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Abstract

The ability to model relational information using machine learning has driven ad-
vancements across various domains, from medicine to social science. While graph
representation learning has become mainstream over the past decade, representing
higher-order relationships through hypergraphs is rapidly gaining momentum. In
the last few years, numerous hypergraph neural networks have emerged, most of
them falling under a two-stage, set-based framework. The messages are sent from
nodes to edges and then from edges to nodes. However, most of the advancement
still takes inspiration from the graph counterpart, often simplifying the aggrega-
tions to basic pooling operations. In this paper we are introducing Wasserstein
Hypergraph Neural Network, a model that treats the nodes and hyperedge neigh-
bourhood as distributions and aggregate the information using Sliced Wasserstein
Pooling. Unlike conventional aggregators such as mean or sum, which only capture
first-order statistics, our approach has the ability to preserve geometric properties
like the shape and spread of distributions. This enables the learned embeddings
to reflect how easily one hyperedge distribution can be transformed into another,
following principles of optimal transport. Experimental results demonstrate that
applying Wasserstein pooling in a hypergraph setting significantly benefits node
classification tasks, achieving top performance on several real-world datasets.

1 Introduction

The potential to learn from relational data has substantially broadened the applicability of machine
learning, extending its reach to a wide range of fields from medicine [1, 2] , to physics [3, 4], social
science [5] and chemistry [6, 7]. The flexibility of graph structures makes them well-suited for
representing complex natural phenomena involving various types of interactions. As a result, graphs
quickly became synonymous with modelling interactions. However, while graphs are restricted to
model pairwise connections, many real-world interactions involve more than two entities. To fill this
gap, a generalisation of graphs called hypergraphs were introduced, allowing for the representation
of higher-order relationships among multiple elements.

More precisely, a hypergraph is characterized by a set of edges, where each edge connects a set of
nodes, potentially of varying cardinality. The challenge of designing hypergraph neural networks
becomes the challenge of properly modelling these sets. Many approaches [8, 9, 10] tackle this using
a two-step process: first, the model aggregates information from the nodes within each hyperedge
to compute a representation for that hyperedge. Then, in the second step, it updates each node’s
representation using information from the hyperedges it belongs to. Both steps rely on methods
designed to handle sets of elements.

Although set representation learning has seen significant progress in recent years [11], hypergraph
networks still largely rely on sum-based aggregation methods such as Deep Sets [12] and Set Trans-
formers [13]. Despite their strong theoretical foundation, these methods can struggle to effectively
capture the full geometry of set-structured inputs [14].
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In this work we are introducing Wasserstein Hypergraph Neural Networks (WHNN), a class of
hypergraph models that uses Sliced Wasserstein Pooling (SWP) [14] as a node and hyperedge
aggregator. This pooling is based on the Wasserstein distance - an optimal transport metric which
measures the distance between two distributions based on the cost of transporting mass from one
to another. SWP treats the set elements as samples from an underlying distribution and generates a
vector representation that captures geometric relationships between inputs, such as shape, spread, and
density. This information is often lost when aggregating using summation.

We argue that this geometric information is highly relevant for hypergraph learning. Our experimental
results support this claim, showing that WHNN not only outperforms traditional set-based aggregation
methods used in previous hypergraph models, but also achieves superior performance compared to
several strong hypergraph methods across a range of real-world datasets.

Our main contributions are summarised as follow:

1. We propose a novel hypergraph architecture, the Wasserstein Hypergraph Neural Net-
work (WHNN), which leverages Sliced Wasserstein Pooling for both node and hyperedge
aggregation to more effectively capture the geometric structure of the feature space.

2. We empirically show that Wasserstein aggregation is highly effective for hypergraph rep-
resentation, consistently outperforming traditional sum-based methods such as Deep
Sets [12] and Set Transformers [13], regardless of the encoder used to process the nodes.

3. Wasserstein Hypergraph Neural Network achieves top results on multiple real-world datasets,
highlighting the advantages of incorporating optimal transport into hypergraph processing.

The paper is structured as follows: Sections 2 and 3 describe similar efforts and introduce background
concepts. Sections 4 introduces the architectures and innovative aspects of the methodology. Then,
Section 5 contains and discusses experiments supporting the claimed contributions.

2 Related Work

Hypergraph representation learning. Hypergraphs represent a versatile structure for modeling
group-wise interactions, which allows us to capture interactions between various number of elements.
This flexibility, combined with the widespread presence of higher-order interactions in real-world
scenarios, has led to a growing interest in developing machine learning architectures for modeling
hypergraph data. Some methods [15, 16] reduce the hypergraph to a clique-expansion graph that
can be further processed with standard graph neural networks. A more popular approach is based
on a two-stage framework [8, 10], which sends the information from node to hyperedges and then
from hyperedges back to nodes. Depending on how these stages are instantiated, several architectures
emerged. HCHA and HERALD [17, 18] use an attention mechanism to combine the information,
AllDeepSets [8] uses Deep Set model, while AllSetTransformer [8] is using a PMA-like [13] pooling.

