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Hypergraph Transformer Neural Networks
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Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information

Technology, Beijing Institute of Artificial Intelligence, Beijing University of Technology

Graph neural networks (GNNs) have been widely used for graph structure learning and achieved excellent per-

formance in tasks such as node classification and link prediction. Real-world graph networks imply complex

and various semantic information and are often referred to as heterogeneous information networks (HINs).

Previous GNNs have laboriously modeled heterogeneous graph networks with pairwise relations, in which

the semantic information representation for learning is incomplete and severely hinders node embedded

learning. Therefore, the conventional graph structure cannot satisfy the demand for information discovery

in HINs. In this article, we propose an end-to-end hypergraph transformer neural network (HGTN) that ex-

ploits the communication abilities between different types of nodes and hyperedges to learn higher-order

relations and discover semantic information. Specifically, attention mechanisms weigh the importance of se-

mantic information hidden in original HINs to generate useful meta-paths. Meanwhile, our method develops

a multi-scale attention module to aggregate node embeddings in higher-order neighborhoods. We evaluate

the proposed model with node classification tasks on six datasets: DBLP, ACM, IBDM, Reuters, STUD-BJUT,

and Citeseer. Experiments on a large number of benchmarks show the advantages of HGTN.
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1 INTRODUCTION

In recent years, the application of deep neural networks to non-Euclidean structure data process-
ing tasks has attracted extensive attention [14, 31]. The emergence of graph neural networks

(GNNs) makes a breakthrough in the processing of unstructured data [27, 35]. In graph theory, one
edge of a conventional graph can only represent the relationship between two nodes (one edge
links two nodes). However, the data structure in the real-world may exceed pairwise connection,
which leads to more complex data correlation [7]. In a citation network, papers are nodes. For a con-
ventional graph network, if two papers belong to the same author, they can establish a connection
relationship, which reflects the communication between the two nodes. But in fact, an author may
have three or more papers. To represent this kind of high-order relationship among multiple papers
belonging to the same author, it is necessary to introduce a more practical expression to establish
communication between multiple papers. Furthermore, the graph networks in the real-world are
usually heterogeneous and contain various semantic information, such as social networks [2], ci-
tation networks [15], and knowledge graphs [25, 33]. Heterogeneous information networks

(HINs) contain different types of nodes or edges, which imply rich semantic information. Figure 1
shows a heterogeneous network with inconsistent edge types. The nodes are connected with the
semantic relationship of different types of edges (“paper-author-paper”, “paper-keyword-paper”,
and “paper-conference-paper”).

For different types of nodes and semantic relations in HINs, multi-hop meta-paths of different
lengths can be extracted. For example, the target node of the meta-path “paper-author-conference-
author-paper” (see Figure 1) is paper and the semantic relation is that the authors of two papers
jointly attend the same conference. Previous studies use a meta-path-based search method to com-
pute similarity measures for heterogeneous graphs, searching for nodes with the same category
[22]. Some scholars extend random walk [17] to HINs to obtain graph sequences, and then use
skip-gram [16] to learn the embedding of graphs [3]. However, these methods rely too much on
topological features of meta-path, ignoring node attribute embedded features, which result in sub-
optimal results.

As GNNs are widely used in HINs, a large amount of work such as HAN [26], HGT [9], GTN
[32], and other heterogeneous graph neural networks (HGNNs) enable the combination of
meta-path, which obtain the state-of-the-art results on many tasks. However, there are still two
main challenges in learning and representing with HINs:

Challenge 1: Discover higher-order information implied by multivariate relationships. An
edge of a simple graph can only connect two nodes, thus the high-order relations among nodes
are ignored. In order to improve the representation of high-order information, it is necessary to
strengthen the communication between nodes.

Challenge 2: Weigh rich semantic information between different types. In heterogeneous net-
works, there exist different types of nodes and edges, which contain much semantic informa-
tion. To improve the multi-hop representation of node embedding, weighted semantic information
needs to be incorporated into the feature space.

In fact, compared with the conventional graph structure, the hypergraph structure has a stronger
ability to mine the nonlinear higher-order relationships among data samples. The hypergraph’s
Laplacian matrix extends the node neighborhoods and can aggregate richer higher-order informa-
tion. Therefore, the hypergraph can model multivariate relationships more accurately and prevent
the loss of original information caused by the process of forcing multivariate relationships into
binary relationships. Hypergraphs are more flexible in handling multimodal and heterogeneous
data, and more convenient for the fusion of heterogeneous data.

In this article, we propose a hypergraph transformer neural network (HGTN), which could
independently learn semantic information and represent high-order relations for the problems
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Fig. 1. Meta-paths of heterogeneous information in citation networks.

above. HGTN first constructs heterogeneous hypergraphs in HINs using raw meta-paths. Then,
the raw meta-paths in the heterogeneous hypergraph are weighted and new meta-paths are gen-
erated by an attention aggregation module. Finally, a multi-scale attention module is used on the
hypergraph convolution to learn higher-order node embeddings. The main contributions of this
article are summarized as follows.

— For HINs, an end-to-end hypergraph transformer neural network, i.e., HGTN, is proposed
to obtain excellent node embedding;

— Attention mechanism is introduced to weigh the weights of different types of hypergraphs
and discover useful meta-paths for discovering implicit semantic information;

— Hypergraph structure is modeled for the HINs to enhance the high-order communication
ability among nodes. The feasibility of convolution in heterogeneous hypergraphs is also
theoretically proved;

— Node classification experiments are carried out on heterogeneous data such as citation, text,
and social networks. Compared with the baselines, the model’s performance is verified.

