
ar
X

iv
:2

50
6.

14
36

4v
1

 [
cs

.A
R

]
 1

7
Ju

n
20

25
1

Tensor Manipulation Unit (TMU): Reconfigurable, Near-Memory

Tensor Manipulation for High-Throughput AI SoC
Weiyu Zhou †‡, Zheng Wang ‡∗, Chao Chen ‡, Yike Li ‡§, Yongkui Yang‡, Zhuoyu Wu‡,

Anupam Chattopadhyay ∥

† Faculty of Science and Technology, University of Macau, Macau, China
‡ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

§ School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
∥ College of Computing and Data Science, Nanyang Technological University, Singapore

Abstract—While recent advances in AI SoC design have
focused heavily on accelerating tensor computation, the equally
critical task of tensor manipulation—centered on high-volume
data movement with minimal computation—remains underex-
plored. This work addresses that gap by introducing the Ten-
sor Manipulation Unit (TMU): a reconfigurable, near-memory
hardware block designed to execute data-movement-intensive
(DMI) operators efficiently. TMU manipulates long datastreams
in a memory-to-memory fashion using a RISC-inspired execution
model and a unified addressing abstraction, enabling broad
support for both coarse- and fine-grained tensor transformations.
The proposed architecture integrates TMU alongside a TPU
within a high-throughput AI SoC, leveraging double buffering
and output forwarding to improve pipeline utilization. Fab-
ricated in SMIC 40 nm technology, the TMU occupies only
0.019 mm2 while supporting over 10 representative TM operators.
Benchmarking shows that TMU alone achieves up to 1413.43×
and 8.54× operator-level latency reduction over ARM A72 and
NVIDIA Jetson TX2, respectively. When integrated with the in-
house TPU, the complete system achieves a 34.6% reduction in
end-to-end inference latency, demonstrating the effectiveness and
scalability of reconfigurable tensor manipulation in modern AI
SoCs.

Index Terms—data movement, tensor manipulation, accelera-
tor, execution model

I. INTRODUCTION

THE previous decade has experienced the huge success
of artificial neural networks (ANNs), which have been

increasingly deployed on data centers, mobile edges, and
terminal devices. The persistent efforts to improve peak perfor-
mance and energy efficiency while reducing costs motivate the
design and fabrication of customized chips for ANN. Systolic-
Array-based Tensor Processing Unit (TPU) [18] is specialized
in executing integer operators during inference with massive
parallelism, whereas General-purpose computing on Graphics
Processing Unit (GPGPU) [2] accelerates high-precision op-
erators adopting vector-style floating-point units. Furthermore,
any application inevitably contains highly flexible software
code, which is conventionally deployed on a scalar-style
RISC CPU. Consequently, a modern computing system or
System-on-Chip (SoC) for artificial intelligence (AI) is ideally

∗ Corresponding author: Zheng Wang, zheng.wang@siat.ac.cn

10
0

10
1

10
2

conv2d
conv

_conv
cudnn_conv

silu_
sigmoid

elem.add_
elem.add
elem.mul

route
split_sizes

reshape
permute

contiguous
clone
copy_

upsample
slice

select
sort
nms

resize_
arange

(a) YOLOv3/v8 + pre/postproc.

Latency (us)

}Bboxcal

Img2col

TM op.
Conpute op.

0 10 20 30 40

conv2d
conv

_conv
cudnn_conv

relu_
clamp_min_

elem.div
elem.mul

elem.add_
elem.add
reshape

view
pixelshuffle

permute
clone

empty_like
empty
copy_

(b) EDSR

Latency (us)

Img2col

TM op.
Conpute op.

Fig. 1. The average operator-level latency when running (a)
YOLOv3/v8+pre/postproc and (b) EDSR on an NVIDIA RTX 3080.

composed of scalar, vector, and tensor computing engines, plus
the memory system and communication infrastructure [8].

Recently, the operators have become versatile in ANNs,
and their types are far beyond general matrix multiplication
(GEMM), convolution, and pooling. While most of the re-
search studies focus on accelerating the compute-intensive
operators [19], very few studies and designs tend to address
another rising performance bottleneck, caused by a series of
data-move-intensive (DMI) operators. Existing mathematical
frameworks give various names to such operators, where
we name them tensor manipulation (TM), similar to array
manipulation in NumPy [20]. Detailed in Section III, TM
operators in general contain little to zero computation, but
a large amount of data movement. They glue the compute-
intensive operators by transforming tensors in ANN. NumPy
contains 54 TM operators and the types are still growing. TM
operators constitute key routines of math kernels, which are
essential to pre-, post-, and intermediate processing of state-
of-the-art ANN models.

As shown in Figure 1, we benchmark operator-level la-
tency for object detection (YOLOv3/v8 [27] [10]) and super-
resolution (EDSR [26]) NN models using an NVIDIA RTX
3080 GPU, which shows several TM operators are far more

https://orcid.org/0009-0002-0035-3589
https://orcid.org/0000-0003-2855-9570
https://orcid.org/0000-0001-6488-224X
https://orcid.org/0009-0006-1140-1194
https://orcid.org/0000-0002-8818-6983
https://arxiv.org/abs/2506.14364v1

2

costly than compute operators. operators such as Bboxcal
(realized by sort, select and slice in GPU) and non-maximum
suppression (NMS) [4] constitute the post-processing phase of
most YOLO-series NNs, where pixelshuffle is the key operator
for the EDSR model. With regard to end-to-end inference
latency, TM operators account for 40.62% in EDSR when
Img2col is included, which is used in convolution and pooling
for preparing activation buffers. The root cause of such long
latency is that TM operators interact intensively with off-chip
memory. However, most NN accelerators move data across
layers of memory hierarchy to manipulate them inefficiently.

Effectively accelerating TM operators with minimal physi-
cal resources is of increasing importance, particularly as data
movement has emerged as a widely recognized performance
bottleneck in modern AI workloads. However, architectural
support for improving TM performance remains limited. Aca-
demic efforts such as [21] propose FPGA-based data re-
organization engines for inter-memory transfers, while [22]
introduces a specialized accelerator for Tucker decomposition
involving tensor permutations. Other approaches [23], [24]
explore in-memory data movement using 3D-stacked DRAM.
Industry-wise, SoCs like NVIDIA’s Jetson and Rockchip’s
RK3588 incorporate computer vision (CV) engines to manage
tensor data, although their internal architecture details remain
proprietary. Huawei’s Ascend [8] includes a memory transfer
engine (MTE), yet it only supports a limited subset of opera-
tors such as decomp, Img2col, and transpose.

A key limitation across prior designs is their reliance on
fixed-function logic, which restricts adaptability to new and
evolving TM operators. As TM grows increasingly diverse
and complex, architectural reconfigurability becomes essen-
tial. Without a generalized and parameterized architectural
abstraction, supporting these diverse patterns would require
costly hardware redesigns or inefficient software fallbacks.
This motivates the need for a reconfigurable TMU architecture
that can flexibly adapt to heterogeneous TM behaviors while
maintaining high throughput and low area overhead.