In all of these methods the information sent from the node is independent of the target hyperedge.
Recently, models that create edge-dependent node representation have gained traction. ED-HNN [9]
uses as messages a concatenation of node and hyperedge information, while MultiSetMixer [19] uses
MLP-Mixer [20] to combine the information. Similar to our node encoder, CoNHD[21] incorporates
pairwise propagation at the hyperedge-level using self-attention blocks (SAB [13]) to create edge-
dependent representations. However, similar to [22], the model is only tested on hyperedge-dependent
node classification tasks, where each node is assigned multiple labels corresponding to the number of
hyperedges it participates in. A complementary line of work [23] is representing uniform hypergraphs
as high-dimensional tensors and applies tensorial operators to propagate the information.

In contrast, we are interpreting the hyperedges as samples from a set of probability distributions,
and uses Sliced Wasserstein Pooling to aggregate the information such that we preserve geometric
information. In terms of node encoders, we are experimenting with both edge-dependent and
edge-independent modules.

Set representation learning. The core operation in set representation learning is the permutation-
invariant operator that aggregate the information without imposing an order among elements. Popular
examples of such operator include summation, mean or maximum. More recently, learnable version of
permutation-invariant poolings were introduced. Among these, Deep Sets [12] is using element-wise
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Table 1: The update rules used as aggregation steps in various hypergraph neural networks from the
literature. As shown by the equations, all of them relies either on (weighted) summation or mean to
combine the information. While theoretically powerful, summing can easily destroy all the geometric
relationships between points. Nv(i) is the neighbourhood of node vi of cardinality di, Ne(j) is the
neighbourhood of edge ej of cardinality dj and ϵ, W∗, W̃∗ are learnable parameters.

Model Hyperedge aggregation Node aggregation

HGNN he ←
∑

i∈Ne(e)
1√
di
xiW xi ← 1√

di

∑
e∈Nv(i)

1
de
he

HCHA1 he ←
∑

i∈Ne(e)
αe,ixiW xi ←

∑
e∈Nv(i)

α̃i,eheW̃

UniGIN he ←
∑

i∈Ne(e)
xi xi ←

∑
e∈Nv(i)

heW + (1 + ϵ)xiW

ED-HNN he ←
∑

i∈Ne(e)
MLP(xu) xi ←

∑
e∈Nv(i)

MLP(xi∥he)

AllDeepSets he ← MLP(
∑

i∈Ne(e)
MLP(xu)) xi ← MLP(

∑
e∈Nv(i)

MLP(he))

AllSetTransformer2 he ← σ(
∑

i∈Ne(e)
(αixiWv) xi ← σ(

∑
e∈Nv(i)

(α̃eheW̃v)

encoding of the elements followed by summation and is proved to be universal approximator for
permutation-invariant functions. Janossy Pooling [24] extends this model by explicitly aggregating
pairs of elements. On the other hand, Set Transformer [13] and [25] uses an anchor set as a reference
and compute the similarity against this set as a representation, while FSPool [26] sorts the elements
feature-wise to create a canonical order. Recently, [27] shows empirically that combining an
equivariant backbone with an invariant pooling layer creates powerful set representation learning.
Inspired by optimal transport literature, Sliced Wasserstein Pooling was introduced in [14] as a
geometrically-interpretable set representation technique.

Wasserstein embeddings. In recent years, Wasserstein distance has attracted significant attention in
deep learning, demonstrating success in areas such as generative modeling [28, 29], natural language
processing [30] and point cloud processing [31]. In graph representation learning, Wasserstein
distance was used to define a similarity kernel between pair of graphs [32]. While recognised as
a powerful tool, computing this distance for each pair of compared graphs is extremely inefficient.
More recent works [33, 34, 35] try to reduce this cost by introducing Wasserstein embeddings. The
purpose of a Wasserstein embedding is to infer a vector representation such that the L2 distance in
the vector space approximates the Wasserstein distance in the input space. Particularly important for
us is the work of [14] which produces set representations using efficient Wasserstein embeddings.

To more effectively capture the internal structure of node and hyperedge neighborhoods, we employ
Sliced Wasserstein Pooling as the aggregation operator in hypergraph message passing, demonstrating
its advantages for hypergraph representation learning.

