACID dataset
consists of numerous outdoor scenes captured by aerial drones,
with 1,972 scenes for testing. In addition, we evaluate our
method on a subset of the DL3DV dataset, containing 140
test scenes. Our test condition strictly adheres to the common
configurations adopted in previous studies [12], [30], [35].

Baseline. In the Gaussian generation stage, we adopt rep-
resentative feedforward inference models, including MVS-
plat [35] and DepthSplat [12], to generate 3D Gaussian
feature maps. To demonstrate the generality and efficiency
of the proposed pipeline, we compare our method with the
optimization-free compression approach FCGS [11] in terms
of compression efficiency.

Implementation details. In our experiments, the reserved
color feature dimension k for VABR is fixed at 6. For 14-
bit quantization, the quantization step for each channel is
configured as σ/α, where σ represents the standard deviation
of the current channel and α is an empirically chosen scaling
factor, as detailed in Table II. We initially set α to 256 for each
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TABLE I
QUANTITATIVE COMPARISON WITH 2 INPUT VIEWS. TINYSPLAT IS COMPARED WITH UNCOMPRESSED MODELS AND FCGS ON 3D GAUSSIANS

GENERATED BY DIFFERENT FEEDFORWARD METHODS. “RAW” INDICATES THE UNCOMPRESSED BASELINE.

Inference Compression
Re10k ACID

PSNR(dB)↑ SSIM↑ LPIPS↓ Size(MB)↓ PSNR(dB)↑ SSIM↑ LPIPS↓ Size(MB)↓

MVSplat
Raw 26.36 0.8679 0.1291 43 28.21 0.8419 0.1448 43

FCGS 25.90 0.8586 0.1533 2.650 27.61 0.8298 0.1800 2.596
(CVPR 2024) Ours 26.32 0.8671 0.1349 0.216 28.13 0.8401 0.1528 0.229

DepthSplat
Raw 27.50 0.8900 0.1125 19 28.37 0.8481 0.1417 19

FCGS 27.35 0.8863 0.1201 2.674 28.27 0.8454 0.1466 2.666
(CVPR 2025) Ours 27.43 0.8886 0.1192 0.166 28.29 0.8470 0.1501 0.181

TABLE II
α AND Qc CONFIGURATIONS FOR ALL DATA CHANNELS.

depth offset xy scale rotation color opacity

Ndim 1 2 3 4 6 1

α 2048 256 256 256 1024 256

Qc -4 12 0 9 3 0

channel, and selectively increase it for a few error-sensitive
channels to improve reconstruction quality. Due to the varied
distributions across different color basis components, we adopt
a shared quantization step for all color channels to ensure con-
sistent quantization. Here, σ represents the standard deviation
of the most dominant component. After quantization, an offset
is applied so that the minimum quantized value becomes 0.
Extreme outliers in each channel are truncated to ensure that
the maximum quantized values do not exceed the valid 14-bit
range.

In the video coding module, each channel is treated as an
independent grayscale image and encoded using the HEVC
reference software HTM15.0-RExt8.1, with all channels en-
coded in parallel via separate processes. To achieve different
compression rates, we adjust a global Quantization Param-
eter (QP), denoted as Qg . Then, a set of per-channel QP
offsets Qc is experimentally configured, as summarized in
Table II. Subsequently, the QP values for the HEVC codec
are configured as Qc +Qg . All experiments are conducted on
a workstation equipped with an Intel Core i7-13700K CPU
and a single NVIDIA RTX 4090 graphics card, running in a
WSL2.0 environment with Ubuntu 20.04.

The overall syntax elements include Gaussian geometric
parameters (position, scale, and rotation), color feature coef-
ficients, and opacity. In addition, a small amount of metadata
is explicitly signaled to the decoder, including camera param-
eters, the basis vectors used for dimensionality reduction, as
well as per-channel quantization steps and offset values.

A. Objective Results

Overall Compression Performance. We first generate the
3D Gaussian models using the official implementations and

TABLE III
COMPRESSION PERFORMANCE UNDER DIFFERENT NUMBERS OF INPUT

VIEWS. “RAW” INDICATES THE UNCOMPRESSED BASELINE GENERATED
VIA DEPTHSPLAT.

Method Views PSNR (dB)↑ SSIM↑ LPIPS↓ Size (MB)↓

Raw
2

19.62 0.6265 0.2986 33
FCGS 19.26 0.6183 0.3061 4.518
Ours 19.52 0.6196 0.3147 0.615

Raw
4

23.16 0.7792 0.1745 66
FCGS 22.23 0.7619 0.1897 9.054
Ours 22.99 0.7694 0.1923 1.275

Raw
6

24.16 0.8191 0.1456 100
FCGS 22.74 0.7943 0.1672 13.561
Ours 23.95 0.8085 0.1633 1.892

pre-trained weights MVSplat1 (SHA: 1f5e5486) and Depth-
Splat2 (SHA: 175b17a6). Then we compress the generated
models using our compression framework to evaluate its
effectiveness.