In this work, we propose Tensor Manipulation Unit
(TMU) to support a series of TM operators on memory data
streams. Other than a highly customized design, TMU is
built under a RISC-inspired execution model which serves
as a generic design template with reconfigurable registers to
support a series of TM operators. A central feature of its design
is the Unified Address Abstraction, which generalizes mem-
ory access patterns through parameterized address matrices.
Thus operators can be encoded using shared fields with TM
instructions.

TMU supports both coarse-grained and fine-grained data
movements. In coarse-grained mode, the continuous datas-
tream is uninterruptedly reorganized. In fine-grained mode,
various modes of byte-level data assembling are achieved
through a reconfigurable masking engine (RME). As an SoC
component, TMU resides near the direct memory access
(DMA) engine, which can either deliver manipulated tensor
segments to tensor processing units (e.g., Img2col), or directly
streaming back to off-chip DRAMs, therefore latency caused
by data movement through memory hierarchies is reduced. Ex-
periments on super-resolution and object detection NN models

demonstrated a maximal speedup of 34.6% in system inference
latency when TMU couples with an in-house designed TPU
[11] instead of ARM CPU coupling the same TPU. Individual
TM operators can be executed orders of magnitude faster on
TMU compared to embedded CPU and GPU. Furthermore,
TMU occupies only 0.07% silicon area of the in-house TPU,
which proves its effectiveness and feasibility in modern SoCs.

The rest of the work is organized as follows. Section
II surveys prior work on DMI operators. Section III intro-
duces typical TM operators. Section IV details the design
methodology for TMU. Section V illustrates the system-level
integration and microarchitectural details. Section VI presents
the benchmarking and synthesis results. Finally, Section VII
concludes the work.

II. RELATED WORK

In neural networks, DMI operators—such as reshape, trans-
pose, and slice—are essential for transforming tensors across
layers, optimizing memory access, and enabling efficient paral-
lelism. Although computationally lightweight, these operators
often dominate runtime due to extensive memory traffic [1].

Early efforts leveraged FPGAs to construct data reorgani-
zation engines [21], enabling coarse-grained data movement
across memory hierarchies. Architectures like the Unstructured
Data Processor (UDP) [7] demonstrated improved memory ef-
ficiency through dynamic data transformation. Similarly, DMA
profiling and optimization techniques on FPGAs [5] reduced
data transfer latency by overlapping movement with compu-
tation. Zhang et al. [22] proposed a dedicated accelerator for
Tucker tensor decomposition; however, its domain specificity
limits generalization to diverse DMI workloads. IBM’s Active
Messaging Engine (AME) [29] is a lightweight, programmable
DMA core integrated into the Power10 processor. While
AMEs enable efficient offloading of data movement in high-
performance computing (HPC) settings, their general-purpose
messaging model lacks semantic support for tensor-centric
DMI operators commonly found in deep learning. ECNN [30]
introduces a block-based accelerator optimized for energy-
efficient CNN inference. It combines a hardware-oriented
CNN model (ERNet) with a feature block instruction set
(FBISA) to minimize external memory bandwidth. Although
effective for fixed convolutional pipelines, its coarse execution
granularity and lack of reconfigurable address control limit its
applicability to dynamic TM operators such as Reshape and
Bboxcal.

To reduce memory hierarchy overhead, in-situ data reor-
ganization using 3D-stacked DRAM has been explored [23]
[24]. These solutions primarily target scientific and graph-
based workloads and typically require custom memory stacks.
TensorCIM [3] presents a digital computing-in-memory (CIM)
architecture tailored for sparse tensor operations. Its design
includes modules such as the redundancy-eliminated gather-
ing manager (REGM) and input-lookahead CIM (ILA-CIM),
significantly reducing off-chip and inter-chiplet traffic. Never-
theless, its specialization for sparse and irregular data patterns
limits its utility for dense and fine-grained TM operators in
standard neural networks.

3

Ofmap size:

4 × 4 × 16
Ifmap size:

4 × 4 × 3

(a) Rearrange

Ofmap size:

2 × 2 ×3

Ifmap size:

4 × 4 × 3

I/Ofmap size:

4 × 4 × 64

(d) Img2col(c) Bboxcal

class_conf

(h) Route, Split, and Add

I/Ofmap size:

4 × 4 × 128
4 × 4 × 64

I/Ofmap size:

4 × 4 × 64 × 2

(e) Transpose and Rot90

Ofmap size:

6 × 6 × 1

PE

Weight

Ifmap size:

8 × 8 × 1

Ifmap size:

4 × 4 × 64
Ofmap size:

8 × 8 × 64

(g) Upsample

I/Ofmap size:

8 × 8 × 16

I/Ofmap size:

4 × 4 × 64

(f) Pixelshuffle and PixelUnshuffle

Class_conf

Select

X, Y, W, H

Calculate

Confident

Calculate

x, y, w, h

object_conf

……

(b) Resize

Fig. 2. Graphical representation of typical TM operators adopted in state-of-the-art neural networks.

Systolic arrays, widely used in CNN accelerators, encounter
performance bottlenecks from memory bank conflicts intro-
duced by irregular access patterns like those in Img2col.
Recent approaches utilizing dynamic address generation [6]
improve memory utilization, though their benefits remain
largely confined to convolution-heavy workloads and do not
extend to the full range of TM operators.

Commercial AI SoCs, such as NVIDIA Jetson and Rockchip
RK3588, incorporate proprietary vision engines that accelerate
a limited set of TM operators. Similarly, Huawei’s Ascend AI
processors [8] feature an MTE capable of executing operators
like Img2col and transpose, but lack extensibility to support
emerging operators such as Bboxcal, PixelShuffle, and Route.

Despite these advancements, existing solutions suffer from
three key limitations: (1) restricted operator coverage, (2)
absence of reusable architectural abstractions, and (3) weak
coupling to the memory subsystem, resulting in redundant data
transfers and suboptimal bandwidth utilization.

To address these challenges, the proposed TMU provides
a general-purpose, near-memory acceleration framework for
DMI operators. TMU employs a RISC-inspired execution
model with a programmable address generation engine, en-
abling efficient support for a wide spectrum of coarse- and
fine-grained TM operators. Operating directly on memory
data streams, TMU minimizes movement overhead. Integrated
alongside a TPU within a heterogeneous SoC, TMU achieves
up to 34.6% system-level inference latency reduction while
occupying only 0.07% of TPU area, offering a scalable and
reconfigurable solution for DMI optimization in modern AI
workloads.

III. TENSOR MANIPULATION OPERATOR

TM operators are crucial for manipulating data structures in
neural networks and scientific computing. Some TM operators
involve computing routines, while others are purely data
arrangements. The key TM operators that have been widely
adopted in state-of-the-art neural networks and implemented
in the proposed TMU are highlighted as follows.

