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ABSTRACT
Lexicase selection is a widely used parent selection algorithm in ge-
netic programming, known for its success in various task domains
such as program synthesis, symbolic regression, and machine learn-
ing. Due to its non-parametric and recursive nature, calculating the
probability of each individual being selected by lexicase selection
has been proven to be an NP-hard problem, which discourages
deeper theoretical understanding and practical improvements to
the algorithm. In this work, we introduce probabilistic lexicase
selection (plexicase selection), a novel parent selection algorithm
that e�ciently approximates the probability distribution of lexicase
selection. Our method not only demonstrates superior problem-
solving capabilities as a semantic-aware selection method, but also
bene�ts from having a probabilistic representation of the selec-
tion process for enhanced e�ciency and �exibility. Experiments
are conducted in two prevalent domains in genetic programming:
program synthesis and symbolic regression, using standard bench-
marks including PSB and SRBench. The empirical results show that
plexicase selection achieves state-of-the-art problem-solving perfor-
mance that is competitive to the lexicase selection, and signi�cantly
outperforms lexicase selection in computation e�ciency.
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1 INTRODUCTION
Parent selection is an essential component in genetic and evolu-
tionary algorithms, which determines a set of individuals to use
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as the source to create o�-sprints for the next generation. Among
many parametric and non-parametric selection methods, lexicase
selection [28, 47] has shown state-of-the-art performance in ge-
netic programming, and has been successfully extended to other
problem domains such as symbolic regression [37, 38], machine
learning [34], and deep learning [10].

As a semantic selection method, the lexicase selection algorithm1

evaluates individuals on each single training case in random orders.
One major drawback of lexicase selection is that the selection pro-
cess remains a black-box due to its non-parametric and recursive
nature. As a result, numerous repeated selection events are usually
required when using lexicase selection, as opposed to more e�cient
probabilistic methods, e.g., �tness proportionate selection [17, 39],
that directly sampling the individuals from a probability distribu-
tion calculated from �tness measures.

While repetitions of lexicase selection events eventually produce
a probability distribution of individuals to be selected, the underly-
ing recursion introduces step-wise dependency and thus prevents
a straightforward way to numerically calculate the probability dis-
tribution of individuals to be selected. Nonetheless, there has been
rising interest in analyzing lexicase selection from a probabilis-
tic point of view [32], which aims to develop a deeper theoretical
understanding of lexicase selection. In fact, recent work [12] has
proved that the exact calculation of the probabilities of individu-
als being selected in lexicase selection is nevertheless an NP-Hard
problem, which implies the potential need for an approximation
solution that would help develop better theoretical interpretation
and practical improvement to lexicase selection.

With the above motivations in mind, we propose probabilistic
lexicase selection (plexicase selection), which is, to our knowledge,
the �rst semantic-aware selection method that has a probabilistic
representation of selection events. Our method e�ciently calculates
an approximation to the probability distribution of individuals to
be selected by lexicase selection, and samples individuals from this
distribution instead of actually performing selection. There are two
main advantages of the proposed method. Firstly, plexicase selec-
tion directly calculates the probability of individuals being selected
instead of performing repeated selection events, which can reduce
the algorithm runtime signi�cantly. Secondly, having the proba-
bility distribution of individuals allow us to perform parametric
optimization on the selection process. We introduce a probability
manipulation process to plexicase selection, which uses a hyperpa-
rameter to control the kurtosis of the distribution of individuals, and
thus manages to further enhance the problem-solving performance.

In order to illustrate the advantages of plexicase selection, we
conduct experiments in two prevalent domains: program synthesis

1For comprehensive insights into the lexicase selection algorithm, detailed descriptions
can be found in Appendix Sec. A.
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and symbolic regression. Results on standard benchmarks includ-
ing the General Program Synthesis Benchmark Suite (PSB) [25]
and Symbolic Regression Benchmark (SRBench) [36] suggest that
plexicase selection signi�cantly outperforms lexicase selection in
terms of e�ciency, and at the same time demonstrates superior or
competitive problem-solving capabilities.

The paper is organized as follows. In Section 2, we summarize
the background of lexicase selection and the challenges that moti-
vate our work. Section 3 explains the theories and methodologies
of the proposed algorithm in detail, and Section 4 describes the ex-
periments and results in two domains where genetic programming
has been extensively adopted. The results include various measures
of problem-solving performance, algorithm runtime, and ablation
studies on comparisons and hyperparameters. We conclude with a
discussion of limitations and future work.