3 Background

3.1 Hypergraph Representation Learning

A hypergraph is a tuple H = (V,E) where V = {v1, v2 . . . vN} is a set of nodes, and E =
{e1, e2 . . . eM} is a set of hyperedges. Different than the graph structure, where each edge contains
exactly two nodes, in a hypergraph each hyperedge contains a set of nodes which can vary in
cardinality. Each node vi is characterize by a feature vector xi ∈ Rd. We denote by neighbourhood
of hyperedge ei the set of nodes that are part of that hyperedge {vj |vj ∈ ei}. Similarly, the
neighbourhood of a node vi is the set of all hyperedges containing that node Nvi = {ej |vi ∈ ej}.
Several architectures were developed for hypergraph-structured input [15, 9, 36, 8]. However, the
most general pipeline follow a two-stage framework, inspired by the bipartite representation of the
hypergraphs. First, the information is sent from nodes to the hyperedges using a permutation-invariant
operator zj = fV→E({xi|vi ∈ ej}). Secondly, the messages are sent back from hyperedge to nodes
x̃i = fE→V ({zj |vi ∈ ej}).
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While aggregators like Deep Sets [12] were theoretically capable of approximating any permutation-
invariant function on sets, it relies on the initial encoder (such as MLPs) to reshape the feature space
in a way in which the sum pooling is not losing important information. In other words, it moves the
complexity of the representation from the pooling to the initial encoding. This is in line with the
empirical results shown in [27] where, in order to preserve good performance, mean pooling requires
more complex encoders compared to more sophisticated pooling methods.

In this work we are following the standard two-stage framework. Compared to existing methods, we
take advantage of the success demonstrated by Sliced Wasserstein Pooling in capturing and retaining
the geometric structure of sets and proposed the first hypergraph model that uses optimal transport
techniques to perform the node and hyperedge aggregation.

3.2 Sliced Wasserstein Pooling (SWP)

To ensure the method’s readability, this section introduces all the key concepts underlying our
Wasserstein Hypergraph Neural Network. First, we will define the 2-Wasserstein metric, approximate
it using the tractable Sliced-Wasserstein distance and finally present the algorithm to compute the
SWP used as an aggregator in our model.

Definition 1. The 2-Wasserstein distance between two distributions pi and pj over Rd is defined as:

W2(pi, pj) =
(

inf
γ∈Γ(pi,pj)

∫
Rn×Rn

||x− y||2dγ(x, y)
) 1

2

, (1)

where Γ(pi, pj) represent the collection of all the transport plans with marginals pi and pj .

In simpler terms, the 2-Wasserstein distance quantifies the cost of transforming one distribution into
another.

Unfortunately, computing the infimum over all possible transport maps is generally untractable.
However, in the one dimensional case (when d = 1) ), a closed-form solution exists that avoids
expensive optimization. Specifically, when pi and pj are probability distributions over R, the 2-

Wasserstein distance is given byW2(pi, pj) =
( ∫ 1

0
|F−1

pi
(t)− F−1

pj
(t)|2dt

) 1
2

, where F−1
pi

and F−1
pj

denote the inverse cumulative distribution functions of pi and pj . A key practical benefit of this
formulation is that this inner integral can be empirically estimated using a discrete sum over sorted
samples from the distribution.

Building on this observation, Sliced Wasserstein distance [37] was introduce to approximate the
Wasserstein distance, by projecting the high-dimensional probabilities into 1D lines using all possible
directions on the unit sphere.

Definition 2. The Sliced Wasserstein distance between two distributions pi and pj over Rd is
defined as:

SW2(pi, pj) =
(∫

Sd−1

W2(Pθpi, Pθpj)dθ
) 1

2 ≈
( 1

L

L∑
l=1

W2(Pθlpi, Pθlpj)︸ ︷︷ ︸
1D Wasserstein distance

) 1
2

, (2)

where Sd−1 is the unit sphere in Rd, Pθpi represent the projection (pushforward) of pi onto the
line direction θ and {θl}Ll=1 represents the set of L directions used to empirically approximate the
expectation.

To avoid the computational cost of calculating distances between every pair of probability distributions,
the Sliced Wasserstein embedding [14] was introduced. It maps a probability distributions pi to a
vector ϕ(pi) in such a way that the Euclidean distance between the vectors (which is inexpensive to
compute) approximates the Sliced Wasserstein distance between the original distributions ||ϕ(pi)−
ϕ(pj)||2 ≈ SW2(pi, pj). In other words, it provides a vectorial representation that captures the
geometric structure of distributions, preserving information about how costly it is to transform one

1The coefficients αe,i used in summations are scalars predicted as MLP (xi||he)
2The function σ is a combination of residual connections and layer normalisations, while αi =

(θWq)(xiWk)
T with θ, Wq and Wk as learnable parameters.

4



Figure 1: (A) One stage (node-to-hyperedge) of Wasserstein Hypergraph Neural Network
pipeline designed to be more sensitive to the geometric structure of the hyperedge compared to
the traditional aggregators. First, a node encoder processes the nodes using a simple MLP or
an edge-dependent self-attention block (SAB). The hypergraphs is than viewed as a collection of
probability distributions {pi}, one for each hyperedge, with the observed nodes treated as samples
drawn from it. An additional distribution q is picked as a reference. Finally the Sliced Wasserstein
Pooling is adopted as an aggregation method: each hyperedge is represented by its Sliced Wasserstein
distance to a reference distribution. (B) Compared to the standard mean pooling which only capture
the difference between the mean of the distributions (visualised as a cross), the euclidean distance
between the obtained hyperedges quantify the cost of transforming one group into another.

distribution into another. This geometric encoding reflects characteristics such as shape, spread, and
density. This proves useful in our context, as it allows us to quantify the cost of transforming one
hyperedge into another — a measure we argue effectively captures the similarity between group
interactions (hyperedges).