A. Fine-grained TM operator
Fine-grained TM operators function at byte-level of granu-

larity. They are crucial for optimizing memory access patterns
and data layout in DNN pre-processing or post-processing,
thereby improving throughput and efficiency. Key fine-grained
operators include:

1) Rearrange: Shown in Fig. 2(a), Rearrange transforms
RGB data streams into higher-channel feature maps (fmaps)
(e.g., 16 channels) to favor AXI burst size and DRAM access
patterns. It is crucial in the preprocessing stage of vision-based
NN models, where byte-level data are fine-grained rearranged.

2) Resize: As shown in Fig. 2(b), the bilinear interpolation
operator calculates weighted averages of neighboring pixels
to enable smooth image scaling. It is essential in vision AI
models, ensuring visual quality with sub-pixel precision.

3) Bboxcal: As seen in Fig. 2(c), bounding boxes (Bboxes)
with high confidence are extracted from YOLO’s output
tensors. Bboxcal is not typically accelerated by TPUs but
significantly affects system inference latency. It operates on
the byte level, making it a fine-grained operator.

4) Img2col: Critical for speeding up variants of convolution
and pooling, Img2col in Fig. 2(d) extracts necessary activa-
tions from input feature maps for the activation buffers in
TPU.

B. Coarse-grained TM operator
Coarse-grained TM operators manage tensors or sub-tensors

whose size exceeds the hardware-defined bus width (e.g.,
16 bytes for a 128-bit AXI bus), emphasizing structural or
dimensional transformations. They often reshape, reorient,
or combine entire feature maps to meet the architectural
requirements of DNN or to fuse information from different
network paths. Important coarse-grained operators include:

1) Transpose and Rot90: Transpose operators rearrange the
dimensions of tensors to adapt to specific tasks, while Rot90
rotates images by 90 degrees enhancing feature representation.
These operators are widely used in DNNs for managing
multidimensional data, as shown in Fig. 2(e) and (f).

4

Fetch

Decode Pixel&
Unshuffle

Ld_Mem

Route&
Split

Up.

Update_Index

Addr_Gen

Evaluate Elem. op

St_Mem

Rot90

Img2col

Fetch

Decode

Tensor Load

Fine-grained TM

or Element-wise

Processing

Coarse-grained TM

Tensor Store

Branch

Custom

Add

Resize

Trans.

Rear.

Bboxcal

Assemble

Fig. 3. Generic execution model for TM

2) PixelShuffle and PixelUnshuffle: PixelShuffle, shown
in Fig. 2(g), rearranges feature maps for super-resolution,
increasing width and height while reducing depth. Conversely,
PixelUnshuffle, depicted in Fig. 2(h), reduces map dimensions
as one of the downsampling operators.

3) Upsample: Illustrated in Fig. 2(i), upsample scales up
feature maps, maintaining depth while expanding width and
height, pivotal in object detection and segmentation.

4) Route, Split, and Add: Route (also known as Con-
cat) combines feature maps along the channel dimension as
depicted in Fig. 2(j). Split divides feature maps along the
channel dimension as shown in Fig. 2(k). Add (also known
as residual layer) performs element-wise additions with two
tensors, which is essential for residual networks as depicted
in Fig. 2(l).

IV. TENSOR MANIPULATION METHODOLOGY

To raise the abstraction level of the design, we have intro-
duced a generic tensor manipulation methodology including
the execution model and address generation. The growing
number of TM operators can fit into the design template
following the approach outlined in this section.

A. Generic Execution Model

We propose a RISC-inspired execution model for TMU that
abstracts the tensor manipulation process into eight config-
urable stages, as illustrated in Fig. 3. Each stage represents a
distinct class of dataflow transformation or control behavior
and can be selectively activated based on the characteristics
of a given TM operator. This stage-based abstraction allows
diverse tensor manipulations to be expressed uniformly within
a unified operational framework. The functionalities of each
stage are described as follows.

1) Fetch: TMU acquires instructions from local storage.

2) Decode: The instruction is issued to determine its func-
tionality.

3) Tensor Load: TMU initiates the loading of required
tensors from memory, typically from off-chip DRAM.

4) Fine-grained TM: Certain TM operators—such as Re-
size, Rearrange, and Bboxcal—manipulate data at the byte-
level, often requiring flexible selection and reorganization of
fine-grained tensor elements. These operations can be cate-
gorized into two high-level modes: assemble, which gathers
selected bytes and packs them into a continuous output stream;
and evaluate, which filters bytes based on simple comparison
or thresholding and forwards only those of interest.

5) Element-wise Processing: This category includes TM
operators such as Add and Mul, which perform element-
wise computations across corresponding tensor positions. Each
tensor element is processed independently, making these op-
erations highly parallelizable and well-suited for fusing with
adjacent computation stages.

6) Coarse-grained TM: The remaining TM operators, such
as Transpose, PixelShuffle, and Split, operate on entire tensor
blocks and perform structured layout transformations defined
by tensor strides, shapes, and dimensions. Their access be-
havior can be uniformly described using a pattern-driven
addressing abstraction, which encodes these transformations
through a shared matrix-based formulation. This abstraction
forms the foundation of the address generator discussed in the
following section IV-B.

7) Tensor Store: Manipulated tensors are written back to
memory (e.g., off-chip DRAM) or forwarded to downstream
computing engines (e.g., TPU) for subsequent processing.

8) Branch: Long tensors cannot be manipulated in a single
run. This stage updates the address and loads the following
tensor segment, before proceeding to the next instruction.

Taking advantage of the above TM execution model, design-
ers can implement various types of TM operators and enhance
the versatility of the TMU. The design template also facilitates
resource sharing, where there is a large similarity between
TM operators. It is important to note that although our model
follows a RISC-inspired pipeline structure, it is not related to
or compatible with standard RISC instruction sets.

B. Unified Address Abstraction for Tensor Manipulation

A key feature of the proposed TMU is its ability to perform
tensor manipulation directly in a memory-to-memory fashion,
eliminating the need for CPU-driven address computations.
To support a wide range of coarse-grained TM operators,
the TMU employs a unified address abstraction that models
memory access patterns through a parameterized and reusable
formulation.

In this abstraction, each operator’s access pattern is repre-
sented as an affine transformation from input tensor indices to
output memory locations. Rather than implementing dedicated
address generation logic for each operator, the TMU employs
a shared matrix-based approach that captures stride, padding,
scaling, and layout reordering in a common structure.

The unified address abstraction dynamically computes
source and destination addresses at runtime, guided by

5

TABLE I
PARAMETERS USED IN EQ. 1 AND TABLE II.