We evaluate the rendering PSNR, SSIM, LPIPS, and com-
pressed model size on two standard datasets with 2 input views
and 3 target views, as summarized in Table I. We employ
a near-lossless compression configuration in our TinySplat,
where Qg is set to 0. For the SoTA method FCGS, we
faithfully reproduce its performance using the official imple-
mentation3 to ensure a fair comparison. The results show
that TinySplat achieves over 100× compression on the 3D
Gaussian data produced by the baseline, with negligible loss in
rendering quality. Compared to the SoTA training-free method,
our approach still achieves a 15× higher compression ratio,
while providing comparable rendering quality. The render-
ing quality suffers a noticeable drop when using the FCGS
pipeline to compress Gaussian models from MVSplat. This
performance degradation could be attributed to the distinctive
distribution of 3D Gaussian data generated by MVSplat, as
illustrated in the FCGS paper [11]. We highlight that we
evaluate the performance on the complete datasets following
the general configuration and report the average results to
ensure a comprehensive and reliable comparison.

1https://github.com/donydchen/mvsplat
2https://github.com/cvg/depthsplat
3https://github.com/YihangChen-ee/FCGS
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better
better better

Fig. 5. Rate-distortion performance on the Re10K dataset, where distortion is measured in terms of novel view synthesis quality. ”Raw” denotes the
uncompressed 3D Gaussian model from DepthSplat. Compared to the SoTA method, our method achieves comparable quality (PSNR, SSIM, and LPIPS)
with only 6% of the storage size.

TABLE IV
RUNTIME ANALYSIS. OUR TINYSPLAT IS DECOMPOSED INTO KEY

COMPONENTS.

Method
Encoding Time (s) Decoding

VPT VABR HEVC Total Time (s)

FCGS - - - 4.074 4.095
TinySplat 0.003 0.004 0.971 1.016 0.042

Beyond the two-view testing configuration, we also evaluate
the compression performance under varying numbers of input
views on the DL3DV dataset, as shown in Table III. We follow
the testing configuration in DepthSplat [12] and reproduce
the reported performance. The results demonstrate that our
TinySplat generalizes well, as no significant degradation in
compression quality is observed with more input views.

Rate-Distortion Performance. To evaluate the impact of
compression distortion on the rendering quality of 3D Gaus-
sian models, we compare the rate-distortion performance of
our proposed method against FCGS, as shown in Fig. 5. To
reduce the evaluation cost, we only conduct experiments on
the first 200 test scenes from the Re10K and ACID datasets.
The results show that our method achieves comparable or
even better PSNR, SSIM, and LPIPS performance compared
to FCGS with only 6% of its storage space.

Runing time Analysis. To assess the computational cost of
our TinySplat, we measure the average encoding and decoding
times, as reported in Table IV. TinySplat encodes a scene
in approximately 1 second and supports real-time decoding.
In contrast, the SoTA approach, which heavily relies on
NN–based probabilistic models, requires about 4× more time
for encoding and over 100× more for decoding.

The primary computational overhead in our pipeline arises
from the HEVC video encoder. However, we note that the
HEVC codec in our implementation is the reference software,
which prioritizes coding efficiency and correctness over run-
ning speed. In practice, significantly faster encoding and de-
coding can be achieved through engineering optimizations [59]
or dedicated hardware implementations [60], [61].

Bit Allocation. To better understand the bit allocation char-

TABLE V
BIT ALLOCATION UNDER DIFFERENT COMPRESSION RATIOS.

Qg Size (KB) position scale rotation color opacity

0 164.63 21.4% 17.5% 13.0% 34.6% 13.5%
3 122.29 21.0% 18.0% 11.5% 35.7% 13.7%
6 89.91 20.5% 18.8% 10.2% 36.7% 13.8%

12 47.90 20.0% 20.1% 8.4% 39.0% 12.6%

acteristics of our framework and guide future optimizations,
we encode 200 scenes under various QP settings and analyze
the average storage distribution across different components,
as summarized in Table V. The results show that the relative
bit allocation remains largely consistent across compression
ratios, with color parameters consistently occupying the largest
share of the bitrate.

B. Subjective Results

We adopt DepthSplat as the representative Gaussian infer-
ence method and compare subjective compression artifacts
using FCGS and our proposed framework, as shown in Fig. 6.
In particular, we adopt the highest compression ratio setting
offered by FCGS, which still results in a storage size several
times larger than that of TinySplat. The rendering results
show that FCGS easily introduces prominent watermark-
like artifacts, whereas TinySplat maintains visually negligible
degradation, even at higher compression ratios.