Since our nodes and hyperedges are sets rather than distributions, we use a variant of this embedding
called Sliced Wasserstein Pooling [14], which is designed not as an embedding of probability
distributions themselves, but rather as an embedding of sets sampled from those distributions. In
short, Sliced Wasserstein Pooling encodes a set of points by measuring, in an efficient way, how
different they are positioned compared to a set of reference points. The complete algorithm as used
in our model is described in the following section.

4 Wasserstein Hypergraph Neural Network

Taking inspiration from the success of Wasserstein embeddings in set representation learning [14,
34], we are introducing Wasserstein Hypergraph Neural Network (WHNN), a neural network for
processing hypergraph structured data which replace the standard (weighted) mean aggregator with
SWP, thus better capturing the internal structure of the neighbourhoods.

The model follows the two-stage framework introduced in Section 3.1, by sending information from
nodes to hyperedges and vice-versa. For simplicity this section only describes the nodes to hyperedges
mechanism, as the hyperedge-to-node operation is entirely symmetrical. The entire pipeline is
depicted in Figure 1 and Algorithm 1. For readability, the algorithm is presented sequentially for
each hyperedge. However our implementation processes all hyperedges in parallel.
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ALGORITHM 1: One Layer of Wasserstein
Hypergraph Neural Network∗

1: input: node features X of hypergraph H and
ref. distribution q

2: output: updated node features X̃

3: procedure WHNN(X,H, q)

4:
5: X0 ← X

6: # Sample reference sets
7: Qv, Qe ← sample(q)

8: # Extract node and edge neighbourhood
9: Nv,Ne ← neighbourhoods(H)

10: # Node to hyperedge
11: X ← encoder(X)
12: Z ←Wasserstein(X,Nv, Qv)

13: # Hyperedge to node
14: Z ← encoder(Z)
15: X ←Wasserstein(Z,Ne, Qe)

16: # Residual connection
17: X̃ ← αX + (1− α)X0

18: return X̃
∗ For simplicity in handling shapes, we assume

encoders that are independent of the hyperedge.

ALGORITHM 2: Wasserstein aggregator

1: input: entity features X; list of neighbour-
hoods to aggregate N ; samples from refer-
ence distribution Q

2: output: aggregated neighbourhoods Z

3: procedure WASSERSTEIN(X,N , Q)

4: # Project entities into slices
5: X ← XΘ
6: # Sort the samples from the reference distr.
7: Q← sort(Q)

8: for all neighbourhoods S ∈ N
9: # Extract elements in the neighbourhood

10: Xs ← {xi}i∈S

11: # If |Xs| ̸= |Q| interpolate Xs to match size
12: X ′

s ← interpolate(Xs)

13: # Sort the elements of the neighbourhood.
14: X ′

s ← sort(X ′
s)

15: # Compute the dist that approx Wass dist
16: Zs: ← Q−X ′

s

17: # Combine the slices
18: Z ← ZW

19: return Z

First we will project the node features into a more expressive representation. Each hyperedge is
then associated with a probability distribution, with its constituent nodes treated as samples. These
distributions are embedded using a Wasserstein-based aggregator to obtain the final hyperedge
representations. These hyperedge representations are fed into the hyperedges-to-nodes stage.

Node encoder. The goal of this module is to enhance the representation of node features by
projecting them into a more informative space. We are experimenting with two types of encoders:
an edge-independent one where the node is carrying the same representation in each hyperedge it is
contained, and an edge-dependent one which takes into account pairwise interactions.

The edge-independent encoder is a simple MLP, which is applied in parallel for each node. This way
a node i is characterized by the same feature vector in each hyperedge e it is part of.

x̃e
i = MLP (xi)

On the other hand, for the edge-dependent encoder, each node has a different representation in each
hyperedge it is part of. To achieve this, for each hyperedge, we are using a Set Attention Block
layer (SAB) as introduce in [13] which propagates the information between each pair of two nodes
contained in that hyperedge. The full version of the block acts as follow:

zei = σ(xi +
∑
j∈e

(xiWq)(xjWk)
T (xjWv))

x̃e
i = σ(zei +MLP (zei )),

where σ denote layer normalisation and Wk, Wq and Wv ∈ Rd×d are learnable parameters.

Hyperedges as probability distributions. Unlike traditional hypergraph approaches that treat a
hyperedge as a set of nodes, we model a hyperedge as a probability distribution, with its constituent
nodes being samples drawn from that distribution. This way the hyperedges are not only characterized
by the combination of its elements, but by the regions of the space where its elements are situated.
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The nodes became prototypes of the hyperedge behaviour. For example, a hyperedge in which nodes
have similar representations ( homophilic behaviour) indicates a low-variance distribution while a
hyperedge with diverse nodes suggests a more uniform distribution.