2 RELATEDWORK
Lexicase selection [28, 47] assesses performance on individual train-
ing cases instead of employing aggregated accuracy or �tness met-
rics. It is a semantic-aware selection method [40] with the bene�t of
including semantic information regarding the population. In other
words, lexicase selection tends to select specialist individuals for
being elite on a subset of cases [23, 24], which enhances population
diversity [21, 43]. Lexicase selection has been demonstrated more
reliable performance than other contemporary genetic program-
ming methods [14, 16, 31]. Recent work has empirically studied
and extended lexicase selection to other supervised and unsuper-
vised learning domains, e.g., symbolic regression [38], machine
learning [34, 35], rule-based learning [1], deep learning [8, 10], and
evolutionary robotics [30, 33], which illustrates its capability of
improving model performance and generalization.

Lexicase selection involves an essential procedure of gradually
eliminating individuals by evaluating the population on each case.
Recent work started to investigate the probability distribution of in-
dividuals selected by lexicase selection. Helmuth et al. [20] explored
the correlation between the probability of selecting an individual
and its rank in a population. La Cava et al. [32] derived the expected
probabilities of lexicase selection and studied the e�ect of varying
population and training set sizes. Dolson [12] further proved that
the problem of calculating the exact probabilities of lexicase selec-
tion is NP-Hard, which inspired this work to alternatively design
an approximation algorithm to obtain the probability distribution.

Probability-based selectionmethods have been studied for decades
in genetic and evolutionary computation. The basic strategy is to
assign higher selection probabilities to better-�tted individuals
based on their aggregated �tness. The most common method in the
category is �tness proportionate selection [17, 39], also known as
roulette wheel selection, which assumes the probability of selection
is proportional to the �tness of an individual. Extensions [2] to
�tness proportionate explored using the ranking or ordering of
individuals rather than their raw �tness. There have been some
other methods with selection probabilities depending on �tness,
e.g., remainder stochastic independent sampling [3] and stochastic
universal selection [18]. While these methods have slightly dif-
ferent statistical properties, none of them takes into account the
program semantics [40], i.e., the vector of outputs returned by a

given program for a given set of �tness evaluations. To our knowl-
edge, the proposed plexicase selection is the �rst semantic-aware
selection method that has a probabilistic representation of the pop-
ulation, which has substantial advantages in both problem-solving
performance and e�ciency, as described in detail in Section 3.4.

From the perspective of algorithm e�ciency, there have been a
few attempts to reduce the runtime of lexicase selection. Helmuth
et al. [19] theoretically analyzed the runtime of lexicase selection
and found that the expected runtime depended on population di-
versity. De Melo et al. [5] introduced a hybrid selection method
combining the idea of tournament and lexicase selection to improve
both e�ciency and quality of solutions. Aenugu and Spector [1]
introduces a batched variant of lexicase selection, which assesses
batched data samples instead of individual cases during selection
events. Most recently, Ding et al. [6, 7] proposed a partial evalu-
ation method based on weighted shu�e [48] to reduce the total
number of evaluations. In general, most of the prior work focuses
on optimizing the single selection event, but still requires repeti-
tions of selection events to complete parent selection of the whole
population. Our work takes a di�erent direction: �rst, we calculate
the probability distribution of individuals to be selected, and then
we perform all the selection events at once by sampling from the
distribution. Such an approach produces signi�cant improvement
in e�ciency for up to 10 times speed-up, as shown in our empirical
results on the program synthesis task.

Another popular trend in developing practical improvements to
lexicase selection is to utilize the downsampling of training cases.
Hernandez et al. [29] proposed downsampled lexicase selection
and [13] studied it further. Recent work [26, 27] investigated the
reasons behind the e�ectiveness of downsampling, and proposed a
few hypotheses. Moore and Stanton [42] also uses downsampling
with lexicase selection, but with di�erent terminology. Boldi et al.
[4] recently introduce informed downsampled lexicase selection,
which leverages population statistics to build downsamples that
contain more distinct and informative training cases. In this work,
we demonstrate that the proposed plexicase selectionmethodworks
well with existing downsampling terminologies, and the bene�ts
of adding downsampling to plexicase selection are more signi�cant
compared to lexicase selection.

