
ar
X

iv
:2

50
6.

17
17

4v
1 

 [
ph

ys
ic

s.
ap

p-
ph

] 
 2

0 
Ju

n 
20

25

High-accuracy inference using HfOxSy/HfS2 Memristors

Aferdita Xhameni1,2 and Antonio Lombardo1,2*

1London Centre for Nanotechnology, 19 Gordon St, London, WC1H 0AH, United Kingdom
2Department of Electronic & Electrical Engineering, Malet Place, University College London, WC1E

7JE, United Kingdom
*Corresponding author: Antonio Lombardo (email: a.lombardo@ucl.ac.uk)

Abstract

We demonstrate high accuracy classification for handwritten digits from the MNIST dataset
(∼98.00%) and RGB images from the CIFAR-10 dataset (∼86.80%) by using resistive mem-
ories based on a 2D van-der-Waals semiconductor: hafnium disulfide (HfS2). These memo-
ries are fabricated via dry thermal oxidation, forming vertical crossbar HfOxSy/HfS2 devices
with an highly-ordered oxide-semiconductor structure. Our devices operate without elec-
troforming or current compliance and exhibit multi-state, non-volatile resistive switching,
allowing resistance to be precisely tuned using voltage pulse trains. Using low-energy poten-
tiation and depression pulses (0.7V–0.995V, 160ns–350ns), we achieve 31 (∼5 bits) stable
conductance states with high linearity, symmetry, and low variation over 100 cycles. Key
performance metrics—such as weight update, quantisation, and retention—are extracted
from these experimental devices. These characteristics are then used to simulate neural net-
works with our resistive memories as weights. Neural networks are trained on state-of-the-
art (SOTA) digital hardware (CUDA cores) and a baseline inference accuracy is extracted.
IBM’s Analog Hardware Acceleration Kit (AIHWKIT) is used to modify and remap digital
weights in the pretrained network, based on the characteristics of our devices. Simulations
account for factors like conductance linearity, device variation, and converter resolution.
In both image recognition tasks, we demonstrate excellent performance, similar to SOTA,
with only <0.07% and <1.00% difference in inference accuracy for the MNIST and CIFAR-
10 datasets respectively. The forming-free, compliance-free operation, fast switching, low
energy consumption, and high accuracy classification demonstrate the strong potential of
HfOxSy/HfS2-based resistive memories for energy-efficient neural network acceleration and
neuromorphic computing.

Keywords: potentiation, depression, memristors, resistive random access memory (RRAM)
neuromorphic computing, hafnium disulfide, hafnium oxide, 2D layered material (2DLM), forming-
free, compliance-free, van der Waals semiconductors

Introduction

The economic and environmental cost of training and deploying neural networks for machine
learning and artificial intelligence must be addressed1 2. From their conception, neural networks
have taken inspiration from the brain to enable and improve performance in machine learning
tasks. Arrangements of artificial neurons and synapses comprise the network, where the strengths
of connections between different nodes in the network (artificial neurons) are represented by the
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weight values of branches connecting the layers (artificial synapses). Once a network has been
trained to solve a particular task, its weights encode the network’s ability to evaluate new,
untested data, and thus should be trainable, precise, and resilient to repeated programming and
device ageing. In the earlier days of machine learning, computation for neural networks was per-
formed on digital hardware such as central processing units (CPUs) that resulted in performance
increases over time which generally followed Moore’s law. However, since 2012, computation for
machine learning on digital hardware has been performed on graphical processing units (GPUs)
from which a doubling of performance has been achieved every 3.4 months or fewer. Aside from
improving algorithms and the increased parallelism offered by GPU cores, this rapid increase
in performance can also be explained by the rate at which GPU hardware has improved, with
NVIDIA GPUs improving in computational performance by a factor of 317 since 20121. However,
despite recent advances in more efficient algorithms and hardware architectures, a rethinking of
machine learning systems at the most fundamental level is urgently required to address the ever-
growing demand for computing power1. Taking inspiration from the brain, developing hardware
that can co-locate processing and memory functions is key to breaking the von Neumann bottle-
neck which limits computational efficiency by necessitating the shuttling of data back and forth
between processing and memory units3.