This article is organized as follows. Section 2 reviews the related works. Section 3 will introduce
the formulation of the proposed HGTN. Section 4 assesses the performance of the proposed method
on several datasets. Finally, conclusions are discussed in Section 5.

2 RELATED WORK

This section introduces the related work of hypergraph neural network and heterogeneous net-
work representation learning.

2.1 Hypergraph Neural Network

In recent years, the extension of the neural network to graph structure has attracted extensive at-
tention from researchers. Hypergraph structure can represent the high-order correlation between
data, so it is applied to GNNs. In the field of graph node classification, [5] proposes a hyper-

graph neural network (HGNN) framework for data representation learning. The framework
can encode high-level data correlation in hypergraph structure and realize complex data learning
in citation networks and visual objects. Reference [12] improves HGNN and proposes a dynamic

hypergraph neural network (DHGNN), which uses the DHG module to update the hypergraph
structure of each layer dynamically. In order to effectively learn the deep embedding of high-order
graph structure data, two end-to-end trainable operators are introduced, namely hypergraph con-
volution and hypergraph attention, to enhance the learning performance. Reference [21] splits the
heterogeneous hypergraph into a series of snapshots and uses wavelet basis instead of Fourier
basis to perform local hypergraph convolution, which reduces the computational cost and dramat-
ically improves the training speed. HyperGCN [29] and other models use a GCN model to model
complex relationships. Reference [34] proposes a hypergraph attention module, which further en-
hances the representation learning ability of hypergraphs.
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Hypergraph has an excellent performance in dealing with high-order relations, and the research
of HGNNs has also made phased progress in some fields. This article believes that finding the se-
mantic information between different types of hypergraphs is very helpful in learning heteroge-
neous relationships.

2.2 Heterogeneous Network Representation Learning

Heterogeneous networks are represented as a collection of nodes, edges, and types, which widely
exist in many scenes in the real world. Heterogeneous hypergraph representation learning is of
great significance for the construction, reasoning, and application of hypergraphs. Reference [10]
uses the biased second-order random walk framework on hypergraph for the first time, which
achieves good performance in hypergraph representation learning, and optimizes the time cost.
However, this method uses unsupervised generation of node embedding, which cannot map the
node embedding to the hyperedge, resulting in the inability to capture the high-order structure
information of the hyperedge. Therefore, [11, 30] introduce random walk to learn entity pair re-
lationship and hyper relationship to capture the high-order structure information of hypergraph.
PathSim [22] is the first to use meta-paths to search HINs. It is represented by learning nodes based
on the similarity measurement of the meta-path. However, the model relies too much on the meta-
path and its weight defined by experts. To this end, hin2vec [6] uses different types of relationships
between nodes, and [3, 4] automatically update meta-paths based on random walk methods. How-
ever, these methods need to use a priori knowledge to preset meta-paths. In the representation
and learning of HINs, some excellent models have been proposed. HAN [26] transforms a HIN
into several homogeneous graphs based on user-specified symmetric meta-paths. Then, it applies
GCN separately on each obtained homogeneous graph and aggregates the output representations
by attention. HetSANN [8] and HGT [9] extend GAT [24] to HINs. They directly calculate atten-
tion scores for all the neighbors of a target object and perform aggregation accordingly. GTN [32]
uses iterative matrix multiplication to learn the weighted meta-path adjacency matrix. Then, the
graph convolution is carried out according to the obtained adjacency matrix.

In the field of heterogeneous networks, meta-paths are not sufficiently exploited for the discov-
ery of implicit higher-order semantic information. This article believes that the introduction of a
hypergraph-based attention mechanism [18, 19] can help to solve this problem.

3 HYPERGRAPH TRANSFORMER NEURAL NETWORKS

This section describes the HGTN in detail. Firstly, the mathematical definitions of heterogeneous
hypergraphs and meta-paths are given. The weight of different types of hypergraph structures
is learned through the hypergraph aggregation (HA) module. Useful meta-paths are generated
to learn semantic information. Then, a multi-scale hypergraph attention neural network learns
node embeddings to represent high-order semantic information. The framework of our method is
shown in Figure 2.

3.1 Preliminaries

Definition 1 (Heterogeneous Hypergraph). A heterogeneous hypergraph is defined as a quadru-
ple G = (V,E,W,T ), where V = {v1,v2, . . . ,vN } is the nodes set and E = {e1, e2, . . . , eM }
is the hyperedges set constructed by nodes. Each hyperedge has multiple nodes (greater than
or equal to 2). N and M, respectively, represent the maximum values of hypergraph nodes and
edges. W = diag(we1 ,we2 , . . . ,weM

) is a diagonal matrix representing the hyperedge weight.
T = {t1, t2, . . . , tT } represents the typeset of heterogeneous hypergraphs, andT is the maximum of
types. Each node v and each hyperedge e are associated with a mapping functions φ (v ) : V → Tv
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Fig. 2. The framework of HGTN. First, a heterogeneous hypergraph is constructed based on the meta-paths

in the HIN (the adjacency matrix is denoted as AH ), which includes T sub-hypergraphs (the adjacency

matrix is denoted as A). Then, AH is fed to HA module to learn to generate a new meta-path hypergraph

(the adjacency matrix is denoted as AP ) by attention map Q. Finally, the learned AP , and the target node

features are fed to the multi-scale hypergraph attention neural network to learn the node embedding to

complete the node classification.

and φ (e ) : E → Te , respectively. Tv and Te denote the sets of object and relation types, where
|Tv | + |Te | > 2.