3 METHODS
In this section, we describe the proposed method in detail. The plex-
icase selection method has two main components: �nding Pareto
set boundaries and assigning probabilities to individuals. We start
by reviewing the preliminaries on Pareto set boundaries and their
connection with lexicase selection, followed by proposing an algo-
rithm to e�ciently obtain Pareto set boundaries through pairwise
comparisons. We then introduce a method to assign probabilities to
individuals, and �nally present plexicase selection and its extension
with n-relaxation.

3.1 Preliminaries on Pareto Set Boundaries
The behavior of lexicase selection can be alternative interpreted
as multi-objective optimization with respect to the training cases,
where each training case is considered as a stand-alone objective.
La Cava et al. [32] has proved that lexicase selection only selects
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Pareto set boundaries, i.e., individuals that are in the boundaries of
the Pareto front. We �rst review the de�nitions related to Pareto
set boundaries in the context of evolutionary computing.

Given a populationY, 59 (~8 ) denotes the �tness (objective) func-
tion for the 8th individual ~8 on the 9th case G 9 in the training set
X of size # . In this work, we assume the goal of optimization is to
maximize the �tness function.

De�nition 3.1. For individuals~1,~2 2 Y, if 59 (~1) � 59 (~2) 89 2
{1, · · · ,# }, we state ~1 ⌫ ~2 (~1 dominates ~2).

De�nition 3.2. If~1 ⌫ ~2 and9 9 2 {1, · · · ,# } for which 59 (~1) >
59 (~2), we state ~1 � ~2 (~1 strictly dominates ~2).

In parent selection, if two individuals have the exact same �tness
on every training case, the selection algorithm can not distinguish
them. In this work, we only consider the situation where the individ-
uals have distinct overall �tness evaluations, i.e., 9 9 2 {1, · · · ,# }
for which 59 (~8 ) < 59 (~: ) 8~8 ,~: 2 Y. We show that the domina-
tion in this case can be replaced by its strict form.

L���� 3.3. If an individual is dominated by another individual,
and they have distinct case-wise �tness, the domination is strict.

P����. Let~1 ⌫ ~2, we have 59 (~1) � 59 (~2) 89 2 {1, · · · ,# }. If
~1 and ~2 have distinct case-wise �tness, we have 9: 2 {1, · · · ,# }
for which 5: (~1) < 5: (~2). Thus, we have 5: (~1) > 5: (~2). Accord-
ing to Def. 3.2, we can obtain ~1 � ~2. ⇤

The Pareto set P ofN is a subset (P ✓ N ) where each individual
is non-dominated. We have the following de�nitions regarding
Pareto set with respect to parent selection.

De�nition 3.4. Given ~8 2 N , if ~8 ⌃ ~: 8~: 2 Y, ~8 2 P where
P is the Pareto set.

De�nition 3.5. Given ~8 2 P, if 9 9 2 {1, · · · ,# } for which
59 (~8 ) � max~: 2Y 59 (~: ), ~8 is a Pareto set boundary.2

La Cava et al. [32] proved the following, which appears as Theo-
rem 3.4 in their paper:

T������ 3.6. If individuals from a population Y are selected by
lexicase selection, those individuals are Pareto set boundaries of Y
with respect to the training set X.

3.2 Obtaining Pareto Set Boundaries through
Pairwise Comparisons

Suppose we have the global best �tness of G 9 over population Y as
5 ⇤9 (Y) = max~8 2Y 59 (~8 ), we show that an individual must achieve
global best �tness on at least one case in order to be selected by
lexicase selection.

L���� 3.7. If an individual~8 2 Y is selected by lexicase selection,
then 9 9 2 {1, · · · ,# } for which 59 (~8 ) = 5 ⇤9 (Y).

P����. According to Theorem 3.6,~8 must be a Pareto set bound-
ary, i.e., 9 9 2 {1, · · · ,# } for which 59 (~8 ) � max~: 2Y = 5 ⇤9 (Y).

⇤
2We follow the de�nition of Pareto set boundary in La Cava et al. [32]. Note that the
Pareto set boundary in this work refers to the ‘boundary’ of the Pareto set, which is
di�erent from Pareto set (or Pareto boundary used in other work).