Lets consider pi the probability distribution where the elements of the hyperedge ei are sampled from.
In other words, we assume each node vj ∈ ei is sampled as x̃i

j ∈ Rd ∼ pi. The goal is to obtain
hyperedge embeddings that preserve the geometric information of this underlying distribution, such
as spreading, shape etc. See Figure 1 for a visual representation of this data structure.

Note that, by treating nodes as sampled from an underlying distribution, we make the assumption
that other unobserved nodes drawn from the same distribution are also likely to belong to the same
hyperedge. This probabilistic interpretation proved to be powerful for set representation learning [14]
and our experiments demonstrates that hypergraph models can benefit from it as well.

Wasserstein aggregator. Interpreting hypergraphs as a collection of probability distributions enable
us to derive more powerful similarity metrics between hyperedges. As showed in the previous section,
most of the current hypergraph architectures rely on mean pooling to create hyperedge embeddings
from node representations. However, from a probabilistic perspective, averaging compares distribu-
tions only based on their means. For complex data distributions, this approach fails to capture the full
underlying geometry. While models relying on summation such as Deep Sets [12] where proved to
be universal approximators, they heavily rely on the internal node encoder (an MLP) to map input
features into a space where first-order statistics like the mean effectively approximate the distribution.
In the hypergraph setting, where multiple sets interact in complex ways, this is hard to achieve.

This motivates us to adopt Sliced Wasserstein Pooling [14] to encode the hyperedge distributions.
Concretely, for each hyperedge e, given the node embeddings of all the nodes in the hyperedge
{ x̃e

i}i∈e, we are aggregating them using the Sliced Wasserstein Pooling described in Section 3.2, to
obtain a vectorial hyperedge representation: he = SWP({ x̃e

i}i∈e). The algorithm works as follow:

1. Step 1: Select a reference hyperedge distribution q and sample N points {yi}Ni=1 ∼ q.
Choose a set of directions {θl}Ll=1 with θl ∈ Rd×1 used as projection slices in the pooling
process. Note that, in order to obtain comparable embeddings across the entire hypergraph,
we share the same reference distribution and the same set of slices for all hyperedges.

2. Step 2: Project each node representation x̃e
i into each slice θl as follow: ze,θli = (x̃e

i )
T θl ∈

R. Since the algorithm requires the same number of sampled nodes from both the hyper-
edge distribution and the reference, when the cardinality of the hyperedge |e| ≠ N , we in-
crease/decrease the number of nodes in e using linear interpolation. ze,θli ← interp(ze,θli , N)

3. Step 3: For each hyperedge, for each slice, compute the distance between the node represen-
tations and the reference points. hθl

e = ||ze,θlπ(i) − yπ̃(i)||, where ze,θlπ and yπ̃ represent the
vectors in sorted order. The final hyperedge embedding is obtain as a weighted mean of
these embeddings: he =

∑L
l=1(wlh

θl
e ), where wl are learnable scalars combining the slices.

Intuitively, each hyperedge is represented by a vector which measure how difficult it is to transform
the hyperedge distribution into the reference distribution 3. Following the theoretical properties of
Sliced Wasserstein Pooling [14], the Euclidean distance between two hyperedge representations
measures the cost of transforming one hyperedge distribution into another. Hyperedges that are similar
in shape or spreading should be closer in this space compared to hyperedges that have completely
different distributions. The algorithm is also described in Algorithm 2. The directions θl and the
reference distribution can be either fixed or learnable.

Edge to node step. For simplicity, we only described in details the first stage of the framework
which sends messages from nodes to hyperedges. The second stage of the framework which create
node representation by aggregating the information from neighbouring hyperedges is done in a
similar way, only with different parameters. In conclusion, we not only capture structural relationship
between hyperedges, but also structural relationship between nodes’ neighbourhood.

3As defined above, by hyperedge distribution we denote the distribution of nodes in the hyperedge.
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Figure 2: Ablation study on the importance of Wasserstein aggregator for hypergraph repre-
sentation learning on Citeseer and NTU2012 datasets. We are testing two versions of the Sliced
Wasserstein Pooling: with fixed (FPSWE) or learnable (LPSWE) reference distribution. Regardless
of the encoder used to project the nodes and hyperedges, the Wasserstein aggregators outperform
both the Deep Sets and PMA commonly used inside hypergraph models.

5 Experiments

Our main goal is to understand to what extent Wasserstein aggregation is beneficial for hypergraph
neural networks. Additionally, we investigate how the choice of node encoder—whether edge-
dependent or edge-independent—affects overall performance. Finally, we compare our model against
a range of strong baseline methods from the existing literature.