A hypergraph in the heterogeneous hypergraphs G can be represented by the incidence matrix
H ∈ RN×M . The elements in the matrix are defined as

H (v, e ) =
⎧⎪⎨
⎪
⎩

1, if v ∈ e
0, otherwise.

(1)

Dv ∈ RN×N and De ∈ RM×M are diagonal matrices, representing the degree matrix of nodes and
edges. Specifically, the degree Dv (i, i) of hypergraph node i is defined as

Dv (i, i ) =
M∑

e=1

We H (i, e ) (2)

the degree De (i, i ) of hyperedge i is defined as

De (i, i ) =
N∑

v=1

H(v, i ), (3)

the normalized hypergraph adjacency matrix A ∈ RN×N represents the connection relationship
between each node, which can be defined as

A = Dv
−1/2HWDe

−1HT Dv
−1/2. (4)

Definition 2 (Meta-path). The meta-path P represents the path through which any two nodes

are connected, defined as V1
R1−−→ V2

R2−−→ V3 · · ·
Rl−1−−−→ Vl , which expresses a combination relation-

ship R = R1 ◦ R2 ◦ · · · ◦ Rl−1 between node typesV1 · · ·Vl . ◦ represents the combination operation
between relationships. Taking citation network as an example, the meta-path “APA” represents
the co-authorship of two authors (A) on a paper (P), expressed as AAPA = AAP × APA. “APCPA”
denotes two authors (A) presenting a paper (P) at the same conference (C) and can be expressed
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Table 1. Main Notations and Descriptions for the HGTN

Notations Descriptions

H ∈ RN×M The hypergraph incidence matrix
Dv ∈ RN×N The node degree matrix of H

De ∈ RM×M The hyperedge degree matrix of H

W ∈ RM×M The weighted matrix of hyperedge
A ∈ RN×N The sub-hypergraph adjacency matrix
AH ∈ RN×N×T The heterogeous hypergraph adjacency matrix
AP ∈ RN×N The meta-path hypergraph adjacency matrix
Q ∈ RN×N The attention map matrix

X ∈ RN×d The input attribute matrix

P ∈ RN×di The embedded feature in multi-scale hypergraph attention module

Z ∈ RN×di The embedded feature in HGTN

Ω ∈ RN×di The learnable matrix of hypergraph convolution

Wα ∈ RV di×V The learnable matrix of MLP

l The number of the meta-path
c The number of channels

as AAPCPA = AAPC × ACPA. By analogy, the semantic information between various types can
be represented by meta-path of different lengths. According to the definition of graph theory, the
result obtained by multiplying two adjacency matrices is the path with length 2 between the cor-
responding two nodes. Therefore, a meta-path with a length of l can be obtained by multiplying l
adjacency matrices.

3.2 Heterogeneous Hypergraph Construction

For heterogeneous networks with prior knowledge, the raw element path is used as a mapping
function φ (·) to construct sub-hypergraphs, and several different sub-hypergraphs are jointly rep-
resented as heterogeneous hypergraphs in this article.

For heterogeneous networks without prior knowledge, the hyperparameters k in the undirected
K-nearest neighbor (KNN) hypergraph are used as mapping functions φ (·) to construct multiple
sub-hypergraphs, which are finally merged. It is common to construct KNN hypergraphs based on
feature distances to determine node similarity [1]. KNN hypergraph is constructed as follows.

Suppose the raw data attribute feature X ∈ RN×d , where each row xi represents the ith node,
and N is the number of samples and d is the dimension. The similarity matrix S ∈ RN×N between
node i and j is calculated by

Si j = xT
j xi . (5)

After obtaining the similarity matrix S, the first k nodes of each node are selected as neighbor
nodes to form the hypergraph, and all nodes are traversed to construct the hypergraph. Concate-
nate all sub-hypergraphs with different k to obtain a heterogeneous hypergraph.

Finally, the hypergraph adjacency matrix is expressed as AH ∈ RN×N×T , which is an undirected
symmetry matrix. The notations and descriptions are summarized in Table 1.

3.3 Hypergraph Transformer

Heterogeneous Hypergraph Aggregation Module. The introduction of hypergraphs gives nodes
with more communication abilities. In order to learn the implicit semantic relationship in hetero-
geneous hypergraphs, a HA module is designed to learn soft selection composite relations for
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Fig. 3. The HA module first softly selects attention maps Q by convolving the candidate adjacency matrix

AH with the non-negative weights of Softmax. Then, it learns a new meta-path graph represented by AP

via the matrix multiplication of two selected adjacency matrices Q1 and Q2 (so-called attention maps). The

length of the new meta-path graph is 2, which means a second-order node relation. If l+1 attention maps are

extracted, a meta-path graph of length l can be obtained.

generating useful multi-hop connections (so-called meta-paths). The details of the HA module are
shown in Figure 3. The HA module softly selects an attention map Q by convolving the candidate
adjacency matrix AH with the non-negative weights of Softmax. The Qi j is calculated as follows:

Qi j =
exp
(
−∑t ∈T αt · AH (i jt )

)

∑
k�i exp

(
−∑t ∈T αt · AH (ikt )

) , (6)

where Wφ = [a1, . . . ,aT ] ∈ R1×1×T is the learnable matrix, initialized to the standard normal
distribution.