Algorithm 1: Find Pareto Set Boundaries through Pairwise
Comparisons
Data:

• 5 (~8 ): the �tness vector of individuals ~8 2 Y
• Y: the population of individuals

Result:
• P: a set of individuals that are Pareto set boundaries

5 ⇤ (Y)  max8 5 (~8 )
P  Y sorted by number of elitism ⇢ (~8 )
for ~8 in P do

if ⇢ (~8 ) == 0 then
Remove ~8 from P

end
else

individuals_to_compare {~: } 8⇢ (~: )  ⇢ (~8 ).
for ~: in individuals_to_compare do

if
Õ

5 (~8 ) < 5 (~: ) = 0 then
Remove ~: from P

end
end

end
end
return P

Besides, we show that the number of elitism ⇢ (~8 ) = |{59 (~8 ) =
5 ⇤9 (Y) 89 2 {1, · · · ,# }}|, i.e., the number of cases that an individ-
ual achieves global best �tness on, can be useful in determining
dominance.

T������ 3.8. For two individuals ~1,~2 2 Y, if ⇢ (~1) > ⇢ (~2),
~1 ⌃ ~2.

P����. Given that ⇢ (~1) > ⇢ (~2), there must 9 9 2 {1, · · · ,# }
for which 59 (~1) = 5 ⇤9 (Y) > 59 (~2). According to De�nition 3.1,
we have ~1 ⌃ ~2. ⇤

We can also extend Theorem 3.6 to the case of pairwise compar-
ison of two individuals.

L���� 3.9. Given two individuals ~1,~2 2 Y, ~2 can not be se-
lected by lexicase selection if ~1 � ~2.

P����. If ~1 � ~2, ~2 is not in the Pareto set according to De�-
nition 3.4. So ~2 can not be selected by lexicase selection according
to Theorem 3.6. ⇤

Combining Lemma 3.7 and Lemma 3.9, we show a way of deter-
mining whether an individual can be selected by lexicase selection
through global best �tness and pairwise comparisons.

T������ 3.10. An individual ~8 2 Y is a Pareto set boundary,
i.e., can be selected by lexicase selection, only if the following two
conditions are met:

(1) 9 9 2 {1, · · · ,# } for which 59 (~8 ) = 5 ⇤9 (Y).
(2) ~8 ⌃ ~: 8~: 2 Y.
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We hereby propose an e�cient algorithm to �nd Pareto set
boundaries in a population through vectorized pairwise compar-
isons. This step helps us identify individuals with zero and non-zero
probabilities to be selected by lexicase selection.

The basic idea is to check each individual in the population if
Theorem 3.10 holds. It is clear that if the ⇢ (~8 ) = 0, ~8 can not be
selected by lexicase selection (due to the second condition). For the
pairwise comparisons, since one individual may dominate multiple
individuals, and we can remove the individual from the comparison
pool once it is dominated (due to the �rst condition), it is better to
start with the best individual and compare it against others. So we
start by sorting the individuals by their number of elitism ⇢ (~8 ), as
individuals with high elitism are more likely to dominate others.
Another bene�t of sorting is to reduce the number of comparisons.
As shown in Theorem 3.8, if ⇢ (~1) > ⇢ (~2), ~1 ⌃ ~2. So starting
from the �rst individual in the list sorted by ⇢ (~8 ) from high to low,
we only need to compare the current individual with individuals
that have equal or lower ⇢ (~8 ).

The comparisons are performed in a vectorized fashion. Given
the �tness vector 5 (~8 ) = [51 (~8 ), 52 (~8 ), · · · , 5# (~8 )]) , if for any
case 9 we have 59 (~1) � 59 (~2), then we can infer that ~1 ⌫ ~2. We
use vectorized comparison to check if

Õ
5 (~1) < 5 (~2) = 0. Since

the �tness vectors are all distinct after preselection, according to
Lemma 3.3, we have ~1 � ~2.

During the iterations, if an individual is found to be dominated,
we record that and also remove it from the sorted list. This is because
dominance follows transitive property, i.e., if ~8 is dominated by ~: ,
any of its dominants are also dominated by ~: , so removing ~8 will
avoid unnecessary comparisons.

3.3 Assigning Probabilities to Individuals
After getting the Pareto set boundaries, we already know which
individuals will and will not be selected by lexicase selection, and
we can assign a selection probability of zero to individuals that are
not in the Pareto set boundaries. The next step is to determine the
selection probabilities for Pareto set boundaries.

