
tween complex human behaviors and com-
puter programs--consistent reports of cor-
relations coefficients exceeding 0.90 allow
us to be comfortable in characterizing the
results as "amazingly accurate."

Reply to T. P. Baker by A. Fitzsimmons and
T. Love

Baker's confusion is resolved by the im-
portant distinction between the effort to
invoke a function and the effort to perform
the function. The effort required to invoke
a single-input, single-output function is in-
dependent of the function. Whereas it takes
more effort to compute the square root of
X than the absolute value of X, the effort
to write the statements

Y ffi SQRT (X)
X = ABS (X)

is (roughly) the same. The E-measure at-
tempts to quantify the effort of writing a
program at a given level of abstraction, not
the work to perform all the operations at
lower levels.

Baker's confusion about language level
(k) is resolved by remembering that k mea-
sures the m e a n level of a particular lan-
guage (across many programs written in
that language); it thus provides a measure
of the average ease (or difficulty) of pro-
gramming some task in a given language• It
is true that for a small subset of the pro-
grams in a given language, the language
level will deviate significantly from the
mean. The large standard deviations asso-
ciated with k-values in our Table 5 reveal
this clearly.

We regret that Baker felt our review to
be "uncritical." Criticizing a new theory is
far simpler than testing it empirically. We
undertook our own testing precisely be-
cause we were skeptical. Our ~onclusion,
reached very carefully, is that this theory
cannot be dismissed easily. We call on oth-
ers to perform more controlled experiments
and either corroborate or refute our find-
ings. That is what science is all about.

ANN FITZSIMMONS
TOM LOVE

General Electric Co.
401 N. Washington St.

Rockville, Md. 20850

Surveyors" Forum • 505

Structured Editing with a Lisp
[Editor's Note: Richard Stallman writes

to clarify a point about MACLISP, one of the
Lisp text editors mentioned by Erik San-
dewall in "Programming in the Interactive
Environment: the Lisp Experience," COM-
PUTING SURVEYS 10, 1 (March 1978),
35-71. Erik Sandewall replies.--PJD]

I disagree with Dr. Sandewall's conclu-
sions regarding the relative desirability of
text editing versus list-structure editing in-
teractive systems. I want to correct a mis-
impression that his : article may inadvert-
ently have given: that everyone agrees that
MACLISPS file-based text editing approach
is inferior, and the new Lisp Machine of
MIT's Artificial Intelligence Laboratory
will be an opportunity to switch. We at
MIT actually believe that editing text in
files is better for the user, and our LisP
machine editor works that way. The advan-
tages cited by Dr. Sandewall for close cou-
pling of the editor to the rest of the Lisp
system are not lost by the text-based ap-
proach. In fact, t he LIsP machine editor,
which is the best editor we know, is fully
compatible with our latest PDP-10 editor,
which is the best list-structure editor we
know. Now that the MIT PDP-10 editor
EMACS is being exported, some INTERLISP
users are using it.

Our current PDP-10 system organization
was just in its exploratory stages when Dr.
Sandewall was here. Since that stage (as
described on p. 47 oflhis paper), the system
has changed completely. Here is how we
now use it: a user has a LIsP job and an
editor job, which communicate. The editor
operates on text files. The list structure (or
compiled code) is kept in the LIsP environ-
ment. When the user has a change to make,
he gives Lisp a command to switch to the
editor• In the editor, he can ask to find and
change particular functions (the editor
knows which file contains each function)•
When he says he is done, the text files are
updated on disk, and the changed functions
are sent to LISP to be read in and redefined.
Only the text files are kept permanently.
Information passes only from the text files
to the LisP job, so that the user's choice of
formatting is never overriden by a LISP

• i
Computing Surcey~, Vol. I0, No. 4, December 1978

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356744.356754&domain=pdf&date_stamp=1978-12-01

506 ° S u r v e y o r s ' F o r u m

pret ty-printer . Reading just the changed
functions is very fast.

T h e two real issues are whether to edit
text or list structure, and whether to edit
the program in the same environment in
which it is tested. On the M I T LISP ma-
chine, editing is done on text, in the same
LIsP envi ronment as the program is tested,
but not on the list structure.

Dr. Sandewall considers also whether to
save programs as text files or Lisp environ-
ments. I t is worth asking which option
should be used primarily in a system tha t
provides both. The article lists some rea-
sons why text files are "necessary even on
a residential system," or, f rom a neutral
point of view, some advantages text files
have over saved environments. These in-
clude robustness, house-cleaning, and ease
of loading several programs together. Tex t
files are also essential for operating on pro-
grams with tools not wri t ten in LisP, or
with tools wri t ten in Lisp bu t not par t of
the s tandard system. A saved environment
has only one advantage: if it contains pre-
cisely what you want, it is faster to load.
MACLISP users generally save an environ-
ment only for a tool or system which is to
be loaded frequently. These environments
usually contain compiled code, the uncom-
piled code being stored in text files.

T h e advantage of editing and testing the
program in the same environment is the
close coupling cited by Dr. Sandewall. The
disadvantage is tha t the erroneous program
being tested can alter its definition, or sim-
ply mess up the whole LISP environment.
T h e only known remedy is to save the text
on disk often.

Here are the advantages of editing t e x t
ra ther than list structure:

1) T h e user can specify any style of in-
dentat ion and the system will never
override it. The editor supplies stan-
dard indentat ion as a default.

2) Comments are easily stored and for-
mat ted as the user likes them.