HGTN can learn arbitrary meta-paths in different edge types and path lengths. The meta-paths
generation process in the HA module is essentially a stack structure. According to the meta-path
definition, the attention map Q is combined in pairs (i.e., the matrix multiplication) to learn a new
useful meta-path. The stack of l layers of the HA module allows learning l meta-path hypergraph
structure, which indicates the number of generated meta-paths. The different meta-paths have
different lengths, e.g., when l = 2, the length of the newly generated meta-path is 2. Equation (7)

indicates that to generate l meta-paths A
(l )
P

, l + 1 attention maps need to be extracted to do matrix
multiplication,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

A
(1)
P
= Q

(1)
1 � Q

(1)
2

A
(2)
P
= A

(1)
P
� Q

(2)
1

· · ·
A

(l )
P
= A

(l−1)
P
� Q

(l )
1 ,

(7)

where � means Hadamard product.
However, there is a problem with this structure. Adding HA layers always increases the length

of the meta-path, but this does not include the original edges. In some applications, both long
meta-paths and short meta-paths are important. To learn meta-paths including primitive edges,
we add the identity matrix I to AH , i.e., AH (::0) = I. This trick allows HGTN to learn meta-paths of
any length up to l+1 when stacking l layers of the HA module.
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Multi-Scale Hypergraph Attention Module. Unlike conventional graphs, hyperedges in hyper-
graph structure can fuse the features among nodes. Thus, hypergraphs can learn higher-order
relationships based on many-to-many node message passing. All nodes in the same hyperedge in
the hypergraph can communicate freely, and the nodes in the same hyperedge are given the same

contribution:
wei

De (i, i) , wei is the weight of hyperedge i . At this time, the feature of node i is

Evi
=
∑

vi ∈ej

H(vi , ej )
wej

De (j, j )
Xi , (8)

if a node coexist in two or more hyperedges, the communication ability is the weighted contribu-

tion of multiple hyperedges:
∑M

i=1 H(v, ei )
wei

De (i,i ) . The feature of hyperedge i is expressed as

Eei
=
∑

vj ∈ei

H(vj , ei )
wei

De (i, i )
Xj . (9)

Establish a matrix Θ to represent the probability matrix of random walk on hypergraph, and the
value of each element in the matrix is expressed as

Θ(vi ,vj ) =
M∑

n=1

H(vi , en )
wen

Dv (i, i )

H(vj , en )

De (n,n)
, (10)

after the hyperedge gathers the features of all sub-nodes, the information is transmitted back to
all nodes through the weight of the hyperedge. The matrix normalized form of Θ can be expressed
as

Θ = D−1/2
v HWDe

−1HT D−1/2
v . (11)

In the frequency domain, let the regularized hypergraph Laplacian be L = I−Θ. According to the
definition of hypergraph convolution, decomposing the hypergraph Laplacian matrix and approx-
imating it by the first-order Chebyshev polynomial [13], the hypergraph convolution operation
can be obtained by

g ∗ x = θD−1/2
v HWD−1

e HT D−1/2
v , (12)

θ is the approximate learning parameter in Chebyshev’s inequality, the propagation mode of the
HGNN can be expressed as

X(s+1) = D−1/2
v HWD−1

e HT D−1/2
v X(s ) Ω(s ), (13)

Ω ∈ RC1×C2 are the parameters to be learned in training. C1 and C2 are the dimensions of the
sth and (s + 1)th hidden layer, respectively. Taking the meta-path adjacency matrix AP learned in
Equation (7) as the graph structure, the convolution operation and HGNN propagation methods
are, respectively, expressed as

g ∗ x = θAPX, (14)

X(s+1) = AP X(s ) Ω(s ), (15)

where AP ∈ RN×N ,X(s ) ∈ RN×d1 , Ω(s ) ∈ Rd1×d2 ,X(s+1) ∈ RN×d2 .
In the propagation learning of the HGNN, the transfer equation for learning the next layer using

the feature P obtained from the s layer can be expressed as

P = AP XΩ. (16)

In order to learn more high-order semantic information, a multi-scale attention mechanism is
introduced into the hypergraph for feature embedded representation, as shown in Figure 4. The em-
bedded features P are first extracted through a hypergraph convolution of multiple shared param-
eters (see Equation (16)). All embedded features are concatenated as [P1 | |P2 | | · · · | |PV ] ∈ RN×V di ,
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Fig. 4. The illustrations of the multi-scale hypergraph attention. Specifically, we first learn the weights

through the proposed attention-based mechanism and then integrate the multi features Pi through the

weighted fusion. Finally, the multi-scale weighted features are combined in a feature concatenation manner.

where di is the dimension of the ith hidden layer, and V is the number of hypergraph convolu-
tions. Then, a multilayer perceptron (MLP) layer, which is parametrized by a weight matrix
Wα ∈ RV di×V , is introduced to capture the attention for the concatenated features of the fused
feature. Next, the LeakyReLU activation function is applied to the output of the normalized MLP
layer. The output of LeakyReLU is normalized by the Softmax activation function and the �2 reg-
ularization function. Finally, the attention coefficients of each hypergraph convolution unit after
feature sharing [α1,α2, . . . ,αV ] are denoted as Attention (α ) ∈ RN×V ,

Attention (α ) = [α1,α2, . . . ,αV ]

= �2 (softmax(LeakyReLU([P1 | |P2 | | · · · | |PV ] Wα ))).
(17)

Perform the Hadamard product (�) on the embedded features PV to obtain the attention coef-
ficients Attention (α ) for each output of the hypergraph convolution unit, and sum to obtain the
multiscale attention feature Z,