Many different types of devices pose as potential candidates for accelerating performance in
machine learning tasks and surpassing the von Neumann bottleneck. Memristors are one class
of simple, two-terminal analog devices which have shown promise in hardware acceleration for
neuromorphic computing and machine learning tasks when integrated in densely-packed cross-
bar arrays4. In analogy with biological systems, where the transmission strength of incoming
signals can be controlled at a synapse, most memristors can variably impede the flow of current
due to the modulation of their conductance between multiple states. Conductance states in a
memristor can be modified by application of electrical stress, such as a voltage or current pulse,
where increasing the memristor’s conductance state is referred to as potentiation, and decreas-
ing its conductance state is referred to as depression. Similarly to biological synapses, some
memristors can retain programmed conductance states when electrical stress is removed, making
them non-volatile memory devices. Hence, in most implementations where memristors are used
for machine learning, the devices are integrated in crossbar arrays utilised for weight storage
and update. The analog crossbar array can then be interfaced with digital integrated circuits
via analog-to-digital converters for other processes in a machine learning task such as applying
activation functions. In existing digital hardware, weight values are calculated and stored in
separate logic and memory units, respectively. However, analog crossbar arrays of memristors
offer vastly increased parallelism and avoid shuffling data back and forth as weight values can be
both programmed and stored as non-volatile conductance states in the same memristive hard-
ware. Therefore, by inputting voltages across the rows of a crossbar array where memristors have
been programmed to precise conductance states, and measuring the output currents along the
columns, a memristor-based crossbar array can perform multiplication and accumulation opera-
tions (using Ohm’s and Kirchhoff’s laws) to enable fast matrix-vector multiplications (MVM). In
some applications such as compressed sensing, this presents a key advantage of memristor-based
crossbar arrays, which is to allow for different matrix-vector-multiplication (MVM) operations to
execute in the same amount of time, regardless of the input data size (O(1) time complexity)4.
The same is not true for GPUs, in which execution time grows with n2 for input data of size n in
MVM operations. A good example of the performance enhancements offered by memristive hard-
ware in machine learning tasks can be found in the work of Yao et al.5. In their work, network
weights were first trained on digital hardware, then transferred to physically-implemented cross-
bar arrays of TiN/TaOx/HfOx/TiN memristors, with modifications made to network weights
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to be aware of the characteristics of their memristor hardware5. Their memristor-based neural
network was able to correctly classify a large proportion of previously unseen handwritten num-
bers from the MNIST dataset6, resulting in a classification accuracy of 96.19%, close to a digital
hardware baseline score of 97.99%5. The small difference in accuracy, but significantly decreased
energy consumption and improved performance density compared to using conventional digital
hardware for storing weights clearly demonstrates a use-case for integrating memristor-based
hardware accelerators with digital components. Therefore, owing to their potential for efficiency,
scalability and strong non-volatile memory performance, memristors are a strong candidate for
use as analog weight storage in crossbar arrays5 7.

Despite their excellent performance, there are a number of challenges associated with using
memristive hardware for machine learning applications. Noise during conductance update or
read steps can originate from a variety of sources, and reduces the effectiveness of using mem-
ristors for weight storage or weight update in a neural network. Precisely programming and
distinguishing states in noisy devices which show highly non-linear conductance update within
a limited conductance range can become impossible, leading to reduced machine learning accu-
racy. On the other hand, linear conductance update can allow for different conductance states
to be more accurately distinguished during potentiation and depression, provided that there is
low cycle-to-cycle variation and little drift in the devices. When trying to program memristors
to represent specific weights in a neural network, this behaviour would facilitate a high machine
learning accuracy. Furthermore, not only should conductance update be linear in potentiation
and depression, but the device should also show a high degree of symmetry in both schemes. To
enable the use of energy efficient and scalable memristive hardware in machine learning tasks,
tailored potentiation and depression pulsing schemes in which pulse widths and amplitudes can
be modulated by pulse number are often introduced8 9 10 11. Despite increasing computational
latency and circuit area, these schemes not only linearize the conductance update with respect
to programming pulse number, but can also reduce cycle-to-cycle programming noise too9.