3) The user can create unbalanced pa-
rentheses while editing a function.
This causes no trouble as long as the
function is not redefined from the text
a t such times. T h e user can also move,
delete, or copy blocks of syntactically
unbalanced text. In a l ist-structure ed-

itor, these operations are impossible
or require peculiar and unintuit ive
commands.

4) The edi tor can provide commands to
move over balanced objects or delete
them. Th e commands work by parsing
the expressions (forward or back-
ward).

5) A text editor can support extended
syntax. Extensibility, as Dr. Sande-
wall points out, is one of the strong
points of LisP. In MACLISP and INTER-
LISP, the syntactic "macro character"
escapes at parsing t ime to a user-sup-
plied function, allowing arbi t rary syn-
tax extensions. For example, ' is
normally a macro character: 'FOO is
equivalent to (QUOTE FOO). Exten-
sions destroy the one-to-one relation-
ship between internal and printed
forms. With a text editor, the user
automatical ly edits the representa t ion
he chose to type in. A s t ructure editor
cannot come close to this without
being told fully about each new exten-
sion. Tex t editors also need to be told
about syntax extensions if expression-
parsing commands are to work on
them, bu t the instructions are simple
(e.g., " t rea t commas like single-
quotes").

6) A text editor can be used for languages
o ther than Lisp (including English
and al ternate LisP-syntaxes) with no
change. Th e LisP-specific commands
amount to only a small fraction of the
whole editor.

7) With a s t ructure editor, t emporary se-
mant ic bugs can be dangerous. In ed-
iting a function which is a vital par t of
the system or the editor, one cannot
introduce a bug one momen t and fix
it the next without risking a crash.
Bu t in editing text, changes take no
effect until the user gives the com-
mand.

8) The editing commands most natural
for use on a display terminal are those
whose meaning is obvious in terms of
the displayed text. A data s t ructure of
text is natural for them, but imple-
ment ing them in a s t ructure editor
would be very difficult. There are few
screen-oriented s t ructure editors.

Computing Surveys, Vol. 10, No. 4, December 1978

The commands which our editors provide
for Lisp programs include moving over and
deleting s-expressions, moving to the begin-
ning or end of the current function defini-
tion, automatic indentation of new lines or
old ones, automatic indentation of new or
old comments, and finding quickly {without
searching) the definition of named function.
Further information is available in the MIT
Artificial Intelligence Laboratory memo,
"An Introduction to EMACS."

In closing, I note that Lisp 1.6 was an
improvement of an early MACLISP, but the
current export version of MACLISP has
superseded it. It is not true that our PDP-
10 editor is a "variant of the standard DEC
text-editor, TECO." In fact, DEC's editor
is a variant of an early and quite primitive
version of MIT's editor, TECO, which has
since become a language for writing the
editors.

RICHARD STALLMAN
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Mass. 02139

Author's Reply

Two current Lisp systems, MACLISP and
INTERLISP, represent different approaches
to editing and maintenance of programs;
the relative merits of these approaches has
been debated intensively for a long time. In
the paper, I tried to summarize the pros
and cons of both approaches, although
clearly there was not space to review all the
arguments of each side. Mr. Stallman's let-
ter states the case of MACLISP on this issue
and is more explicit than my paper, al-
though many of Mr. Stallman's observa-
tions had already been made in the paper.
It seems that we agree on the major issues,
and that any differences of opinion consist
of weighing pros and cons differently. The
following remarks to some of Mr. Stall-
man's points are therefore relatively mar-
ginal.

The description of the current system
organization for MACLISP at MIT is in fact
in the paper (p. 47, left column), although
it is remarked that this facility "does not
seem to be in widespread use yet." This was
based on information given by R. Green-
blatt at MIT in August 1977. Evidently the
same facility is now in widespread use.

Surveyord Forum ° 507

I do not believe that "advantages text
files have over saved environments" repre-
sents a "neutral" view. Text files are needed
in all Lisp systems for certain purposes
(house-cleaning, etc.), but that is in itself
no reason why they should also be used as
a basis for editing.

Should a program be edited in the envi-
ronment where it is tested, or in another
environment? I am skeptical of Mr. Stall-
man's argument that the program may de-
stroy itself, or may destroy its environment
so badly that saving is impossible. This
would seem to be a real danger only in low-
level systems work, and then should not
influence the design of the whole system
too much. After all, the system is built for
the real users, not for the systems hackers.
Also, when this danger is present, it can
always be overcome in a residential envi-
ronment by a simple safety measure: after
you have typed in a substantial amount of
text, and before you start testing, save the
program in a text file.

However, a permanent problem when
discussing these issues is that several dif-
ferent design decisions are usually inter-
twined and affect each consideration. In
this case, the robustness of the program-
ming system itself is significant, It is some-
times argued (at least by the INTERLISP
faction) that the MACLISP system does less
dynamic checking, of course in order to gain
efficiency. Similarly, the UNDO facility in
INTERLISP provides additional robustness
and is useful when: debugging systems
which tend to destroy themselves. Less
checking and lack of an UNDO in MACLISP
may account for Mr. Stallman's different
experience in this respect.

Mr. Stallman cites eight reasons for ed-
iting text rather than list structure, num-
bered 1 through 8. Of these, 2, 4, 6, and 8
are also in the paper, and they indeed rep-
resent advantages for the text editing ap-
proach. In particular, we agree about the
intrinsic difficulty to perform screen editing
{using cursor movements) in a structure-
editing environment, although it has in fact
been done (see reference [13] in my paper).

Allowing a variable style of indentation
(1) is probably the kind of facility which is
appreciated by those who have it, and not
missed by those who have never had

Computing Surveys, iVoL I0, No. 4, December 1978

.