Z = α1 � P1 + α2 � P2 + · · · + αV � PV . (18)

In order to learn more high-order semantic information, we add multiple channels to the learn-
ing of node embedded feature Z to express more possibilities of attention weight. The final transfer
equation of the multi-scale hypergraph attention neural network is expressed as

Z∗ = σ ( | |ci=1Z), (19)

where σ means activation function, c means the number of channels, and | | means concatenate
operation. Equation (19) is a strategy similar to the multi-headed attention in GAT [24], and the
same attention mechanism is used in this article. A richer node embedding is desired to be learned
through multiple channels. Z contains node representations from c different channels of variable
length up to l+1. The method in this article performs gradient descent using a cross-entropy loss
function.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 63. Publication date: April 2023.
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3.4 Hypergraph Transformer Neural Networks Analysis

This section mathematically proves the rationality of the application of hypergraph adjacency
matrix A in HGNN. In Section 3.3, we learn the multi-hop adjacency matrix from Equation (7) as
the graph structure. AP is evolved from a heterogeneous hypergraph adjacency matrix, which can
be regarded as a more effective hypergraph adjacency matrix.

Graph convolution is a particular case of hypergraph convolution. The representation of graph
convolution is proved in literature [13] and in the frequency domain. Therefore, we compare it
with graph convolution to illustrate the general representation of hypergraph convolution. The
learning process of HGNN can be expressed as

X(s+1) = σ
(
1/2D−1/2

v HWD−1
e HT D−1/2

v X(s ) Ω(s )
)
. (20)

According to the definition of graph, the above equation is converted into conventional graph
structure, the representation of graph is actually to make the edge degree matrix of hypergraph
De = 2I, weight matrix W = I, then Equation (20) is simplified as

X(s+1) = σ
(
1/2D−1/2

v HHT D−1/2
v X(s ) Ω(s )

)

= σ
(
1/2D−1/2

v (A + Dv )D−1/2
v X(s ) Ω(s )

)

= σ
(
1/2(I + D−1/2

v AD−1/2
v )X(s ) Ω(s )

)
,

(21)

if the constant 1/2 is not considered. Equation (21) is completely equivalent to the definition of
unnormalized graph convolution network [13].

4 EXPERIMENT RESULTS AND ANALYSIS

We evaluate the performance of HGTN in node classification tasks on six datasets. Several baselines
are selected for comparison. The performance of these methods is compared from many aspects.
The GPU used in the experiment is NVIDIA GeForce RTX 3090 with 24G memory. Our source
codes can be obtained on GitHub.1

4.1 Datasets

In order to comprehensively evaluate the performance of HGTN on heterogeneous networks, we
select six datasets from the citation, text, and social networks. The statistical data used in our
experiment are shown in Table 2.

— DBLP2: The paper citation network extracted from DBLP website contains three node graphs:
co-authors (two authors jointly publish the same paper), common conference (two authors
jointly participate in the same conference), and common theme (two authors use the same
theme).

— ACM3: Papers in ACM library reference network. There are four node graphs: co-authors,
common laboratory, common conference, and common theme.

— IMDB4: The data are from IMDB film introduction and scoring website. There are three node
graphs: co-actors (two films contain the same actor), co-directors (two films contain the same
director), and common year (two films are released in the same year).

1https://github.com/limengran98/HGTN.
2https://dblp.uni-trier.de.
3https://dl.acm.org.
4https://www.imdb.com.
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Table 2. Dataset Statistics

Dataset Nodes Edge types Features Classes

DBLP 4057
A-P-A: 3528

334 4A-P-C-P-A: 2498219
A-P-T-P-A: 3386139

ACM 3025

P-A-P: 13128

1870 3
P-L-P: 1103868
P-C-P: 1109337
P-T-P: 9147568

IMDB 4780
M-A-M: 46615

1232 3M-D-M: 8119
M-Y-M: 809072

Reuters 10000
k = 5: 50000

2000 4
k = 10: 100000

STUD-BJUT 4060

information: 8120

105 3
library: 8120

gateway: 8120
shopping: 8120

Citeseer 3327 P-A-P: 9104 3703 6

— Reuters [20]: The data comes from many short news and related topics released by Reuters in
1986. It is a simple and widely used text classification dataset. Two node relation k-uniform
hypergraphs are constructed according to the features.

— STUD-BJUT: The data is collected from the student activity information at Beijing University
of Technology. The feature extraction is performed to obtain the description of the student’s
behavior features. According to different behaviors, it can be divided into four types: infor-
mation, library, gateway, and shopping. We use this dataset to construct student association
networks: students are nodes, and k-uniform hypergraphs (k = 2) are constructed according
to the similarity of features. Use the student’s grade points (good, medium, poor) as the node
classification label.

— Citeseer5: The paper citation network describes the citation between the papers of the
world’s top conferences.

4.2 Baselines

In the experimental comparison, this article selects nine baselines, which belong to four bench-
marks: random walk, GNN, HGNN, and heteorgeneous information neural network.

— Deepwalk [17]: A graph structure data discovering algorithm combining random walk and
word2vec. The algorithm can learn the hidden information of the network and represent the
nodes in the graph as a vector containing potential information.

— LINE [23]: A graph embedding method based on breadth first random walk to obtain context
information and learn the network representation through first- and second-order similarity.

— GCN [13]: GNN with convolution operation can be applied to graph embedding representa-
tion learning.