Another set of challenges associated with implementing memristive hardware in neural net-
works are the requirements of electroforming and current-compliance for each device. Elec-
troforming is a one-time initialisation step, typically required by a class of memristors called
resistive random access memory (RRAM) devices, based on insulating metal-oxides. RRAM
devices have shown otherwise excellent performance, reliability, energy efficiency and scalabil-
ity. However, requiring electroforming provides a barrier for their adoption since it necessitates
increased peripheral circuitry and harms scaling12. Current compliance circuitry is required by
most memristive devices which do not have a self-limiting mechanism to prevent high currents
from damaging the device. In most implementations, memristive chips require 1-transistor-
1-memristor architectures (1T1M) which limit integration density and increase computational
complexity13 14. Defect engineering can be used to address electroforming by introducing a
large number of defects or modifying the microstructure of the pristine device by providing pre-
existing conductive pathways. Self-limiting currents in the memristor stack has been achieved
by intentionally engineering heterostructures which slow the motion of charge carriers respon-
sible for changing the device resistance such as oxygen vacancies13 14. One class of materials
which allows for precise defect engineering and facile control of heterostructures with pristine
interfaces is that of two-dimensional layered materials (2DLMs). Memristors based on partially
oxidised 2DLM semiconductors have shown promise in energy efficiency, fast, compliance-free
and electroforming-free operation15 16 along with strong non-volatile memory characteristics and
independence from surrounding conditions such as water vapour, temperature and oxygen16.
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While there are a variety of candidates and methods for integrating memristors in neural
networks which address many of these issues, it is necessary to have a means of rapidly and ac-
curately evaluating the potential performance of new classes of memristive devices for hardware
accelerators. Such devices may be able to provide a breakthrough in performance which could
carve a niche for their use within machine learning and neuromorphic applications. However, due
to the nature of device fabrication with novel materials and engineering methods, the road from
individual device fabrication and performance evaluation to wide-scale chip fabrication and pro-
gramming is often long, expensive and does not allow for exploring the materials and parameter
space for device optimisation, limiting adoption by industry. The Analog Hardware Acccelera-
tion Kit (AIHWKIT) developed by IBM17 is a Python-based, open-source library which enables
estimation of the performance of analog memristive hardware in a variety of machine learning
tasks by implementing a wide range of measured device performance parameters, non-idealities
and necessary peripheral circuitry in machine learning simulations18. While performance esti-
mations based on AIHWKIT may not take into account all possible challenges that may arise
when exploring new hardware for analog in-memory computation, it allows for devices based on
less-mature technologies to demonstrate their potential performance in memristive chips. Conse-
quently, it provides an excellent route towards rapid device optimisation and materials screening
without the need for the complex fabrication of large arrays of devices.

In this work, we investigate the machine learning performance of a simulated network/crossbar
chip whose elements are experimental HfOxSy/HfS2 memristors. Such devices have shown high
potential for ML applications as they combine sub-nJ switching, excellent thermal and envi-
ronmental stability, current self limiting (compliance free) and forming-free operation16. These
devices were investigated with tailored potentiation and depression pulses, producing highly lin-
ear and symmetric conductance update with low cycle-to-cycle variation. Such linearity, together
with the non-volatility of the states, enables the use of our memristors in neural networks to store
synaptic weights. The network weights are mapped into a number of programming pulses and
stored in the memristors as resistance or conductance values. As a result, despite accounting
for a range of measured device characteristics, such as ON/OFF ratio, cycle-to-cycle and device-
to-device variation, our simulations show high accuracy classification scores with the MNIST
dataset6 and the more challenging CIFAR-10 dataset19, nearing SOTA performance. Combined
with the high performance of the individual memristors we investigated, their potential per-
formance in memristive chips for machine learning tasks provides strong motivation for further
research in physical memristive chips based on this class of device.

1 Evaluation of ML performance of novel analog memories

To evaluate the potential machine learning performance of our devices in a suitable task, we
have used an open source Pytorch toolkit developed by IBM called the Analog Hardware Accel-
eration Kit (AIHWKIT)17. In Fig. 1, we outline the typical workflow for evaluating the use of
memristors in a simulated crossbar array used for a machine learning task18.

Prior to using the toolkit, the performance of the device as a non-volatile memory should be
evaluated, which involves testing the resistive switching of the device with voltage pulses and
testing the non-volatility or retention characteristics of the programmed states. When designing
a crossbar array of memristors for weight storage and update in a machine learning task, the
conductance or resistance state of the device should then be programmed to increase and de-
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Figure 1: Process flow for using the AIHWKIT17 to evaluate potential machine learning per-
formance of an analog memory device intended for use in a crossbar array for weight storage or
update.

crease in a linear and gradual manner (potentiation and depression, respectively.) Since weights
held in digital logic can take values between -1 to 1, and conductance states represent weights in
memristive hardware accelerators, often a differential configuration of memristors (Fig. 1, panel
3) is employed as only positive conductances can be encoded in each individual device. There-
fore, each memristor cell is composed of two memristors in the array, with one corresponding to
positive weights and the other corresponding to negative weights. An example of the measure-
ment and data extraction process is shown in the next section.