Abbr. Meaning

addrout Access address
addrbase Base address

xi Ifmap X Position
yi Ifmap Y Position
ci Ifmap C Position
xo Ofmap X Position
yo Ofmap Y Position
co Ofmap C Position

Abbr. Meaning

wi Ifmap Width
xk Fmap Kernel Width
yk Fmap Kernel Height
xp Fmap Padding Width
yp Fmap Padding Height
xs Fmap Stride Width
ys Fmap Stride Height
s Fmap Scale Factor

operator-specific parameters provided via the instruction
stream. These parameters instantiate transformation matrices
that formalize index mappings, as shown in Eq. 1, with
associated terms defined in Table I.

addrout = addrbase + yo × co + xo × coxo
yo
co

=

a11 a12 a13
a21 a22 a23
a31 a32 a33

xi
yi
ci

+

b1
b2
b3

 (1)

Each TM operator corresponds to a specific pair of transfor-
mation matrices (A,B), which encode the linear relationship
between input and output index triplets. For three-dimensional
feature maps, the elements of A and B are typically constants,
while the output indices (xo,yo,co) are computed as functions
of the input indices (xi,yi,ci), adapted to the semantics of each
TM operator. Table II lists representative configurations of A
and B for commonly used coarse-grained operators, including
Transpose, Img2col, and PixelUnshuffle. This matrix-based
abstraction enables flexible support for strided and dilated
access, channel fusion or splitting, and other compound tensor
transformations.

By encoding transformation parameters directly into TMU
instruction fields, this scheme allows runtime interpretation
and execution without hardware modification. As a result,
the same address generation datapath can support a wide
range of tensor manipulation behaviors through lightweight
reconfiguration.

V. TMU ARCHITECTURE

This section presents the implementation of the TMU,
covering its system-level integration, microarchitecture, and
dataflow organization.

A. System Architecture

As illustrated in Fig. 4, the TMU serves as a key system-
level component within our AI-oriented SoC architecture. The
SoC executes neural networks as a sequence of operators,
orchestrated via an instruction-driven execution model. It
integrates both a TPU for compute-intensive tasks (e.g., conv,
see Fig. 4(b)) and a TMU for TM operators. The TPU features
a systolic array comprising 128 threads, each consisting of
32 PEs. Each PE is equipped with a 9-bit signed multiplier.
Input tensors are fetched from DRAM through an AXI4 inter-
connect, buffered, and broadcast to the threads. The commit
buffer aggregates the results from all threads and transfers

TABLE II
THE A AND B MATRICES OF ADDRESS GENERATION FOR

COARSE-GRAINED TM OPERATORS.

TM Op. Eq.

Transpose

xo
yo
co

=

 0 1 0
wi 0 0
0 0 1

xi
yi
ci


Rot90

xo
yo
co

=

 0 −1 0
wi 0 0
0 0 1

xi
yi
ci

+

wi
0
0


Img2col

xo
yo
co

=

 1
xs

0 0
0 wi

ys
0

0 0 1

xi
yi
ci

+


2×xp−xk

xs
+1

2×yp−yk
ys

+1
0


PixelShuffle

xo
yo
co

=

1 0 0
0 s×wi 0
0 0 1

s

xi
yi
ci


PixelUnshuffle

xo
yo
co

=

s 0 0
0 wi 0
0 0 1

xi
yi
ci


Upsample

xo
yo
co

=

s 0 0
0 s× s×wi 0
0 0 1

xi
yi
ci



Route

xo
yo
co

=

1 0 0 0
0 wi 0 0
0 0 1 1


 xi

yi
ci1
ci2


Split

xo
yo
co

=

1 0 0
0 wi 0
0 0 1

s

xi
yi
ci


Add

xo
yo
co

=

1 0 0
0 wi 0
0 0 1

xi
yi
ci



D

M

A

(a) SoC

O
ff-c

h
ip

 D
R

A
M

DDR

MC

&

PHY

FSM

SoC

INST

Fetch

Unit

INST

BUF

USB

Manipu lated

Datastr eam

Control

Signal

Control

Signal

TPU

FSM

TPU

In
p

u
t

B
U

F

Weight BUF

Thread

Thread

…×128

Acc<<

weight

input

PE

PE PE PE

Thread

…×32

FSM Thread

Tensor

BUF

TMU

Tensor

BUF

TMU

Control

Signal

Commit BUF

Thread

Thread

In Tensor

Out

Tensor

Out TensorIn Tensor

In Tensor

(b) EDSR

Conv

Add

Conv

PixelShuffle

Add

…

Output

Forwarding

Conv
Output

Forwarding

Conv

Fig. 4. (a) System architecture integrating the proposed TMU and TPU. Two
TMUs are deployed to support tensor prefetching. (b) Network architecture
of EDSR.

them back to DRAM. In contrast, the TMU is optimized
for data-movement-intensive and compute-light operators. It
reshapes, rearranges, or redirects datastreams retrieved from
DRAM, and either writes them back to memory or forwards
them to other computational threads. Forwarded datastreams
can support element-wise operations (e.g., Add) or non-regular
TM operators such as PixelShuffle (see Fig. 4(b)).

To maximize the TMU’s efficiency in handling these oper-
ators, we employ several system-level strategies that enhance
both performance and flexibility.

1) Tensor Prefetch and Output Forwarding: As shown
in Fig. 5(b), a tensor prefetching strategy is employed to
minimize off-chip memory access latency and enhance TM

6

efficiency. Two on-chip tensor buffers and two TMUs are
configured in a double-buffering arrangement, where one
buffer processes data while the other concurrently loads or
stores datastreams to/from external DRAM. In TMU–TPU
cooperative scenarios, a ping-pong mechanism enables the
pre-scheduling of partially committed tensors from the TPU,
effectively overlapping memory transfers with computation to
mask TMU latency.

To further enhance pipeline concurrency, an output forward-
ing strategy is employed alongside prefetching. As shown in
Fig. 5(c), when the TPU reaches the final stages of a compute-
intensive operation (e.g., Conv, as shown in Fig.4(b)), it begins
streaming partial output tensors to the buffer before completing
the entire computation. This allows the TMU to initiate
subsequent operators—such as PixelShuffle, or Add—early,
thereby reducing idle cycles and improving throughput.

2) Block-based Manipulation: Coarse-grained TM oper-
ators operate on tensor blocks whose channel dimensions
align with the burst width of the AXI interface. The TMU
directly manipulates such datastreams and reshapes them
within on-chip buffers, thereby increasing data throughput and
minimizing memory latency. For fine-grained TM operators,
a reconfigurable masking engine (RME) is introduced to
optimize data paths and memory utilization, mitigating the
performance penalties typically associated with sub-word data
manipulation.

B. TMU’s Microarchitecture and Dataflows
As illustrated in Fig. 6, the TMU integrates the generic

execution model, address generator, reconfigurable masking
engine (RME), and supporting control modules within a uni-
fied architecture.