5https://citeseerx.ist.psu.edu/index.
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— GAT [24]: GNN aggregates neighbor nodes through self-attention mechanism to realize
adaptive matching of weights of different neighbors.

— HGNN [5]: Hypergraph neural network with convolution operation can represent and learn
high-order embedded features.

— HWNN [21]: The Fourier transform in hypergraph convolution is replaced by wavelet trans-
form to represent heterogeneous hypergraphs.

— HAN [26]: A heterogeneous graph neural network based on hierarchical attention. Heteroge-
neous graphs are processed by extracting node level attention and semantic level attention.

— HGT [9]: The relevant parameters of node and edge types are designed to represent the
neural network model of heterogeneous structure.

— GTN [32]: Graph transformation network, which updates the graph by generating meta-
paths, uses convolution to represent the node features of the graph structure.

4.3 Experimental Setup and Metrics

The experimental setup is as follows: Each dataset is divided into a training set and a test set, which
account for 80% and 20%. We set the learning rate to 5e-3, the regularization parameter to 5e-4, the
dropout rate to 0.6, and the maximum epoch to 500. For our proposed HGTN, unless otherwise
specified, the number of channels c to 2 and the number of meta-paths l to 3. For DeepWalk [17],
we set window size to 5, walk length to 100, and walks per node to 40. For LINE [23], we set the
number of negative samples used in negative sampling as 5. For models designed for isomorphic
graphs, such as GCN [13], GAT [24], and HGNN [5], we first slice the heterogeneous graph into
multiple homogeneous graphs containing heterogeneous information according to the meta-path
and then superimpose these homogeneous graphs. For the HAN [26], we set the dimension of
the semantic-level attention vector to 128, and the number of attention head k to 8. For the GTN
[32], we set the meta-path length l to 2, and the number of channels c to 2. For HGT [9], we set
the heterogeneous graph as the original input and the head number as 8. The node embeddings
obtained from the model training are fed to the classification layer to predict the classes. HGTN
introduces cross-entropy loss and uses Adam optimizer to update the learnable parameters. To
ensure the fairness of the experiments, we perform multiple pieces of training and choose the
mean of the best results obtained in each piece.

HGTN is used to classify different network nodes. Therefore, four evaluation metrics of macro-
precision (Pre), macro-recall (Rec), accuracy (ACC), and macro-F1 (F1) score6 are selected for com-
parison experiments. ACC can directly calculate the probability that the predicted value is correctly
classified with the true value without being affected by the number of classes. For Pre, Rec, and
F1, we denote the true positive, false positive, true negative, and false negative asTP , FP ,TN , and
FN , respectively [28]. The definitions of these metrics are

Pre =
TP

TP + FP
,

Rec =
TP

TP + FN
,

F1 =
2 × Pre × Rec
Pre + Rec

,

(22)

where Pre is intuitively the ability of the classifier not to label negative samples as positive. Rec
is the ability of the classifier to find all the positive samples. F1 can be interpreted as a harmonic
mean of the Pre and Rec. The relative contributions of Pre and Rec to F1 are equal. For multilabel

6https://scikit-learn.org/stable/modules/model_evaluation.html.
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Table 3. Node Classification Comparison Experiment

Dataset Metrics
Random Walk Graph Hypergraph Information ours

DeepWalk LINE GCN GAT HGNN HWNN HAN HGT GTN HGTN

DBLP

Pre 0.825 0.873 0.914 0.905 0.917 0.936 0.939 0.934 0.909 0.940

Rec 0.839 0.876 0.921 0.910 0.904 0.900 0.934 0.932 0.914 0.939

ACC 0.838 0.872 0.926 0.908 0.916 0.934 0.940 0.935 0.916 0.945

F1 0.834 0.872 0.919 0.908 0.909 0.915 0.939 0.934 0.911 0.939

ACM

Pre 0.669 0.516 0.901 0.903 0.927 0.953 0.945 0.944 0.945 0.975

Rec 0.685 0.482 0.911 0.898 0.927 0.953 0.949 0.934 0.945 0.976

ACC 0.671 0.504 0.905 0.904 0.927 0.951 0.945 0.943 0.944 0.975

F1 0.669 0.499 0.905 0.904 0.927 0.953 0.947 0.949 0.945 0.976

IMDB

Pre 0.521 0.495 0.534 0.544 0.564 0.546 0.542 0.542 0.544 0.613

Rec 0.483 0.351 0.503 0.529 0.552 0.558 0.553 0.553 0.555 0.582

ACC 0.481 0.471 0.522 0.564 0.627 0.625 0.614 0.619 0.622 0.663

F1 0.507 0.307 0.491 0.519 0.557 0.554 0.544 0.543 0.548 0.589

Reuters

Pre 0.719 0.793 0.884 0.901 0.931 0.943 0.940 – 0.948 0.952

Rec 0.606 0.789 0.874 0.892 0.919 0.955 0.943 – 0.941 0.962

ACC 0.657 0.777 0.873 0.916 0.942 0.952 0.954 – 0.956 0.965

F1 0.614 0.788 0.868 0.928 0.925 0.943 0.941 – 0.944 0.957

STUD-BJUT

Pre 0.529 0.676 0.530 0.711 0.707 0.735 0.739 – 0.731 0.800

Rec 0.531 0.414 0.531 0.622 0.708 0.735 0.736 – 0.722 0.790

ACC 0.584 0.622 0.585 0.649 0.708 0.739 0.739 – 0.723 0.792

F1 0.530 0.406 0.531 0.622 0.707 0.726 0.732 – 0.724 0.791

Citeseer

Pre 0.547 0.588 0.731 0.735 0.711 0.755 0.753 – 0.750 0.764

Rec 0.563 0.600 0.656 0.652 0.708 0.731 0.735 – 0.743 0.740
ACC 0.560 0.592 0.710 0.713 0.739 0.751 0.764 – 0.764 0.776

F1 0.550 0.583 0.714 0.711 0.710 0.742 0.732 – 0.739 0.743

classification, the metrics for each class are summed and averaged to obtain the final evaluation
results.