We also evaluate the subjective performance under 6 input
views, as illustrated in Fig. 8. The results demonstrate that
increasing the number of input views does not noticeably
degrade the perceptual quality of our method, highlighting its
strong generalization capability. In contrast, FCGS produces
severe artifacts even at relatively low compression rates.

C. Ablation Studies

Component-wise ablation analysis. We conduct an abla-
tion study by separately disabling the proposed techniques to
assess their impact on the compression performance, as shown
in Fig. 7. We utilize 200 scenes from the Re10k dataset for
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Depthsplat Depthsplat+FCGSGT Depthsplat+Ours Depthsplat Depthsplat+FCGSGT Depthsplat+Ours

Fig. 6. Subjective results on Re10k dataset. We compress the 3D Gaussian models from DepthSplat with both FCGS and the proposed TinySplat. FCGS
exhibits severe watermark-like artifacts at 11× compression ratio. In contrast, our method achieves up to 100× compression while maintaining visually
indistinguishable rendering quality from the uncompressed reference.
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Fig. 7. Component-wise ablation analysis. We separately disable the VPT
module and the VABR module to test their impact on coding efficiency. The
PSNR is measured between the rendered novel view and the ground truth.

testing. Results demonstrate that VPT can effectively reduce
the loss of geometric information under the same bitrate,
thereby improving rendering quality. Meanwhile, VABR en-
hances compression efficiency by concentrating the energy
of SH coefficients, enabling significantly higher compression
ratios.

Ablation on VABR. We conducted an experimental analysis
to investigate the impact of the retained feature dimensions

on compression efficiency. Starting from the most dominant
component, we progressively added additional components to
evaluate how encoding performance evolves. In addition, we
computed the storage cost associated with each individual
dimension. As shown in Fig. 9, the results indicate that after
applying the VABR, the first feature dimension concentrates
the majority of the information, accounting for the largest
portion of the total bitrate. The information content in subse-
quent dimensions decreases gradually. The overall rendering
performance remains nearly unchanged as the feature dimen-
sionality exceeds 6. These results validate the effectiveness
of our VABR, which concentrates most of the meaningful
information in the first few dimensions.

V. LIMITATIONS

In this work, we do not modify existing 3D Gaussian
inference networks; instead, we focus on developing a general
compression framework applicable to the Gaussian data they
generated. While our method effectively produces compact 3D
Gaussian representations, there remains a notable gap between
our achieved compression ratios and theoretical limits. Since
3D Gaussians are derived entirely from a few input images, in-
formation theory suggests that their entropy should not surpass
that of the inputs. However, even after compression, the size
of the 3D Gaussian models still exceeds that of the original
images compressed with conventional codecs. We attribute this
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Fig. 8. Subjective results under 6 input views on DL3DV dataset. Our TinySplat achieves superior objective and perceptual quality using only 15% of the
storage compared to the SoTA compression method. FCGS exhibits noticeable compression artifacts even at relatively high bitrates.

discrepancy primarily to the inference process itself, where
complex NN models introduce significant prior knowledge
into the generated 3D Gaussian representations. Developing
lightweight methods to explicitly extract and leverage these
priors presents a promising direction for future research. In
addition, redesigning or fine-tuning inference networks to gen-
erate inherently more compressible representations represents
another important avenue for exploration.

VI. CONCLUSION

In this paper, we presented TinySplat, a fully feedforward
approach for generating compact 3D Gaussian scene repre-
sentations directly from multi-view images without per-scene
optimization. Bridging the gap between fast 3D Gaussian
generation and practical deployment, TinySplat integrates a
feedforward inference stage with a novel rendering-aware
compression stage. For the compression stage, we proposed
a dedicated framework with VPT and VABR modules to
reduce structural and perceptual redundancy, respectively. Fur-
thermore, we employed a standard video codec to eliminate
spatial redundancy. Extensive experiments demonstrated that
TinySplat significantly reduces storage requirements while
maintaining high rendering quality.

These findings offer an intuitive understanding of the redun-
dancy characteristics in feedforward-generated 3D Gaussian
data, providing practical guidance for future exploration and
system design. We believe TinySplat paves the way for scal-
able and deployable 3D scene representation, and sets a solid
foundation for future research in real-time neural graphics
systems.

2 4 6 8
Dimensions

20

21

22

23

24

25

26

27

28

PS
N

R
 (d

B
)

PSNR
Bits

0

5

10

15

20

25

30

35

B
its

 (K
B

)
Fig. 9. Ablation study of the VABR. We present the variation of rendering
PSNR with feature dimensionality increasing, along with the storage cost
of each individual feature channel. The results show that our method more
effectively concentrates energy into the leading dimensions, enabling a more
compact and efficient feature representation.
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