A centralized finite-state machine (FSM) orchestrates the
execution stages defined in Fig. 3, directing the instruction
flow and coordinating data movement across the pipeline. To
support the heterogeneous characteristics of TM operators, the
FSM enables three configurable dataflows corresponding to
fine-grained, coarse-grained, and element-wise processing.

• Fetch and Decode: The TMU retrieves instructions from
local memory and decodes them to determine the operator
type and operand configuration (see Fig. 6(c) ❶, ❷).

Tensor
BUF 0

Tensor
BUF 1

Ld_Mem

Ld_Mem

TM St_Mem

TM

Ld_Mem TM St_MemTensor
BUF

(b) Tensor prefetch strategy.

(a) Non-prefetch strategy.

St_Mem

IDLE

IDLE

IDLE

IDLE

reduce
latency

Off-chip
DRAM

Latency

Tensor
BUF 0

Tensor
BUF 1 Ld_Mem

TM St_Mem

TM

(c) Tensor prefetch and Output forwarding strategy.

St_Mem

IDLE

IDLE

IDLE
reduce latencyTPU's

output
tensor

Fig. 5. (a) Non-prefetch strategy. (b) Tensor prefetch strategy. (c) Tensor
prefetch and Output forwarding strategy.

• Tensor Load: Input data is fetched via a high-speed bus
and stored in on-chip buffers. After potential reshaping or
reordering, the datastream is moved to the commit buffer
for further processing or storage (see Fig. 6(a)(b)(c) ❸).

• Fine-grained TM: This stage performs byte-level manip-
ulation, such as selecting specific bytes (e.g., Rearrange,
Bboxcal) or assembling data across segments (e.g., Trans-
pose) to form new datastreams (see Fig. 6(a) ❹).

• Coarse-grained TM: This stage handles block-level re-
shaping operations driven by burst transfers (e.g., 16-
byte AXI transactions). The address generator dynami-
cally computes destination addresses to facilitate high-
throughput tensor reorganization (see Fig. 6(b) ❻).

• Element-wise Processing: This stage supports arithmetic
operations such as vectorized Add, Sub, and Mul. The
TMU either executes these computations directly or
cooperates with processing elements by preprocessing
the datastream and forwarding it to global buffers (see
Fig. 6(c) ❺).

• Tensor Store: The transformed datastream is written back
from the commit buffer to off-chip DRAM or shared on-
chip memory (see Fig. 6(a)(b)(c) ❼).

• Branch: For long tensors spanning multiple iterations,
this stage updates memory addresses and buffer offsets
to fetch subsequent segments, ensuring uninterrupted ex-
ecution (see Fig. 6(c) ❽).

1) Address Generator: As illustrated in Fig. 7(a), the
address generator implements the matrix-based addressing
scheme defined by Eq. 1, enabling flexible computation of
output memory addresses for coarse-grained TM operations.
At runtime, the TMU instruction stream delivers operator-
specific addressing parameters, which are decoded and loaded
into dedicated configuration registers. These registers store the
elements of matrices A and B, controlling the affine map-
ping from input coordinates (xi,yi,ci) to output coordinates
(xo,yo,co). The address generator executes the transformation
in three pipeline stages. First, the row vectors of A are
partitioned into three groups and multiplied with the input
index vector. The resulting partial sums are then added to the
corresponding entries in B to form an intermediate vector C.
Finally, the output address addrout is computed by combining
C with the base address addrbase through post-addition logic.
This output address is used to direct the storage of manipulated
tensors to DRAM or to downstream modules. In conjunction
with the write stride control, the generator iterates over tensor
segments. Internal state registers are updated accordingly
to determine whether the current TM instruction has been
completed or requires additional iterations.

2) Reconfigurable Masking Engine: To realize fine-grained
TM, the RME shown in Fig. 7(b) utilizes segment masking
counters to acquire valid bus transfers into the tensor buffer.
Afterwards, It supports two processing approaches for fine-
grained TM, namely assemble and evaluate.

In the assemble scheme, identified bytes in the byte masking
register are assembled into a new datastream in the assemble
register, which is useful for operators like Rearrange, Rot90,
and Transpose. The evaluate scheme processes selected bytes
to extract result bytes, such as the case of Bboxcal, maximal,

7

Ifmap size:

4 × 4 × 48 × 2

Ofmap size:

4 × 4 × 48

(c) TM with element-wise

processing.
Output Stream

FSM

Thread

Input Stream 1

Input

Stream 0

AXI

…

…

…

Thread

PE



PEPE
PEPEPE

Ofmap size:

4 × 4 × 144

Ifmap size:

4 × 4 × 48

(a) Fine-grained TM.




Ofmap size:

4 × 4 × 64
Coord.: (2, 1)

Ifmap size:

4 × 4 × 64
Coord.: (1, 2)

(b) Coarse-grained TM.

Commit

BUF

M
U

X



Address

Generator

TMU

FSM

TMU

Tensor

BUF

Reconfigurable

Masking Engine

AXI

Commit

BUF

M
U

X

Address

Generator

TMU

FSM

TMU

Tensor

BUF

Reconfigurable

Masking Engine

AXI





M
U

X

Reconfigurable

Masking Engine
TMU

FSM

TMU

Tensor

BUF

configurable

parameters

INST Fetch &

Decode Unit

INST

BUF

 Configurable

REGs

Address

Generator





 Commit

BUF











Fig. 6. TMU’s microarchitecture and dataflows. (a) Fine-grained TM. (b) Coarse-grained TM. (c) TM with element-wise processing.

INST BUF

(a) Address

Generator

INST

BUF

Segment

Read

Masking

Counters

Commit

BUF
Shift & Assemble operation

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
Byte Masking REG

2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0
Byte Destination REG

Address

Generator

DMA

AXI

Scheme 1: Assemble (Rearrange)

Scheme 2: Evaluate (Bboxcal)

Cal

Unit 1

Cal

Unit 0
Cal

Unit 2

(b) RME

M
U

X

Tensor

BUF

Cal

Unit 1

Cal

Unit 0

Evaluate operation

Fig. 7. (a) Address generator for coarse-grained TM operators. (b) Recon-
figurable masking engine (RME) for fine-grained TM operators.

or minimal value retrieval from input datastream. The byte
destination register maps bytes to specific calculation units,
simplifying integration with computational logic.