4.4 Node Classification Results and Analysis

The node classification results of HGTN and the baseline method on the six datasets are shown
in Table 3. We divide the baseline methods into four categories ( graph embedding, GNN, HGNN,
and heterogeneous graph network) to verify the improvement effect of our method. At the same
time, six datasets can also be subdivided into three categories: Heterogeneous semantic graph
structure: ACM, DBLP, IMDB; K-uniform graph structure: Reuters, STUD-BJUT; Homogeneous
graph structure: Citeseer. The results show that in most cases, the results of HGTN are better than
the baseline. HGTN performs best on these datasets with an average improvement rate of about
3% due to the multiple semantic graph structures in ACM, DBLP, and IMDB with different meta-
paths. For Reuters and STUD-BJUT, the k-uniform hypergraph constructed using node features,
the improvement is about 1%–2%, which is not as good as the former. The improvement is minimal
on the Citeseer dataset since the input graph is only an isomorphic graph. The above results show
that HGTN can mine the high-order semantic information of nodes, which is more suitable for
processing heterogeneous graph structures with semantic information.

We give a breakdown of the performance of each class in the test set for all datasets, see Figure 5.
The bar chart in Figure 5 shows the performance of each class and the line chart shows the number
of each class. In fact, the performance metrics in Table 3 are summed averages of the performance
metrics for each class. Also, as can be seen in Figure 5, the number of all classes is roughly evenly

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 63. Publication date: April 2023.



63:14 M. Li et al.

Fig. 5. The performance breakdown of all datasets for each class in the test set.

distributed, so that the evaluation metrics on the vast majority of the dataset are not affected by a
particular class.

We visualize the training and testing iteration curves for all datasets, as shown in Figure 6.
Our method achieves better test results within 100 epochs on ACM, DBLP, Reuters, and Citeseer
datasets. However, the test metrics for the IMDB and STUD-BJUT datasets converge slowly.

To report the performance of HGTN in more detail, we introduce ROC-AUC curves. The ROC

(Receiver Operating Characteristic) curve corresponds to the vertical coordinate of True Pos-

itive Rate (TPR) and the horizontal coordinate of False Positive Rate (FPR). TPR is equiva-
lent to the recall and calculates the percentage of positive instances correctly classified by the
classifier as a percentage of all positive instances. FPR is equal to 1- TPR, which calculates the
proportion of negative instances that are incorrectly considered as positive by the classifier to
all negative instances. AUC (Area Under Curve) is the size of the area under the ROC curve,
and the larger the AUC, the better the performance of the model. Compared with other models
(GCN, HGNN, GTN), the HGTN has the best performance in the ROC-AUC curves (as shown in
Figure 7).

To verify the effect of each meta-path on the node classification results, we differentially input
different meta-paths from three datasets (ACM, DBLP, and IMDB) into HGTN, and the results are
shown in Tables 4 and 5. Table 4 shows the results for a single meta-path as input, and Table 5
shows the results from multiple meta-paths as input. Compared with all meta-paths as input, the
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Fig. 6. Training and testing iteration curves for all datasets.

Table 4. Unit Meta-Path Influence

Meta-path F1 ACC Pre Rec

DBLP
A-P-A 0.819 0.825 0.821 0.818
A-P-C-P-A 0.117 0.305 0.070 0.250
A-P-T-P-A 0.764 0.778 0.766 0.762

ACM

P-A-P 0.927 0.927 0.927 0.927
P-L-P 0.920 0.920 0.921 0.929
P-C-P 0.934 0.934 0.934 0.933
P-T-P 0.185 0.383 0.128 0.333

IMDB
M-A-M 0.272 0.548 0.396 0.431
M-D-M 0.564 0.639 0.575 0.558
M-Y-M 0.255 0.546 0.280 0.335

four evaluation metrics of Pre, Rec, ACC, and F1 for a single meta-path are decreased. Especially
the poor results of “P-T-P” for ACM and “A-P-C-P-A” for DBLP indicate that this meta-path cannot
support the model to train excellent node embeddings. In addition, the results of “M-A-M” and “M-
Y-M” of IMDB are considerably lower. Among the multiple meta-paths, the combination of “P-L-P
+ P-C-P” has better results. The combination of “A-P-A” + “A-P-C-P-A” in the DBLP dataset has
better results.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 63. Publication date: April 2023.



63:16 M. Li et al.

Fig. 7. The ROC and AUC of the DBLP, ACM, and IMDB dataset.
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Table 5. Multiple Meta-Paths Influence

Meta-paths F1 ACC Pre Rec

DBLP
A-P-A + A-P-C-P-A 0.916 0.921 0.915 0.916
A-P-A + A-P-C-P-A 0.824 0.830 0.829 0.821
A-P-C-P-A + A-P-T-P-A 0.116 0.305 0.076 0.250

ACM

P-A-P + P-L-P 0.973 0.973 0.973 0.974
P-A-P + P-C-P 0.977 0.976 0.978 0.976
P-L-P + P-C-P 0.988 0.988 0.988 0.988
P-A-P + P-L-P+P-C-P 0.985 0.985 0.985 0.985

IMDB
M-A-M + M-D-M 0.253 0.550 0.316 0.335
M-A-M + M-Y-M 0.238 0.555 0.185 0.333
M-D-M + M-Y-M 0.238 0.555 0.185 0.333

Fig. 8. F1 score of different hyperparameters on the node classification task.