It has been proved that calculating the exact probabilities is an
NP-Hard problem [12]. So here we propose an e�cient algorithm to
alternatively approximate the probabilities. Our hypothesis for the
approximation is: for any training case, suppose there are : indi-
viduals being elites in that case, the probability of which individual
to be selected is based on their total elitism, i.e., the number of best
�tness achieved. The intuition is that when we look at the training
�rst case in the sequence of a lexicase selection event, suppose :
individuals tie on this training case, then instead of going to the
next case like normal lexicase selection, we assume that whichever
case has a higher chance to be the best on the next case is more
likely to be �nally selected. After computing the distribution for
each individual on each training case, we average over all the cases
to get the �nal distribution.

More formally, the unnormalized probability density function
for an individual ~8 in the population Y on the 9th training case is
given by

⌘ 9 (~8 ) =
(
⇢ (~8 ) if 59 (~8 ) = 5 ⇤9 (Y)
0 otherwise

. (1)

Algorithm 2: Probabilistic Lexicase Selection
Data:

• 5 (~8 ): the �tness vector of individuals ~8 2 Y
• Y: the population of individuals

Result:
• %0: individuals that are selected as parents

P  Find Pareto Set Boundaries (Algorithm 1)
for ~8 in Y do

if ~8 2 P then
Calculate % (~8 ) (Equation 1,2,3)

end
else

% (~8 ) = 0
end

end
%0  sample parents from the calculated distribution % (Y)
return %0

The probability distribution of selecting individuals on the 9th
training case is

% 9 (~8 ) =
⌘ 9 (~8 )Õ

~: 2Y ⌘ 9 (~: )
. (2)

Finally, the probability distribution of selecting individuals is
averaged over all the training cases,

% (~8 ) =
Õ#

9=1 % 9 (~8 )
#

, (3)

which is used to assign probabilities in the proposed plexicase
selection.

3.4 Probabilistic Lexicase Selection
With aforementioned de�nitions in mind, we introduce probabilis-
tic lexicase selection (plexicase selection). In general, plexicase
selection �rst �nd the Pareto set boundaries through pairwise com-
parisons, then assign probabilities to each individual to form the
probability distribution of selection. Finally, the parent selection
is performed by sampling from the generated distribution. The
complete algorithm is outlined in Algorithm 2.

There are two major bene�ts of our method, which samples
parents from a calculated distribution instead of running repeated
selection events like the original lexicase selection. First, once the
probabilities are calculated, sampling can be e�ciently performed
to obtain numerous parents from the distribution. The worst-case
runtime of our method is the same as running lexicase selection for
just one selection event. In practice, we observe that our method
is signi�cantly faster than lexicase selection in various tasks. Sec-
ondly, having a probabilistic representation of the individuals being
selected can provide us with �exibility to further apply parametric
operations to improve the performance.

In particular, we propose a probability manipulation strategy to
control the kurtosis (tailedness) of the selection distribution, i.e.,
the randomness in multiple selection events. We introduce a hyper-
parameter U � 0, which acts similarly to a temperature parameter
in the Softmax function. After calculating the probability of select-
ing each individual % (~8 ), we perform the following probability

1076



Probabilistic Lexicase Selection GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 1: Results on program synthesis benchmark problems. We report the number of successes over 100 runs. With �xed U = 1,
plexicase selection is competitive to lexicase selection on all the problems. With probability manipulation (selecting the best
U 2 {0.5, 1, 2}), plexicase selection outperforms lexicase selection on some problems. We also perform Pearson’s Chi-squared
tests to compare the number of successes of plexicase selection against lexicase selection, and the results are marked with
signi�cance levels (%  0.05*, 0.01**, 0.001***).

Problem Regular Downsampled

Lexicase Plexicase (U = 1) Plexicase Lexicase Plexicase (U = 1) Plexicase

compare-string-lengths 0 0 0 0 0 0
median 89 83 96 70 88** 98***
negative-to-zero 79 80 85 76 90* 94**
number-io 99 100 100 99 100 100
replace-space-with-newline 10 6 13 11 7 12
smallest 100 100 100 100 99 100
vector-average 100 99 100 100 100 100

manipulation:

% 0 (~8 ) =
% (~8 )UÕ

~8 2Y % (~8 )U
(4)

where % 0 (~8 ) is the new probability distribution to be used in plexi-
case selection.