While these fine-grained opeators are inherently operation-
specific and difficult to build in a generalized structure, the
RME mitigates this challenge by offering a structured abstrac-
tion for implementation. Specifically, both the assemble and
evaluate schemes adhere to a predefined template comprising
three stages: (i) byte-level masking and indexing, (ii) construc-
tion and distribution of a new datastream, and (iii) conditional
routing and commitment under FSM control. For instance, a

TABLE III
OPERATOR CONFIGURATION PARAMETERS

TM Op. Ifmap Size Ofmap Size Abbr.
Rearrange 448×448×3 448×448×16 RR
Resize 448×448×3 224×224×3 RS
Bboxcal 448×448×256 3×448×448×85 BC
Transpose 448×448×64 448×448×64 TS
Rot90 448×448×64 448×448×64 RT
Img2col 448×448×64 446×446×64 IC
PixelShuffle 448×448×64 896×896×16 PS
PixelUnshuffle 448×448×64 224×224×256 PU
Upsample 448×448×64 896×896×64 US
Route 2×448×448×64 448×448×128 RO
Split 448×448×64 2×448×448×32 SL
Add 448×448×64 448×448×64 AD

new TM op (such as selective value gating) can be mapped
to this template by simply configuring its masking rule and
output mapping logic, thereby avoiding the need for bespoke
dataflow design.

In both schemes, the result datastream is output into the
commit buffer under the direction of the address generator.
Although both schemes may fill the commit buffer in an
interleaved manner, after predictable rounds of processing,
a renewed continuous datastream is formed in the commit
buffer, which can be streamed to memories through DMA
uninterruptedly. The timing of committing is controlled by the
FSM tensor store stage.

VI. EXPERIMENTAL RESULTS

This section presents our evaluation methodology and sum-
marizes the experimental results of the proposed accelerators
in comparison with conventional CPU and GPU platforms.

A. Experimental Setup

1) Implementation: The proposed TMU and its coupled
TPU are fully implemented in Verilog, verified through VCS
simulation, and integrated into an in-house SoC infrastructure.
The complete system is deployed on a Xilinx Kintex-7 410T

8

Rearrange Resize Bboxcal Transpose Rot90 Img2col Pixelshuffle PixelUnshuffle Upsample Route Split Add

10
3

10
4

10
5

10
6

10
7

Th
ro

ug
hp

ut
 (B

yt
e/

s)

20.10× 1413.43×

55.13×

2.96× 26.50× 190.85× 30.91× 61.86×

30.91×
19.11× 8.54×

28.81×

9.86×

164.92×

18.31× 2.95× 29.87×

50.95×

18.60× 35.59×

19.79×
10.88×

2.15×
6.63×

1×

1×

1×

1×

1×

1×

1×
1×

1× 1×

1×
1×

* Normalized to 4.8GB/s. Normalized DRAM bandwidth ratio (TMU:CPU:GPU) is assumed to be (1:2.67:12.44) [22][23].

TMU
Normalized GPU *

Normalized CPU *

Fig. 8. Inference latency benchmarking (TMU Prefetch vs Normalized GPU vs Normalized CPU) for TM operators.

TABLE IV
MODEL CONFIGURATION PARAMETERS

DNN Type DNN Model Ifmap Size TM Op.

CNN

ESPCN

448×448×3

RR, PS
EDSR RR, PS, AD

YOLOv3 RR, RO, US, AD, BB
YOLOv3-Tiny RR, RO, US, BB

YOLOv8 640×640×3 RR, RO, US, AD, SL, BB
Transformer Attention 64×768 TS, RO

FPGA board, which communicates with the host environment
via python-based interfaces and a USB 3.0 data link. Logic
synthesis is performed using Synopsys Design Compiler with
SMIC 40 nm low leakage standard cell libraries, targeting
a clock frequency of 300 MHz. Fig. 9 shows the physical
hardware prototype, featuring a camera-equipped FPGA board
running real-time object detection with YOLOv8 [10], along
with a PC-based software interface for system interaction and
visualization.

2) Software Platform Setup: The evaluated neural networks
are processed using an in-house AI compilation toolchain
built with Python 3.6, TensorFlow 2.6, and NumPy 2.2. This
toolchain parses each model to extract its computational graph
and operator dependencies, applies post-training quantization

Fig. 9. Demonstration of a camera-equipped FPGA hardware prototype and
PC-based software platform for YOLOv8 object detection

(PTQ) using TensorFlow Lite to convert weights to INT8
precision, and transforms the result into an intermediate
representation (IR) for hardware-specific optimization. The
optimized models are then deployed to the target platforms.
Using this toolchain, we conduct a comprehensive inference
latency evaluation at both the TM operator and application
levels across TPU, TMU, Jetson TX2, and Raspberry Pi 4.

B. Performance Evaluation

1) TM operators benchmarking: We evaluated the perfor-
mance of various TM operators on the TMU, comparing
it to a 1.3GHz NVIDIA Pascal GPU (Jetson TX2) and a
1.5GHz ARM Cortex-A72 CPU (Raspberry Pi 4 Model B)
using official TensorFlow library functions. The configuration
parameters of TM operators are listed in Table III. The Jetson
TX2 and Raspberry Pi 4 Model B were chosen for their
relevance in edge computing, providing high programmability
for executing TM operators, unlike other typical accelerators,
which often lack support for a wide range of TM operators,
limiting their applicability in such tasks. Additionally, both
devices employ a complex multi-level caching mechanism for
data movement, which contrasts with the near-memory DMI
approach adopted by the TMU.

Note that the performance of TM operators is heavily
constrained by DRAM bandwidth. To enable fair comparison
across platforms, the measured performance of the CPU (with
a DRAM bandwidth of 12.8GB/s [13]) and the GPU (with
a bandwidth of 59.7GB/s [12]) is normalized to match the
DRAM bandwidth of the TMU, which is 4.8GB/s. This
normalization ensures that observed performance differences
reflect architectural design efficiency rather than bandwidth
disparities, enabling a more meaningful and bandwidth-fair
comparison across platforms.

As shown in Fig. 8, the TMU demonstrates substantial
throughput improvements, It achieves up to 1413.43× in
Resize and 61.86× in PixelUnshuffle than CPU, consistently
outperforming the normalized GPU and CPU. The TMU
excels in various fine-grained TM operators, such as 55.13×
in Bboxcal. Significant gains are also observed in element-
wise operators like 19.11× in Route and 28.81× in Add.

9

0 50 100 150 200 250 300 350 400 450

(1)

(2)

(3)

ES
PC

N 17.8%

(1) CPU+TPU. (2) Normalized GPU+TPU.
(3) TMU+TPU.

La
te

nc
y(

m
s)

Compute-Intensive Op.
TM Op.

0 1000 2000 3000 4000 5000 6000

(1)

(2)

(3)

ED
SR

15.1%

La
te

nc
y(

m
s)

0 50 100 150 200 250 300

(1)

(2)

(3)

YO
LO

v3 20.4%

La
te

nc
y(

m
s)

0 10 20 30 40 50 60 70 80

(1)

(2)

(3)

YO
LO

v3
-T

in
y

14.1%

La
te

nc
y(

m
s)

0 100 200 300 400 500

(1)

(2)

(3)

YO
LO

v8 34.4%
La

te
nc

y(
m

s)

0 200 400 600 800 1000

(1)

(2)

(3)

At
te

nt
io

n 34.6%

La
te

nc
y(

us
)

(a) Inference latency benchmark for the entire neural
network.