Once device characteristics have been determined, a machine learning task should be chosen,
and an associated neural network can be programmed and evaluated in its ability to solve the
task. By default, both training and inference will run on digital hardware such as CPU or GPU
cores, locally or by utilising cloud computing services. In our case, we ran our code locally on
an NVIDIA RTX 3080 GPU, utilising its compute unified device architecture (CUDA) cores.

Using the device conductance update and retention characteristics, a suite of device features
and non-idealities can be configured for the digital hardware to simulate while solving the ma-
chine learning task. These include but are not limited to: the device type (for example PCM,
RRAM, etc), the number of conductance states/ bit resolution, voltage drops across rows and
columns of the crossbar array due to interconnect resistance (IR drop), retention characteristics,
update linearity and asymmetry and peripheral circuitry features such as ADC/ DAC size. In
the context of simulating a crossbar array of memristors to store and update weights, all of these
limitations and features in device performance are applied by modifying the way that weights
(programmed in digital hardware) would change if the network were deployed onto analog hard-
ware. Then, when the network deployed on simulated analog hardware is used for inference, the
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impact of programmable bit resolution, inaccurate weight programming, and limited retention
on machine learning performance due to analog hardware characteristics can be evaluated by
observing a difference in performance compared to the unmodified, SOTA digital hardware. It
is worth mentioning that the network can also be trained on the simulated analog hardware20.
In this case, step 3 in Fig. 1 is performed before step 2, such that the training is performed
utilising the performance parameters and non-idealities of the analog hardware. In the following
sections, we explore several examples of evaluating the machine learning potential for memristive
hardware based on our experimental HfOxSy/HfS2 memrsitors.

2 Potentiation and Depression

We extract relevant parameters for simulating image recognition performance of compliance-free
and forming-free memristors based on a crystalline 2DLM semiconductor (HfS2) which was par-
tially dry oxidised to form the HfOxSy/HfS2 structure shown in Fig. 2a. Devices were measured
on a FormFactor MPS150 probe station, connected to a Keysight B1500A Parameter Analyzer
with remote sensing units and B1530A WGFMU (waveform generator/ fast measurement unit)
with a temporal resolution of 10ns. The devices show stable non-volatile resistive switching when
measured with fast voltage pulses (Fig. 2b).

Similar to other RRAM technologies8 9 17 10 5 21, our devices show non-linear conductance up-
date characteristics when biased with repeated identical voltage pulses. However, although not
ideal, this has been circumvented by using pulses with increasing voltage and pulse width (Fig.
2c) at a cost to increasing the required peripheral circuitry in a physical implementation of such a
circuit8 9. 20 pulses were used for both potentiation and depression to leave headroom to extract
an optimal performance range, with one complete potentiating pulse train and one complete de-
pressing pulse train constituting one programming cycle, therefore containing 40 programming
pulses. To ensure robust characterisation of our devices, read pulses were employed as -0.1V, 30µs
pulses, 20µs apart from programming pulses, avoiding any contribution to read currents from
spurious charging or discharging capacitances due to the high frequency operation. The voltages
and pulse widths employed were low (<1V and <350ns respectively) and are indicated in Fig. 2c.