4.5 Model Analysis

Hyperparameters Verification. HGTN has two hyperparameters: the number of the meta-path l
and the number of channels c . In order to verify the influence of the two hyperparameters, we
performed cross-validation. Choose the number of the meta-path l = [1, 2, 3, 4, 5], the number of
channels c = [1, 2, 3, 4, 5]. We performed node classification tasks on DBLP, Citeseer and IMDB,
and used the F1 score as the evaluation index. The result is shown in Figure 8. On the DBLP dataset,
as l increases, the overall F1 score shows a downward trend, and the effect is best when c = 1 and
l = 2. The Citeseer dataset is opposite to DBLP. As l increases, the F1 score shows an upward trend,
and the F1 score is the highest when c = 2 and l = 2. The F1 score is the highest when c = 5 and
l = 4 in the IMDB dataset.

Ablation Experiments. In order to further analyze the effects of each part of the model, we con-
ducted ablation experiments on all six datasets. Set up three sets of ablation models to compare
with HGTN, and the results are shown in Figure 9. The three ablation implementations, respec-
tively, verify the functions of hypergraph, HA layers, and attention.

— Hypergraph can express high-order relationships. If it is transformed into a graph, the four
evaluation indicators will drop significantly in the node classification task, especially the
recall rate.

— The role of the HA module is to discover the attention coefficients of different types of
hypergraphs and generate multi-hop meta-paths. If this module is removed, the evaluation
metrics will decrease.

— The role of attention is to discover multi-scale semantic information. Compared with the
previous two, this part still plays a positive role in node classification. In general, for datasets
with different semantic information such as DBLP, ACM hypergraph, and HA layers, the
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Fig. 9. F1 score of ablation model on node classification task.

impact is more significant. For k-uniform graph datasets Reuters, STUD-BJUT and single
graph Citeseer, the improvement of a hypergraph is greater than that of HA layers.

Hypergraph Semantic Discovery. In order to analyze the improvement of semantic information
discovered in the experimental results, we introduce different types of hypergraph meta-paths on
the three datasets of DBLP, ACM, and IMDB. The results are shown in Figure 10(a)–(c). With the
introduction of hypergraph meta-paths containing semantic relations, the F1 score of the model
has also been improved. Experiments prove that the new meta-path can discover useful semantic
information and improve accuracy. We visualize the attention coefficients of all hypergraph meta-
paths, as shown in Figure 10(d). Compared with the DBLP results, the identity matrix has a higher
attention coefficient in IMDB, which suggests that HGTN persists in learning shorter meta-paths
at a deeper level. Also, the attention coefficient is higher for less semantic information (implicit
data information needs strong attention), which suggests that HGTN is able to learn the most
efficient meta-path adaptively based on the dataset.

Robustness Verification. We use STUD-BJUT after noise attack to verify the robustness of HGTN.
According to the study and rest time of the school and the function of each location, the dataset has
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Fig. 10. F1 score of adding multi semantic hypergraph meta-paths and the attention coefficients of the at-

tention map.

Fig. 11. Influence of neighbor number k in STUD-BJUT on model robustness.

four different types of student behavior features. Hypergraphs are constructed based on feature
similarity. Due to the contingency and aggregation of students’ behavior in the campus scene, it
may be inaccurate to measure social relations through the feature similarity between nodes. An-
other problem is that it is impossible to determine how many neighbors the central node should
connect because the number of nearest neighbors may affect the performance of hypergraph learn-
ing. Therefore, we assume that the change in the number of neighbors of the central node k is
interference. In the experiment, we analyze the structure of different k values in the evaluation in-
dex. Due to the number of neighbors, the graph structure will introduce much noise that does not
match the downstream tasks. Figure 11 shows that the variation range of ACC and F1 is minimal
under noise interference, and the difference between the best and worst is about 3%, which proves
that HGTN has good robustness.

Embedded Feature Similarity Comparison. It is generally believed that nodes with similar fea-
tures are more closely connected [1]. We first obtain the original sample features and the embed-
ded features learned by the proposed method. Then, we construct the element similarity matrix
by calculating the cosine similarity on the three datasets of DBLP, ACM, and IMDB (see Figure 12,
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Fig. 12. The heat maps of node similarity matrices in the latent space of raw data and HGTN.

the coordinates are expressed as nodes). The results show that the feature similarity between the
original data is insignificant. HGTN can learn a better representation of the embedding space. The
feature similarity between different categories is distinguished sharply. This is attributed to the
fact that HGTN learns more higher-order representations of HINs.

5 CONCLUSION

In this article, we propose an end-to-end method named HGTN for HIN learning. The model learns
the high-order relationship and semantic information of heterogeneous networks to describe node
embedding and improve the classification effect, with more extensive potential application in so-
cial networks and personalized recommendations. Experiments show that HGTN is superior to the
baselines in evaluation metrics such as accuracy and recall. We verify the effectiveness of HGTN
in high-order representation and semantic information discovery. The following work will fur-
ther break through the integration of semantic knowledge networks and solve the limitations of
semantic knowledge representation.
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