0 10 20 30 40 50 60 70 80 90

(4)

(5)

(6)

ES
PC

N 91.0%

(4) CPU. (5) Normalized GPU. (6) TMU.

La
te

nc
y(

m
s)

Rearrange
Transpose

Pixelshuffle
Upsample

Add
Route

Bboxcal
Split

0 200 400 600 800 1000

(4)

(5)

(6)

ED
SR

91.3%

La
te

nc
y(

m
s)

0 10 20 30 40 50 60 70

(4)

(5)

(6)

YO
LO

v3 92.0%

La
te

nc
y(

m
s)

0 2 4 6 8 10

(4)

(5)

(6)

YO
LO

v3
-T

in
y

87.1%

La
te

nc
y(

m
s)

0 25 50 75 100 125 150 175

(4)

(5)

(6)

YO
LO

v8 93.9%

La
te

nc
y(

m
s)

0 50 100 150 200 250 300 350

(4)

(5)

(6)

At
te

nt
io

n 88.1%

La
te

nc
y(

us
)

(b) Inference latency benchmark for TM operators only.

Fig. 10. Graphical representation of typical TM operators adopted in state-of-the-art neural networks.

These results highlight the TMU’s potential in performance-
boosting of TM operators. The only TM operator where the
TMU underperforms GPU is Rot90, due to the time-intensive
data disassembling and reassembling, particularly between the
width and channel dimensions, which can be further optimized
in the ongoing TMU implementation.

2) Application-level benchmarking: To ensure fairness and
reproducibility in application-level benchmarking, we adopt a
unified evaluation methodology. On CPU and GPU platforms,
TensorFlow implementations are instrumented with custom
profiler context blocks to measure the execution time of TM
layers. All reported results exclude cross-platform communi-
cation overhead to isolate computation performance. In this
setup, compute-intensive operators, including convolutions and
associated transformations (e.g., Img2col), are executed on the
TPU, while TM operators are handled by the TMU, CPU, and
GPU platforms. To highlight the TMU’s contribution to neural
network acceleration, the impact of Img2col is excluded from
the application-level benchmarking.

Execution times for six typical deep learning networks
featuring various TM operators are shown in Fig. 10(a). These
applications include ESPCN [25], EDSR [26], YOLOv3 [27],
YOLOv3-Tiny [28], YOLOv8 [10], and Attention [9]. The
configuration parameters of application-level benchmarking
are listed in Table IV. Combined with our in-house TPU [11],
the TMU outperformed a conventional CPU (even without
performance normalization) in inference latency benchmark
for the entire neural network, achieving speedup of 17.8%,
15.1%, 20.4%, 14.1%, 34.4%, and 34.6% for ESPCN, EDSR,
YOLOv3, YOLOv3-Tiny, YOLOv8, and Attention, respec-
tively. Fig. 10(b) shows the accumulated latency for all TM
operators, where the TMU demonstrated significant reductions
in latency, achieving reductions of 91.0%, 91.3%, 92.0%,

87.1%, 93.9%, and 88.1% for ESPCN, EDSR, YOLOv3,
YOLOv3-Tiny, YOLOv8, and Attention, respectively.

C. Physical Overheads

Table V provides a comparison between the proposed TMU
and several state-of-the-art DMI accelerators. It is important
to note that the reported physical parameters do not include
the DRAM controller or interface circuitry. Compared to prior
works, this design is the first DMI accelerator to serve as a
generic design template with reconfigurable registers capable
of supporting a wide range of TM operators. In addition, the
proposed TMU demonstrates clear advantages in both area
and power efficiency. After normalization to a 40 nm process,
it achieves the smallest area footprint (0.019 mm2), which
is 15.3× smaller than that of AME [29]. While the power
comparison is based on reported values without frequency
normalization, the TMU still consumes 1.52× less power
(2.7 mW vs 4.1 mW). Note that the adopted normalized area
and ratio refers to paper [14] and report [15].

Furthermore, this work supports a broader range of func-
tions (①-⑧), while AME [29] and ECNN [30] lacks functional
support. These advantages underscore the efficiency of the
proposed architecture in minimizing power consumption and
area footprint while maintaining competitive performance and
extensive functional support. Additionally, The TMU+TPU
combination achieves high-performance improvement and a
series of TM operators with only 0.07% extra overhead
of the TPU’s area, this indicates that the TMU contributes
significantly to system-level optimization.

VII. CONCLUSION

This work presents TMU, a reconfigurable near-memory
TMU designed to accelerate DMI operators in modern AI

10

TABLE V
COMPARISON WITH STATE-OF-THE-ART DATA-MOVE-INTENSIVE

ACCELERATORS.

Accelerators ECNN [30]† AME [29] This Work
Technology 40 nm 7 nm 40 nm

Frequency(MHz) 250 2100 300
Area(mm2) 2.26 0.034 0.019
Power(mW) 100 4.1 2.7

Normal. Area‡(mm2) 2.26 0.291 0.019
Reconfigurability ✘ ✘ ✔

Function§ ④,⑥,⑨ N/A ①-⑧

Freq. Area Power DRAM #.MACs
Integrated 300 26.96 mm2 1.83 W 1200 MT/s 4096
TPU [11] MHz post P&R w. DRAM DDR3 (int8)

†ECNN [30] includes Src/SrcS/Dst Reorder, ADDE/ACCI,
MUXA/MUXC, Block Buffer File, and other modules.
‡Normalized area ratio (7 nm:40 nm) = (1:8.57) [14], [15]. Normalized
to 40 nm, 300 MHz.
§①: Rearrange, ②: Resize, ③: Bboxcal, ④: Rot90 and Transpose, ⑤:
Img2col, ⑥: PixelShuffle and PixelUnshuffle, ⑦: Upsample, ⑧: Route,
Split, and Add, ⑨: Downsample.

workloads. By addressing the frequently neglected latency
bottlenecks introduced by TM operators, TMU significantly
enhances system throughput across multiple state-of-the-art
models. Despite its compact hardware footprint, the TMU
delivers substantial performance gains and demonstrates strong
scalability and integration potential within high-throughput AI
SoCs.

REFERENCES

[1] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, vol. 3, pp. 711–732,
2021.

[2] M. Khairy, A. G. Wassal, and M. Zahran, “A survey of architectural
approaches for improving gpgpu performance, programmability and
heterogeneity,” Journal of Parallel and Distributed Computing, vol. 127,
pp. 65–88, 2019.

[3] F. Tu, Y. Wang, Z. Wu, W. Wu, L. Liu, Y. Hu, S. Wei, and S. Yin,
“16.4 tensorcim: A 28nm 3.7 nj/gather and 8.3 tflops/w fp32 digital-cim
tensor processor for mcm-cim-based beyond-nn acceleration,” in 2023
IEEE International Solid-State Circuits Conference (ISSCC). IEEE,
2023, pp. 254–256.