Potentiation and depression pulse trains were conducted on a single device for 100 cycles to
determine the resilience of the device to repeated programming (Fig. 2d). The raw conductance
read data for each of the 100 cycles is shown superimposed on one complete programming cycle,
with the average values plotted using a dashed line. From the data, we extract the conductance
states obtained from potentiation and depression within the most linear range of both regimes
(Fig. 2d). We require a differential configuration of our devices to represent positive and neg-
ative weights, therefore weight values (w) encoded by our devices must be represented by the
difference in conductance of the memristors on a positive (G+) and negative (G−) branch (w ∝
G+ - G−). In this configuration, each unique combination (G+ - G−) of quantised conductance
states is assigned a ”bin” number, and the separation between neighbouring bins is defined as
the bin-width. This results in 31 total bins (or log2(31)∼5 bits) being accessible for reliable
programming in both potentiation and depression combined (Fig. 2e). We choose to program
our devices to ∼5 bits as this is the point at which the precision of analog implementations can
be superior to digital ones while not having much higher multiply-and-accumulate (MAC) energy
and is therefore a realistic application for our devices22.
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Figure 2: (a) Forming-free, compliance-free device used in potentiation and depression exper-
iments shows (b) robust non-volatile resistive switching with fast (80ns) WRITE and ERASE
pulses. (c) We employ a tailored pulsing scheme to achieve gradual and linear conductance up-
date which is required to attain the desired bit-resolution for high accuracy machine learning
with our devices. (d) Distribution of conductances achieved using the pulsing scheme in (c),
over 100 cycles. (e) Linear region extracted from (d), with average conductances and standard
deviation fitted with linear functions. A high degree of symmetry between potentiation and
depression and low standard deviation at all conductance values (f) allows for 31 bins (unique
values of G+ - G−) to be defined with bin width (BW) > 2σ.

Additionally, the cycle-to-cycle variation and consequently the standard deviation of each
state is also crucial for determining how reliably a memristor within a memristive chip can
achieve a predicted or specified conductance when programmed with an associated pulse train.
Within our linear range, each step between bins or average conductance states is encoded by the
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average bin-width 81.077µS or 80.520µS for programming in potentiation or depression, respec-
tively. Crucially for machine learning accuracy, the standard deviations of neighbouring states
do not overlap. This is indicated between a pair of neighbouring states in Fig. 2e. Furthermore,
comparing the gradients of the fitted lines for both potentiation and depression, we observe only
a very small difference. A high degree of symmetry between potentiation and depression conduc-
tance update also positively influences machine learning accuracy and is present in our data. The
high R-squared values for both lines (0.99898 for potentiation and 0.99925 for depression) also
indicate how closely we can fit a linear conductance update model to our data, from which we
will base our simulated crossbar array devices for machine learning. Fig. 2f shows the standard
deviation of each state, which can be taken at an average value of 23.700µS. Overall, the device
shows strong linear and symmetrical conductance update characteristics at low energy (23.74nJ
± 1.26nJ total programming energy per complete potentiation/depression cycle, averaged over
10 cycles), without requiring electroforming or current compliance, from which we can build a
device model for simulating machine learning performance of a memristor chip.

3 MNIST image classification

In Fig. 3a, we show the network utilised to classify handwritten number images included in the
MNIST dataset6. The 28x28 input images are flattened to a 1x784 vector in the first layer of
the network. We use one hidden layer consisting of 500 neurons, and the network has a fully
connected architecture where each neuron from one layer is connected to all neurons in the subse-
quent layer. We use this architecture as it has been shown to result in high accuracy classification
of handwritten numbers in the MNIST dataset23. Finally in the last layer of the network in Fig.
3a, a predicted handwritten number is determined from 10 possible values (0 to 9). Deploying
this network architecture on SOTA digital hardware (an NVIDIA RTX 3080 GPU) and training
the network weights for 30 epochs results in an inference accuracy of 98.07%.

In the simulated analog implementation of this network, we employ a differential configura-
tion of two memristors (one to represent positive weights and the other for negative weights)
between each neuron, as described in the previous secion, and in Fig. 1, panel 3. When simu-
lating deployment of the network on our memristive hardware, we map network weights to the
number of programming pulses required to reach each corresponding analog weight within the
linear operating range of the device, using the linear fit in Fig. 2e. The ‘0’ weight value is
mapped to the start of the device linear range.

Based on the electrical data in Fig. 2, we extracted relevant performance parameters pertain-
ing to (i) cycle-to-cycle variation, (ii) linearity, (iii) symmetry, (iv) IR drop, (v) bit-resolution
and (vi) the characteristics of conductance update in our HfOxSy/HfS2 devices which inform our
device model. However, prior to deploying weights to our simulated arrays of HfOxSy/HfS2 de-
vices, we perform a further 5 epochs of hardware-aware training (HWAT) on the network. During
HWAT, the network learns to ensure robust weight deployment to our HfOxSy/HfS2 devices by
retraining network weights on digital hardware for a small number of cycles while accounting for
the characteristics of the analog hardware which we wish to deploy the network on. Although we
have a good picture of device characteristics over a range of experimentally measured parameters
(i-vi above), in lieu of data with similar statistical significance, we have simulated the impact of
device-to-device variation informed by literature on arrays of HfO2 memristors fabricated by a
scalable method (ALD)24 and arrays of hBN-based 2D layered memristors25. This has informed
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Figure 3: (a) Network architecture employed for MNIST image classification task. (b) High
accuracy inference results with 5 repetitions indicating consistent MNIST classification perfor-
mance close to SOTA devices. Resilience of memristive hardware to drift in potentiation (c) and
depression (d) given global drift compensation and hardware-aware re-training of the network
weights.