Intuitively, U controls the di�erence in probabilities of each in-
dividual to be selected. When U = 1, there is no change in the
distribution. When U is small, the probabilities are more evenly
distributed, (e.g., at the extreme case when U = 0, all the individuals
that are Pareto set boundaries will be selected uniformly at random),
whereas when U is large, the probabilities are more skewed towards
the elites.

Note that such manipulation does not change the probability of
individuals with an initial probability of zero, so it keeps the basic
terminology of selection that only Pareto set boundaries will be
selected, as stated in Theorem 3.6.

3.5 Extension with n-Relaxation
The proposed plexicase selection can be easily extended to its n-
relaxed form, namely n-plexicase selection, to handle tasks where
the �tness measure is in the continuous space. In particular, n refers
to the dynamic relaxation on elitism proposed in prior work [38].
We brie�y describe the key modi�cations needed for the extension
to n-plexicase selection.

Firstly, most of the de�nitions in Section 3.2 can be extended to
their n-relaxed forms. In general, we have the following de�nition
regarding n-domination:

De�nition 3.11. For individuals ~1,~2 2 Y, if 59 (~1) � n �
59 (~2) 89 2 {1, · · · ,# }, we state ~1 ⌫ ~2 (~1 n-dominates ~2).

Similarly, Algorithm 1 can be extended to �nd n-relaxed Pareto
set boundaries if we use n-domination to address elitism and dom-
ination. By replacing Algorithm 1 with its n-relaxed form in Al-
gorithm 2, we get the n-relaxed form of plexicase selection, i.e.,
n-plexicase selection.

4 EXPERIMENTS
We conduct experiments to validate the proposed method in two
domains: program synthesis and symbolic regression, in which
lexicase selection has been demonstrated to be a state-of-the-art
approach. In this section, we describe the implementation details
and experimental results.

4.1 Datasets and Benchmarks
For program synthesis, we use a sample of problems taken from the
General Program Synthesis Benchmark Suite [25], which is a stan-
dard benchmark for testing GP systems for program synthesis. The
problems contained in this suite were sourced from introductory
computer science textbooks and programming competitions. This
aligns the complexity of the problems with the average skill of a
beginner human programmer. Solutions to these problems require
the use of various data types, control �ow, and basic data structures.
We have selected the same subset of 7 problems used in [45] out of
the full PSB suite in order to compare the change in performance
when using plexicase. State-of-the-art solution rates to these prob-
lems for PushGP [27], Grammar Guided Genetic Programming [15],
and Code Building GP [44] show that this subset of the PSB covers
a range of di�culties regardless of the GP method.

Another domain that receives rising interest from the GP andML
community is symbolic regression. We adopt the recently proposed
SRBench [36], which is a large-scale, open-source, reproducible
benchmarking platform for symbolic regression. In particular, we
use a subset of 20 black-box regression problems with sample sizes
varying from 40 to 200. These regression problems consist of both
real-world problems (data obtained from physical observations)
and synthetic problems (data generated from static functions or
simulations), covering diverse domains such as health informatics,
business, environmental science, and economics.

4.2 Implementation Details
For program synthesis, we implement our algorithm in the Code
Building Genetic Programming (CBGP) framework [45]. CBGP is a
general program synthesis system that works with arbitrary data
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Figure 1: Average runtime speed-up of plexicase selection
compared to lexicase selection in paired comparisons. A
speed-up of = means the plexicase selection runtime is 1/=
of the lexicase selection runtime. The comparisons are con-
ducted in both regular and downsampled circumstances.

types and structures, and shows competitive problem-solving per-
formance. The original CBGP system uses lexicase selection as the
default parent selection method, and we compare it with plexi-
case selection. We follow the original CBGP paper [45] to set the
system con�gurations: for each problem, we perform 100 runs of
the system with a population size of 1000 for 300 generations; the
variation operator used in all the runs is UMAD [22]. For plexicase
selection, we use three di�erent U = 0.5, 1, 2 for probability manip-
ulation and report the best result for each problem out of the three
con�gurations.

For symbolic regression, we start with the gplearn1 framework,
which originally uses tournament selection. Since symbolic regres-
sion problems need to optimize with continuous values, we im-
plement both n-lexicase selection and n-plexicase selection, and
compare them against the tournament selection baseline. For tour-
nament and n-lexicase selection, we adopt the same con�gurations
as in SRBench [36], which are 6 combinations of hyperparameters
with 3 population sizes of 1000, 500, 100 (the according numbers
of generations are 500, 1000, 5000) and 2 function sets. The tourna-
ment size is 20 for all the problems. For n-plexicase selection, we
include di�erent U values (0.5, 1, and 2) as hyperparameters, but
we limit the number of combinations to six for fair comparisons
with other methods. Each method is tested for 10 repeated trials on
each of the 20 problem (200 trials in total) with di�erent random
seeds controlling both the train/test split and the initialization of
the algorithm.