Datasets. We evaluate our model on the node-classification task. We select seven real-world
datasets that vary in domain and scale. These include Cora, Citeseer, Cora-CA, DBLP-CA [38],
ModelNet40 [39], NTU2012 [40] and 20News [41]. Among the datasets that are usually used for
benchmarking hypergraph models [38], we omitted Pubmed due to the high percentage of isolated
nodes (80.5%) which makes the relational processing unnecessary. Senate and House are two other
datasets used to test hypergraphs in the heterophilic regime. However, they do not provide node
features which are a key component for our geometric and probabilistic interpretation.

For a fair comparison with the other methods, we follow the training procedures employed by [9].
We randomly split the data into 50% training samples, 25% validation samples and 25% test samples.

Importance of Wasserstein aggregator. Our main contribution consists of adopting Sliced Wasser-
stein Pooling as a powerful aggregator inside the hypergraph networks. As described in the previous
section, while most of the existing methods used variations of the sum pooling to aggregate the
information from each node and each hyperedge neighbourhoods, our Wasserstein aggregator presents
a more in-depth understanding of the neighbourhood distribution, being capable of capturing subtle
differences such as the difference in shape or spread.

To understand to what extent this is contributing to a better hypergraph representation for real-world
scenarios, we are designing an ablation study in which we keep the underlying architecture fixed and
only modify the aggregator used in both the nodes-to-hyperedges and hyperdges-to-nodes stages.
Concretely we are using as aggeregators either Deep Set module (as used by AllDeepSet and ED-HNN
models) or the PMA module (as used by AllSetTransformer model). For our Wasserstein aggregator,
we are experimenting with both a fixed-reference distribution (a model denoted as FPSWE) or
with learnable reference distribution (a model denoted as LPSWE). For a robust evaluation we are
comparing this aggregators using both the edge-independent encoder (MLP) and the edge-dependent
encoder (SAB). The results on Citeseer and NTU2012 datasets are reported in Figure 2.

Regardless of the encoder and the dataset we are testing on, both Wasserstein aggregators are
consistently outperforming both the Deep Sets and the PMA aggregators by a significant margin. A
learnable reference seems to be beneficial, however the improvement is generally marginal. Additional
experiments on other datasets show a similar trend and are provided in the Supplementary Material.

Importance of edge-dependent encoder. The node and hyperedge encoder transforms features
into a space where their distribution within each hyperedge captures meaningful information about
the group. As stated in the model description, we equipped our model with two types of encoders.
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Table 2: Performance on a collection of hypergraph datasets. Our model using SWP as a node and
hyperedge aggregator shows superior results, proving the advantage of moving beyond the standard
sum pooling employed by most of the existing works. We test our model in both its variants: with
edge-independent (MLP) and edge-dependent encoder (SAB). Both options are exhibiting competitive
performance. We mark the first, second and third best performing models for each dataset.

Name Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

HCHA 79.14 ± 1.02 72.42 ± 1.42 82.55 ± 0.97 90.92 ± 0.22 94.48 ± 0.28 87.48 ± 1.87 80.33 ± 0.80
HNHN 76.36 ± 1.92 72.64 ± 1.57 77.19 ± 1.49 86.78 ± 0.29 97.84 ± 0.25 89.11 ± 1.44 81.35 ± 0.61

HyperGCN 78.45 ± 1.26 71.28 ± 0.82 79.48 ± 2.08 89.38 ± 0.25 75.89 ± 5.26 56.36 ± 4.86 81.05 ± 0.59
HyperGNN 79.39 ± 1.36 72.45 ± 1.16 82.64 ± 1.65 91.03 ± 0.20 95.44 ± 0.33 87.72 ± 1.35 80.33 ± 0.42
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 81.97 ± 1.50 91.27 ± 0.27 96.98 ± 0.26 88.09 ± 1.52 81.06 ± 0.54

AllSetTransformers 78.58 ± 1.47 73.08 ± 1.20 83.63 ± 1.47 91.53 ± 0.23 98.20 ± 0.20 88.69 ± 1.24 81.38 ± 0.58
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 83.60 ± 1.14 91.69 ± 0.19 98.07 ± 0.23 89.30 ± 1.33 81.12 ± 0.67
ED-HNN 80.31 ± 1.35 73.70 ± 1.38 83.97 ± 1.55 91.90 ± 0.19 97.75 ± 0.17 89.48 ± 1.87 81.36± 0.55

WHNN_MLP 79.84 ± 1.56 74.79 ± 1.19 84.12 ± 1.94 91.73 ± 0.24 98.47 ± 0.19 90.87 ± 1.59 81.83 ± 0.68
WHNN_(I)SAB 80.72 ± 1.96 74.92 ± 1.60 84.62 ± 1.77 91.99 ± 0.33 98.54 ± 0.21 90.68 ± 1.68 81.42 ± 0.60

An edge-independent module represented by an MLP, and an edge-dependent encoder represented
by a self-attention block (SAB). While the MLP is processing information independently for each
node/hyperedge, SAB is capturing pairwise interactions between nodes/hyperedges sharing a neigh-
bourhood. The results in Figure 2 and Table 2 show similar results among the encoder, with the
edge-dependent one being slightly more powerful. However, this comes with the cost of a more
expensive model, as the edge-dependent encoder requires more memory to store the representation
for all incident pairs (node, hyperedge). To alleviate that on the larger datasets (20News and DBLP),
we replace the SAB block with the ISAB low-rank approximation introduced by [13].