a baseline value of 30% for conductance update and how reliably we can achieve the minimum/
maximum conductance states of our devices. Therefore, during HWAT, we account for our
experimentally measured analog hardware characteristics (i-vi listed above) and for simulated
device-to-device (DTOD) variation. Inference accuracy is subsequently extracted by simulating
deployment of the HWAT-modified weights on our HfOxSy/HfS2 devices, and evaluating the
proportion of correctly predicted handwritten numbers from an unseen test set from the MNIST
dataset.

Simulations were conducted for both potentiation and depression, with separate noise charac-
teristics corresponding to each programming mode. In both potentiation and depression (positive
and negative weight update, respectively) we achieve 98.00% accuracy with low variation across
5 runs, only 0.07% lower than SOTA accuracy, showing the potential of this hardware to solve
machine learning tasks with high accuracy (Fig. 3b). This is largely attributed to the linear
operation and low σ/Bin-Width (BW) ratio in both programming regimes extracted from Fig. 2e.
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In our simulations, we have also utilised the capability of the AIHWKIT to simulate the
peripheral circuitry connecting analog memristor hardware and SOTA hardware, as memristive
chips cannot be operated in isolation. We map analog weights to digital values and utilise 8
bit ADC and DACs which, despite being higher resolution than our devices which have shown
∼5 bit operation, make our circuit more resilient to programming noise albeit at a cost to total
computation energy and chip area. Along with adaptive scaling of input data for the first few
batches of training data (ensuring weights are represented as accurately as possible within the
limitations of our analog hardware), this ensures that our simulation is not agnostic of the other
peripheral hardware required to operate a memristive chip for use in a neural network for ma-
chine learning tasks.

To create an even more complete device model, we also utilised conductance drift data from
the ReRAMWan2022 analog device model26. This model is based on electrical measurements of
thousands of HfO2 memristors, allowing us to reasonably predict inference accuracy drift for a
future array of our own HfOxSy/HfS2 devices fabricated by a scalable method. Over the same
time span for which we observe <3% conductance drift across the whole range of conductances
programmed in our devices16, the ReRAMWan2022 data shows considerably more conductance
drift, up to 30%26, which we take as worst-case scenario baseline due to its higher statistical
significance. We compare the retention of inference accuracy by simulating deployment on our
HfOxSy/HfS2 devices with HWAT and drift compensation against a baseline model, which we
take to mean without HWAT and without any compensation for conductance drift described by
the ReRAMWan2022 model26 (Fig. 3c-d). This shows that the impact of HWAT on MNIST in-
ference accuracy is relatively small for our devices, and therefore may be unnecessary. However,
by applying global drift compensation, we observe superior retention of inference accuracy over
the tested period compared to the baseline ReRAMWan2022 drift model26 without compensa-
tion.

4 CIFAR-10 image classification

To further evaluate the potential of our devices for machine learning applications, we chose an
image classification task based on the CIFAR-10 dataset19. This dataset contains 60,000 32x32
pixel RGB images of 10 different categorical items, including dogs, cats, frogs and others. To
classify the CIFAR-10 dataset, we implemented a convolutional neural network (CNN), shown
in Fig. 4. This network is composed of 3 repeated blocks, where the input image is split into
two branches. In the upper branch, it undergoes two convolutions-being scanned by a 3x3 filter
to extract a number of reduced-dimension feature maps each time. After the first convolution
in the upper branch, the feature maps are normalised with respect to a dynamically calculated
mean and standard deviation (batch normalisation, improving stability during training) and then
passed through a rectified linear unit (ReLU) activation function which introduces non-linearity
in the data, improving the ability of the network to learn complex patterns. After the second
convolution in the top branch, only a further ReLU operation is performed.