4.3 Results on Program Synthesis
4.3.1 Problem-solving performance. Table 1 shows the problem-
solving performance of plexicase selection compared to the regular
lexicase selection. We report the number of successes over 100

1https://github.com/trevorstephens/gplearn

Table 2: Ablation study on di�erent U values for probability
manipulation of plexicase selection on program synthesis
benchmark problems. We report the number of successes
over 100 runs.

Problem Plexicase (�xed U)

U = 0.5 U = 1 U = 2

compare-string-lengths 0 0 0
median 61 83 96
negative-to-zero 85 80 70
number-io 99 100 100
replace-space-with-newline 4 6 13
smallest 98 100 100
vector-average 100 99 100

runs. With �xed U = 1, plexicase is competitive to lexicase on all
the problems. With probability manipulation (selecting the best
U 2 {0.5, 1, 2}), our method is able to outperform lexicase on some
problems. We also perform Pearson’s Chi-squared tests [46] to
compare plexicase selection against lexicase selection, showing that
there is no signi�cant di�erence in problem-solving performance
between regular lexicase and plexicase selection.

Recent work [27, 29] has demonstrated that the advantages of
lexicase selection can be potentially ampli�ed by downsampling.
Following this trend, we also test the algorithms with a downsam-
pling rate of 0.25. The downsampling is performed before each
generation to use only a subset of training cases. We observe that
plexicase selection bene�ts more from downsampling, and is able
to signi�cantly outperform lexicase selection on 2 problems with
downsampling. Such results indicate that plexicase is likely to work
well on larger-scale problems with downsampling.

4.3.2 Runtime analysis. Another important factor we care about is
e�ciency. In order to fairly compare the runtime of plexicase and
lexicase selection, we design a paired-comparison experiment. Dur-
ing each generation, we run both lexicase selection and plexicase
selection on the same population with the same training data, and
record the runtime just for each selection algorithm.

Figure 1 shows the average runtime speed-up of plexicase se-
lection to lexicase selection in paired comparisons. A speed-up of
= means the runtime is 1/= of lexicase runtime. We can see that
plexicase achieves signi�cant speed-up on all the problems. With
downsampling, the speed-up is further enhanced on most of the
problems. Such results indicate that our method is more e�cient
than lexicase selection on the benchmark program synthesis prob-
lems, and the advantage is further enhanced with downsampling.

4.3.3 E�ect of probability manipulation. As an ablation study, we
report the detailed results of plexicase selection with di�erent
U values for probability manipulation. As shown in Table 2, for
some problems, e.g., median and replace-space-with-newline,
larger U value gives better results, but for other problems like
negative-to-zero, small U works better. These observations indi-
cate that di�erent problems may favor di�erent levels of kurtosis of
the individual distribution. In other words, some problems require
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Figure 2: Overlap between individuals selected by plexicase selection and those selected by lexicase selection. The ratios are
calculated for all individuals as well as unique individuals.

more exploitation with good solutions, others need more explo-
ration with a large diversity of solutions. While lexicase selection
does not have control over the trade-o� between exploration and
exploitation, our method manages to overcome this disadvantage
and demonstrates better performance.

4.3.4 Selection similarity. In order to validate how well plexicase
selection is approximating the probabilities of selecting individu-
als with lexicase selection, we perform an ablation study on the
similarity of individuals selected by two algorithms. The similarity
is measured as the overlap ratio of individuals selected by both
algorithms over those selected by lexicase selection. The overlap
is separately calculated over all individuals as well as just unique
individuals. We report the distribution of mean overlap ratios over
generations for all runs, as summarized in Figure 2. We can see that
for 4 problems, the overlap ratios of all individuals are above 0.8,
indicating that plexicase is approximating the distribution with con-
siderable overlap. There also exists some variances of overlap ratios
among di�erent problems, which suggests that the approximation
performance may be problem-dependent.