Comparison with baselines. In Table 2 we are comparing against a series of hypergraph net-
works from the literature. With respect to aggregation strategies, HNHN [42], HyperGNN [15],
AllDeepSets [8], UniGCNII [10] and ED-HNN [9] use variations of Deep Sets to aggregate the
information, HyperGCN [38] uses a max aggregator, while HCHA [17] and AllSetTransformer [8] are
using an attention-based weighted summation. Regardless of the encoder used, our model consistently
obtain top results, outperforming the other methods on all datasets. This demonstrates the advantages
of using Wasserstein aggregators for higher-order processing. Note that, while we integrated this
aggregator into a standard instantiation of the two-stage framework, many existing models from the
literature can be adopted to take advantage of this type of geometric-inspired aggregation.

Implementation details. In all experiments, we train our models using Adam optimizer for 500
epochs, on a single GPU NVIDIA Quadro RTX 8000 with 48GB of memory. For comparing against
other models in the literature, each model is trained 10 times with different random splits and different
initialization. For each experiment we report average accuracy along with the standard deviation.
The results represent the best performance obtained by each architecture using hyper-parameter
optimisation with random search. For the ablation study the results are averaged across 5 runs and the
architecture is fixed to ensure a fair comparison. For all experiments we use a number of Wasserstein
slices equal to the hidden dimension and we experiment with both learning the reference set or not.
Details on all the model choices and hyper-parameters can be found in the Supplementary Material.

These experimental results show that aggregating node and hyperedge neighborhoods using Sliced
Wasserstein Pooling is highly effective for hypergraph processing, the Wasserstein aggregator consis-
tently outperforming standard methods like Deep Sets and PMA.

6 Conclusion

In this work we introduce Wasserstein Hypergraph Neural Networks (WHNN), a model for processing
hypergraph structures. The model relies on Sliced Wasserstein Pooling to aggregate the nodes into
hyperedge representations and vice versa. This design choice inspired by optimal transport literature
enable us to capture more information about the internal structure of the neighbourhoods, preserving
more geometric relation between elements. The experimental results on various datasets demonstrates
that this Wasserstein aggregator is effective for modeling higher-order interactions, outperforming
traditional aggregators, making WHNN a promising tool for hypergraph representation learning.
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Appendix: Wasserstein Hypergraph Neural Network

This appendix contains details related to our model, including potential limitations and future
work, additional datasets for the ablation experiments, details on the hyperparameters used in our
experiments and derivation of the computational complexity. The appendix is structured as follow:

• Section A highlights a series of potential limitations that can be address to improve the
current work, together with a discussion on potential future work.

• Section B presents additional experiments used as ablation for our model.
• Section C presents the list of hyperparameters used in our experiments.
• Section D derives the computational complexity of our model.

A Limitations and Future work

As discussed in the main paper, we treat the neighborhood of each node as a sample from an
underlying probability distribution. This approach assumes that any additional nodes drawn from
this distribution should belong to the same neighborhood as the observed ones. This aligns with
the intuition that elements within a group should share common characteristics. While the datasets
we used support this assumption, there may be real-world scenarios where it does not hold. Our
model relies solely on the node encoder to project features into a space where the assumption is
approximately valid.

Moreover, due to this continuous view of the neighbourhood (as a distribution of probability) together
with the interpolation step , the current model may lose information about the exact cardinality of the
neighborhoods. In situations where neighborhood size is important, we recommend encoding it as an
explicit feature. However, we mention that this is an issue we share with the mean-based pooling
algorithms.

The main goal of this paper is to highlight the benefits of using geometrically-inspired poolings for
aggregating neighbourhood information in hypergraphs. While we focused entirely on hypergraphs,
similar idea can be apply on graph neural networks to aggregate messages coming from each node’s
neighbourhood. As a future work, it would be interesting to see to what extent GNNs can benefit
from Wasserstein aggregators.

Moreover, while the proposed model integrate the Wasserstein aggregator into a standard two-stage
pipeline, several other architectures such as ED-HNN that uses summation as an aggregator might
benefit from adopting it. We are leaving this investigation as future work.

B Additional experiments

Due to space constraints, in the main paper we only included ablation studies on Citeseer and NTU
datasets. Here we report additional results for Cora_CA and ModelNet40 datasets.

For each experiment, we kept the architecture fixed and modify the aggregator used in the two
stages to be either Deep Set, PMA, and the learnable (LPSWE) or fixed (FPSWE) Wasserstein
aggregator. The results are similar across the datasets, with Wasserstein Pooling proving to be
beneficial compared to Deep Sets and PMA. In terms of encoder type, we noticed that, in some cases,
for a fixed architecture, SAB tends to model the distribution better than MLPs.