In the lower branch, only one convolution is performed, with a 1x1 filter so as to extract an
equivalent number of feature maps to the other branch. This lower branch corresponds to the
residuals which are then combined with the result of the two convolutions in the upper branch,
and pooled to the maximum value in a 2x2 filter which is passed over the different channels, to re-
duce the dimensionality of the output of each block. The output of each preceding block becomes
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Figure 4: Convolutional neural network composed of 3 ResNet blocks and a fully connected
layer. This network was trained with data from the CIFAR-10 dataset augmented with random
horizontal flips, rotations, normalisation, resizes and crops. Simulated arrays of HfOxSy/ HfS2
device arrays act as analog weight matrices in the network.

11



the input of the next. These blocks are one possible implementation of ResNet blocks which have
been shown to be successful in image recognition machine learning tasks27. We employ only 3
ResNet blocks, although many modern network architectures implement 10s of these blocks to
achieve very high accuracy in even more challenging tasks. However, this comes at a cost to the
number of trainable weights increasing, thus we employ only 3 blocks to maintain the number of
memristors required to implement this network relatively low. The final part of the network is
a fully connected network with 3 layers, outputting a prediction from the 10 possible categories.
Given a differential configuration of memristors, in total, ∼420,000 HfOxSy/ HfS2 devices would
be required to store ∼210,000 trained weights for the whole network, due to convolutions and
other operations in each of the three blocks (see analog weight matrix dimensions in each panel,
Fig. 4)

Figure 5: (a) High accuracy, low variation inference results with 5 repetitions indicating consis-
tent CIFAR-10 classification performance close to SOTA devices. (b) Device-to-device (DTOD)
variation below 30% results in <1% drop in inference accuracy compared to SOTA devices. Re-
silience of memristive hardware to drift in potentiation (c) and depression (d) given global drift
compensation and hardware-aware re-training of the network weights.

The network was first trained for 200 epochs to an inference accuracy of 87.51% (Fig. 5a)
using SOTA hardware (an NVIDIA RTX 3080 GPU, as before). When simulating deployment of
the network weights on our memristive hardware as conducted for MNIST handwritten number
classification, we observe <0.9% decrease in accuracy despite all the memristor non-idealities we
have implemented in our simulation, with only 20 hardware-aware retraining (HWAT) epochs of
the deployed network weights.
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We implemented device-to-device (DTOD) variation as in our MNIST simulations (Fig. 3).
However, to inform future fabrication and estimate the impact of DTOD as well as other device
non-idealities on inference accuracy, we varied the DTOD variation values and re-ran simula-
tions for inference in CIFAR-10 (Fig. 5b). The loss in accuracy of ∼0.9% which we report
from our CIFAR-10 simulations, is achieved at 30% DTOD. Due to the low cycle-to-cycle vari-
ation, high linearity and good symmetry in our potentiation/depression data, DTOD variation
is the dominating factor causing loss in inference accuracy when simulating deployment on our
HfOxSy/ HfS2 devices compared to SOTA digital hardware (Fig. 5b). It is important to note
that acceptable limits of accuracy loss compared to SOTA hardware are application-dependent.
Despite not using a scalable fabrication method in our work, existing literature shows that our
image classification accuracy scores are achievable within a realistic DTOD range of 30% for
HfO2-based memristors fabricated from a scalable method (ALD)24, and for 2D materials-based
memristors as well25. Similar to our MNIST simulations (Fig. 3c-d), we compare the network’s
resiliency to drift given a baseline network (uncompensated for drift and without HWAT) and a
drift-compensated, HWAT re-trained network (Fig. 5c-d). We observe a much larger variation
in accuracy between the HWAT and baseline scores, of ∼9%, highlighting the advantage of using
HWAT in more challenging machine learning tasks to provide robust weight deployment on ana-
log hardware. With global drift compensation applied, our network modelled on HfOxSy/ HfS2
memristor hardware retains its accuracy of 86.80% compared to the baseline model without drift
compensation and HWAT which degrades in performance significantly over time.