[4] W.-Y. Hsu and W.-Y. Lin, “Ratio-and-scale-aware yolo for pedestrian
detection,” IEEE transactions on image processing, vol. 30, pp. 934–
947, 2020.

[5] N. Brown and D. Dolman, “It’s all about data movement: Optimising
fpga data access to boost performance,” in 2019 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2019, pp. 1–10.

[6] M. Tang and S. Liu, “A dynamic computational memory address
architecture for systolic array cnn accelerators,” in 2022 IEEE 24th Int
Conf on High Performance Computing & Communications; 8th Int Conf
on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf
on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), 2022, pp. 1314–1319.

[7] A. Rawal, Y. Fang, and A. Chien, “Programmable acceleration for sparse
matrices in a data-movement limited world,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2019, pp. 47–56.

[8] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:
a scalable and unified architecture for ubiquitous deep neural network
computing: Industry track paper,” in 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 789–801.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[10] R. Varghese and M. Sambath, “Yolov8: A novel object detection algo-
rithm with enhanced performance and robustness,” in 2024 International
Conference on Advances in Data Engineering and Intelligent Computing
Systems (ADICS). IEEE, 2024, pp. 1–6.

[11] Y. Li, Z. Wang, W. Ou, C. Liang, W. Zhou, Y. Yang, and C. Chen,
“Low-latency buffering for mixed-precision neural network accelerator
with multap and fqpipe,” in 2024 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2024, pp. 1–5.

[12] NVIDIA, “Jetson tx2 series module datasheet v1.8,” 2022.
[Online]. Available: https://openzeka.com/wp-content/uploads/2022/07/
Jetson-TX2-Series-Module-Datasheet-v1.8.pdf

[13] K. M. Huynh, T. T. Bui Nguyen, H. V. Nguyen, K. Dac Tran,
K. Iwata, K. Mizumoto, N. Honda, K. Matsumoto, K. Matsubara,
and S. Mochizuki, “16.8 gb/s lpddr4-3200@32-bit memory access
bandwidth,” in 2017 7th International Conference on Integrated Circuits,
Design, and Verification (ICDV), 2017, pp. 16–21.

[14] H. Mo, W. Zhu, W. Hu, Q. Li, A. Li, S. Yin, S. Wei, and L. Liu, “A 12.1
tops/w quantized network acceleration processor with effective-weight-
based convolution and error-compensation-based prediction,” IEEE Jour-
nal of Solid-State Circuits, vol. 57, no. 5, pp. 1542–1557, 2021.

[15] TSMC. (2019) Tsmc 2019 annual report. [Online]. Available: https:
//investor.tsmc.com/static/annualReports/2019/english/ebook/index.html

[16] S. Gomar, M. Mirhassani, and M. Ahmadi, “Precise digital implemen-
tations of hyperbolic tanh and sigmoid function,” in 2016 50th Asilomar
Conference on Signals, Systems and Computers. IEEE, 2016, pp. 1586–
1589.

[17] Z. Pan, Z. Gu, X. Jiang, G. Zhu, and D. Ma, “A modular approximation
methodology for efficient fixed-point hardware implementation of the
sigmoid function,” IEEE Transactions on Industrial Electronics, vol. 69,
no. 10, pp. 10 694–10 703, 2022.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, and G. A. E. Al,
“In-datacenter performance analysis of a tensor processing unit,” in
Computer architecture news, 2017, pp. 1–12.

[19] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264–274, 2020.

[20] T. E. Oliphant et al., Guide to numpy. Trelgol Publishing USA, 2006,
vol. 1.

[21] P. Diniz and J. Park, “Data reorganization engines for the next generation
of fpgas,” in Proc. of the ACM Conf. on Field-Programmable-Gate-
Arrays (FPGA’02), 2002, pp. 100–110.

[22] K. Zhang, X. Zhang, and Z. Zhang, “Tucker tensor decomposition on
fpga,” in 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019, pp. 1–8.

[23] S. Lloyd and M. Gokhale, “In-memory data rearrangement for irregular,
data-intensive computing,” Computer, vol. 48, no. 8, pp. 18–25, 2015.

[24] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3d-stacked dram,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 3S, pp. 131–143, 2015.

[25] M. A. Talab, S. Awang, and S. A.-d. M. Najim, “Super-low resolution
face recognition using integrated efficient sub-pixel convolutional neural
network (espcn) and convolutional neural network (cnn),” in 2019 IEEE
international conference on automatic control and intelligent systems
(I2CACIS). IEEE, 2019, pp. 331–335.

[26] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, 2017, pp. 136–144.

[27] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[28] P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection
and recognition using one stage improved model,” in 2020 6th interna-
tional conference on advanced computing and communication systems
(ICACCS). IEEE, 2020, pp. 687–694.

[29] Y. Sugawara, D. Chen, R. A. Haring, A. Kayi, E. Ratzlaff, R. M. Senger,
K. Sugavanam, R. Bellofatto, B. J. Nathanson, and C. Stunkel, “Data
movement accelerator engines on a prototype power10 processor,” IEEE
Micro, vol. 43, no. 1, pp. 67–75, 2022.

[30] C.-T. Huang, Y.-C. Ding, H.-C. Wang, C.-W. Weng, K.-P. Lin, L.-W.
Wang, and L.-D. Chen, “ecnn: A block-based and highly-parallel cnn
accelerator for edge inference,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
182–195.

https://openzeka.com/wp-content/uploads/2022/07/Jetson-TX2-Series-Module-Datasheet-v1.8.pdf
https://openzeka.com/wp-content/uploads/2022/07/Jetson-TX2-Series-Module-Datasheet-v1.8.pdf
https://investor.tsmc.com/static/annualReports/2019/english/ebook/index.html
https://investor.tsmc.com/static/annualReports/2019/english/ebook/index.html

	Introduction
	Related Work
	Tensor Manipulation Operator
	Fine-grained TM operator
	Rearrange
	Resize
	Bboxcal
	Img2col

	Coarse-grained TM operator
	Transpose and Rot90
	PixelShuffle and PixelUnshuffle
	Upsample
	Route, Split, and Add

	Tensor Manipulation Methodology
	Generic Execution Model
	Fetch
	Decode
	Tensor Load
	Fine-grained TM
	Element-wise Processing
	Coarse-grained TM
	Tensor Store
	Branch

	Unified Address Abstraction for Tensor Manipulation

	TMU Architecture
	System Architecture
	Tensor Prefetch and Output Forwarding
	Block-based Manipulation

	TMU's Microarchitecture and Dataflows
	Address Generator
	Reconfigurable Masking Engine

	Experimental Results
	Experimental Setup
	Implementation
	Software Platform Setup

	Performance Evaluation
	TM operators benchmarking
	Application-level benchmarking

	Physical Overheads

	Conclusion
	References