C Implementation details

The results reported in Table 2 of the main paper are obtained using random hyperparameter tuning.
We report here the range of parameters that we searched for. Table 3 and Table 4 contains the best
hyperparameter configuration for the WHNN_MLP model and WHNN_SAB. We depict in bold
the parameters specific to the Wasserstein aggregator, in italic the parameters specific to the SAB
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Figure 3: Additional results for the ablation study on the importance of Wasserstein aggregator
for hypergraph representation learning Cora_CA and ModelNet datasets. FPSWE denotes the
Wasserstein aggregator with fixed reference while LPSWE denotes the Wasserstein aggergator
with learnable reference distribution. Regardless of the encoder used to project the nodes and
hyperedges, the Wasserstein aggregators outperform both the Deep Sets and PMA commonly used
inside hypergraph models.

encoder, while the rest of them are the standard parameters used in the two-stage hypergraph models.
In our experiment we search for the following hyperparameters:

• num_ref: number of elements sampled from the reference distribution {5, 10, 25, 50}
• learnable_W: choose between learning or not the reference distribution {True,False}
• heads: number of heads used by the SAB block {1, 2, 4}
• MLP_layers: number of layers in all MLPs used {0, 1, 2}
• MLP_hid: number of hidden units in all MLPs used. This is also the number of slices used

by Wasserstein aggregator. {128, 256, 512}
• MLP2_layers: using or not an additional linear projection after the residual connection of

each stage {0, 1}
• Cls_layers: number of layers in the final classifier MLP {1, 2}
• Cls_hid: number of hidden units in the final classifier MLP {96, 128, 256}
• self_loops: using or not self loops {True,False}
• dropout: dropout used inside the model {0.5, 0.6, 0.7}
• in_dropout: dropout used in the begining of the model {0.2, 0.5, 0.6, 0.7}
• fixed hyperparameters: All models use 1 layer of WHNN, LayerNorm normalisation, the

residual coefficient α fixed to 0.5 and they are trained for 500 epochs with a learning rate of
0.001.

Table 3: The best configuration of hyperparameters used by our model WHNN_MLP on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 25 10 25 5 50 25 25
learnable_W True False True True False False False
MLP_layers 1 2 2 2 1 1 0
MLP2_layers 0 0 1 0 0 1 0
MLP_hid 128 256 256 512 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 256 128 96 96 96 96 96
self_loops True True True True True False False
dropout 0.7 0.5 0.6 0.7 0.5 0.5 0.5
in_dropout 0.7 0.5 0.6 0.7 0.2 0.2 0.2
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Table 4: The best configuration of hyperparameters used by our model WHNN_SAB on all tested
datasets. We mark with bold the parameters that are specific to the Wasserstein aggregator and with
italic the parameters that are specific to the SAB encoder.

Parameter Cora Citeseer Cora_CA DBLP_CA ModelNet40 NTU2012 20News

num_ref 10 5 50 5 25 25 5
learnable_W True False False False False False True
heads 2 4 1 4 1 2 2
MLP_layers 2 2 2 1 1 2 2
MLP2_layers 0 0 1 1 0 0 0
MLP_hid 128 256 128 256 256 512 512
Cls_layers 1 1 1 2 2 2 2
Cls_hid 128 256 128 96 96 96 96
self_loops True False True True True True False
dropout 0.7 0.7 0.5 0.7 0.5 0.5 0.5
in_dropout 0.7 0.7 0.5 0.7 0.2 0.2 0.2

D Computational complexity

We derive the computational complexity for both versions of our Wasserstein Hypergraph Neural
Network: using the edge-independent encoder (WHNN_MPN) and using the edge-dependent encoder
(WHNN_SAB). We present the complexity for a hypergraph with N nodes, M hyperedges, Ke the
maximum cardinality of a hyperedge, Kv the maximum number of hyperedges a node is part of and
R the number of reference points sampled.

For node encoders, the MLP encoder has a complexity of O(N) while the SAB encoder has com-
plexity O(M ×K2) due to the pairwise exchange of messages (K2) inside each hyperedge (M ).

For the Wasserstein aggregator, we derive the complexity both for the node-to-hyperedge and
hyperedge-to-node stages. For node-to-hyperedge the complexity for interpolation is O(M ×
(R logKe)) and the complexity for sorting each neighbourhood is O(M×(R logR)). Symmetrically,
for hyperedge-to-node the complexity for interpolation is O(N × (R logKe)) and the complexity
for sorting each neighbourhood is O(N × (R logR). The overall complexity becomes O(M ×
(R logKe) + M × (R logR)) + N × (R logKe) + N × (R logR)). In our experiments R is
maximum 50.

For comparison, the complexity of a Deep Set pooling is O(M ×Ke +N ×Kv)
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