5 Comparison to other memristors

Evaluating the performance of memristive devices in machine learning applications by simulat-
ing the impact of measured device characteristics is a common and important practice in the
field. However, different authors use a variety of different tool-kits, such as AIHWKIT17 20,
XPESIM28 5, NeuroSIM29 30 10, and others31 21. In their simulations, authors deploy various
neural network architectures to solve a variety of different machine learning tasks on different
datasets, and evaluate different types of memristive device. Therefore, to meaningfully con-
textualise the performance of our devices, we compare our results to existing literature where
potentiation and depression measurements of a few RRAM devices have been used to extract
device parameters relevant for weight storage in a neural network. We believe the papers chosen
are the most relevant, as Nguyen et al.,11 and Lu et al.,10 both employ pulsing schemes with
increasing pulse heights in their potentiation and depression experiments. Furthermore, as in
our work, Lu et al.,10 also use a chalcogenide switching layer in their Ag/SnS/Pt devices, and
do not require electroforming to operate their devices. Pan et al.,21 measure devices with a
similar structure to ours (TiN/HfO2/Ti), and Yao et al., also use a hafnia-based device stack
(TiN/TaOx/HfOx/TiN). It is important to note that the MNIST inference result achieved by
Yao et al., was performed fully in hardware, consisting of large memristor arrays connected to
integrated programming and read-out circuitry, highlighting a significant achievement in the
field5. However, for inference on the CIFAR-10 dataset, the authors used a neural network
with a much larger number of weights (which would require more memristors than they had
fabricated). Therefore, for inference on the CIFAR-10 dataset, Yao et al., used a device model
which considered the device-to-device and cycle-to-cycle variation which they measured in their
experimental hardware5.

In the examples chosen, inference accuracy of a network trained on the MNIST (Fig. 6a)
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and CIFAR-10 datasets (Fig. 6b) has been evaluated on both SOTA digital hardware and sim-
ulated RRAM hardware, allowing for comparison between the two5 11 10 21. Absolute accuracy
was not used as this depends strongly on the network architecture and size which is not being
evaluated here. We also compare the programming voltages used to update memristor weights
in CIFAR-10 image classification (Fig. 6c). While there are many other metrics by which the
effectiveness of memristive hardware for neural networks can be evaluated, accuracy degradation
compared to SOTA in MNIST and CIFAR-10 classification and maximum voltage used during
programming were three criteria which were available across a number of different works. Across
these metrics, our devices show consistently low loss in accuracy compared to SOTA in both
image classification tasks (Fig. 6a-b) while only requiring low programming voltages (Fig. 6c).

Figure 6: Loss in accuracy resulting from deployment of neural networks on simulated analog
memristive hardware compared to SOTA, in inference tasks based on test data from the (a)
MNIST and (b) CIFAR-10 datasets. Using a simulated crossbar array of our devices, we observe
low loss in accuracy for both datasets. (c) Our devices are able to retain high accuracy compared
to similar existing literature, despite utilising low programming voltages. (d) To increase the
realism of our simulations, we account for a range of device non-idealities while being conscious
of peripheral circuitry and drift.

The table in Fig. 6d indicates the different device non-idealities that have been implemented
in each image recognition simulation, disclosed in the main texts or their associated supplemen-
tary information. Given all the non-idealities we have implemented in our simulation, we believe
our simulations offer a realistic prediction of the performance of arrays of HfOxSy/ HfS2 devices
in machine learning tasks. Our devices show promising machine learning performance and strong
potential for maintaining high accuracy compared to SOTA hardware, while being programmed
with short pulses (<350ns) at low voltages (<1.0V). Despite the increased computational latency
and chip area caused by requiring tailored pulsing schemes, which are used for many memristive
devices8, including the work by Lu et al.,10, Nguyen et al.,11 and our own, our memristors are
forming-free and compliance-free, which contribute towards enabling simplified operation and
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reduced area consumption for memristor-based chips32.

6 Conclusions

We have shown that low energy, fast-switching HfOxSy/ HfS2 memristor hardware can achieve
highly linear and symmetric conductance update with high granularity, without requiring elec-
troforming or current compliance. By using the IBM toolkit, we performed highly realistic
simulations where not only the real device characteristics are considered but also the impact of a
number of other factors such as device-to-device variation, ADCs/DAC size, IR drop and infer-
ence accuracy drift over time. The results show that high accuracy is achieved for inference on
both the MNIST and CIFAR-10 datasets, showing the potential of resistive memories based on
HfOxSy/ HfS2 semiconductor-insulator structures for future hardware accelerators. With further
fine-tuning of device characteristics, (such as operating currents) our forming-free, compliance-
free memristors based on HfOxSy/HfS2 have the potential to enable energy-efficient, area-efficient
and highly accurate memristor chips for machine learning and neuromorphic computing.
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