Similar observations have been found in recent work [19] that
lexicase selection produces varying population diversity on di�er-
ent problems. However, the overlap ratios of unique individuals
are almost always above 0.9, indicating that most of the individuals
selected by lexicase selection have been selected at least once by
plexicase selection. This result validates the theoretical correctness
of plexicase selection in obtaining the Pareto set boundaries as
individuals that can be selected by lexicase selection.

4.4 Results on Symbolic Regression
4.4.1 Performance on black-box regression problems. We assess the
performance of our method on symbolic regression problems in
terms of both accuracy and complexity. For accuracy, we use the

coe�cient of determination, i.e., '2, which is de�ned as

'2 =
Õ
8 (~8 � ~̂8 )2Õ
8 (~8 � ~̄)2

. (5)

For complexity, we follow SRBench and calculate the number of
mathematical operators, features, and constants in the model.

The median performance over all 20 black-box benchmark prob-
lems is summarized in Figure 3. For each problem, we take the
median performance over 10 repeated trials with di�erent random
seeds, following SRBench’s recommended evaluation setting. We
can see that using probability manipulation, n-plexicase selection
slightly outperforms n-lexicase selection in regression accuracy,
with signi�cantly less model size and training time.

We also perform a Mood’s median test [41] comparing the '2
values of n-plexicase and n-lexicase selection. The resulting p-value
is 0.8256, indicating that there is no signi�cant di�erence in perfor-
mance between the two algorithms, i.e., n-plexicase well approx-
imates the problem-solving capability of n-lexicase selection. In
addition, the performance of n-plexicase selection may be further
improved with more budget on hyperparameter tuning to compen-
sate for the reduction in training time.

The results also show that n-plexicase selection has less variance
in performance across di�erent problems, compared to n-lexicase
selection, indicating that our method is more stable and robust in
solving the symbolic regression task in general. It is worth noting
that the variances are inevitable since SRBench aggregates many
ML problems and the problems are with varying di�culties.

4.4.2 Runtime analysis. Figure 3 shows a signi�cant reduction in
the overall training time of n-plexicase selection compared to n-
lexicase selection. It should be noted that training time includes
other processes, such as evaluations of individuals, which is equal
for both algorithms. This suggests that the improvement in the
runtime of the selection process alone is substantial.
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Figure 3: Testing performance on the black-box benchmark problems. Each algorithm is evaluated for 200 trials in total. Points
indicate the median values of each metric among all 20 problems, where for each problem we take the median value over 10
repeated trials. The bars show the 0.95 con�dence interval obtained from bootstrapping.
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Figure 4: Runtime comparison between n-plexicase selection
and n-lexicase selection on symbolic regression problems.

To further investigate the patterns of runtime improvement with
n-plexicase selection, we plot the runtime of both methods sep-
arately for each problem, characterized by the total number of
samples, as shown in Figure 4. The results indicate that n-plexicase
selection consistently outperforms lexicase selection in terms of
runtime across all problems, irrespective of the dataset size. This
�nding highlights the e�ciency of our approach in solving the
symbolic regression tasks.

5 CONCLUSION AND FUTUREWORK
In this work, we introduce a novel parent selection method called
Probabilistic Lexicase Selection, which e�ciently approximates the
probability distribution of lexicase selection. The proposed method

not only demonstrates superior problem-solving capabilities as a
semantic-aware selection method, but also bene�ts from having
a probabilistic representation of selection for enhanced e�ciency
and �exibility. Speci�cally, the probability distribution enables us to
e�ciently sample numerous parents at once instead of performing
repeated selection events. We also introduce a probability manipu-
lation method to further enhance the problem-solving performance
of plexicase selection by controlling the kurtosis of distribution.

To validate the proposed method, we conducted experiments
in two prevalent task domains: program synthesis and symbolic
regression. The empirical results on standard benchmarks demon-
strate that our plexicase selection algorithm achieves state-of-the-
art problem-solving performance comparable to lexicase selection
while also surpassing lexicase selection in terms of computation
e�ciency. Ablation studies further investigate the e�ect of hyper-
parameters and validate the correctness of the proposed method.

One limitation of this work is that althoughwe tested ourmethod
on two popular domains for genetic programming, the benchmark
problems used in the experiments are relatively small-scale com-
pared to modern machine learning tasks. In future work, we plan
to extend plexicase selection to solve larger-scale tasks such as
evolutionary optimization for deep neural networks [10] and pa-
rameterized quantum computing models [9, 11].
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